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Electron-positron correlations in silicon
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A number of approaches to treat the electron-positron correlation effects is used to study electron-positron
momentum densities and positron annihilation rates in bulk silicon. Also, the nonlocal effects are explicitly
taken into account within the weighted density approximation~WDA!, giving rise to nonlocal state-selective
electron-positron correlation functions. The WDA results for the electron-positron momentum densities and
annihilation rates are compared to the experimental data and to calculations performed within the independent-
particle model and local-density approximation. Additionally, the generalized-gradient approximation is used
to calculate nonlocal, but state independent, quantities. The importance of nonlocality and state-dependence of
the electron-positron correlation functions, and the role of the positron wave function, are discussed in detail.
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I. INTRODUCTION

The positron lifetimet, and angular correlation of pos
tron annihilation radiation~ACAR! techniques, have becom
very useful tools for studying electronic structure of meta1

Due to their technological importance, many elemental a
compound semiconductors have also been fairly extensi
studied using positron annihilation spectroscopies~see Refs.
2–16, and references cited therein!. However, as in the cas
of metals, the interpretation of positron annihilation data
semiconductors is not easy, and to extract information on
electron momentum density~EMD! and electron charge den
sity of the studied systems, both the electron-positron (e-p)
interaction and positron wave function5 have to be consid-
ered explicitly. The importance of these effects becomes
pecially apparent when comparing ACAR spectra w
Compton profiles~CP’s!.7,10,16 In this paper we present
detailed study of the influence of these effects on the elec
momentum density, charge distribution, and other posit
annihilation characteristics in bulk silicon.

For semiconductors the importance of the positron w
function for positron annihilation characteristics follows a
most naturally from crystal structure. The group-IV eleme
tal semiconductors~Si, Ge! and the group-III-V compound
semiconductors~e.g., GaAs! crystallize in open diamond o
zinc-blende structures. Therefore, unlike electrons, a posi
in these systems is most likely to be found in the intersti
region. In fact, over 70% of the positron distribution is l
cated in this region.17 In semiconductors the effect of th
positron wave function is often associated with the char
teristic dips observed in the low-momentum region of t
ACAR spectra. Specifically, all one-~1D!, two- ~2D!, and
three-dimensional~3D! ~reconstructed! ACAR spectra, mea-
sured for elemental and compound semiconductors, show
the low-momentum region, dips and valleys along the@110#
and@100# directions, while along the@111# direction a sharp
peak is observed. The size of these dips, which varies am
different semiconductors, has been analyzed using gro
theoretical considerations.6 The fact that these dips are som
PRB 610163-1829/2000/61~15!/10100~12!/$15.00
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what shallower in the group-III–V semiconductors than in
and Ge has been attributed to symmetry lowering, fromOh

7

in the group-IV semiconductors toTd
2 in the III-V compound

semiconductors. However, Panda and co-workers,7,10 com-
paring the CP data for Si, Ge, and GaAs, arrived at the c
clusion that the slopes of the dips in the ACAR spectra c
not be explained in terms of the band contributions alone,
are most probably due to the positron density distributi
Also, thee-p correlations are expected to contribute subst
tially to the different shapes of the ACAR spectra in the
systems, in the low-momentum region.

Although electron-positron correlations lead to a sign
cant change in the electron momentum density, it is
independent-particle model~IPM! that has been most com
monly used in calculations of the electron-positron mom
tum density in semiconductors.2,3,6,7This approach takes into
account the effect of the positron wave function, but negle
completely thee-p correlations, thus giving rise to conside
able differences between theory and experiment, espec
in the low-momentum region and at the Jones zo
faces.3,4,6,7As to the differences of the ACAR spectra in th
low-momentum region, Fujiwara was the first to point o
deenhancement effects in the high-momentum region of
ACAR spectra in silicon.4 However, only in more recen
calculations of momentum densities in semiconductors h
two-particle correlation functions, taking account of thee–p
correlations, been considered either within the local-den
approximation~LDA !8,11,12or, including some form of non-
locality, within the generalized-gradient approximatio
~GGA!,10,11 as described in Refs. 13 and 14. Neverthele
these correlations have only been included in a sta
independent form. By state independence one means thae-p
correlation functions, as employed in calculations of Refs
10, and 11, have been independent of the initial elect
Bloch state. In the application to Si, these state-independ
correlation functions gave rise in the low-momentum reg
to almost constant enhancement factors,10 defined as a ratio
of the e-p momentum density,r(p), to its IPM counterpart.
Note that these constant enhancement factors have also
10 100 ©2000 The American Physical Society
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PRB 61 10 101ELECTRON-POSITRON CORRELATIONS IN SILICON
obtained in the GGA approach, where thee-p correlations
have been treated nonlocally. In the present paper, howe
we shall argue that it is the state dependence of the cor
tion functions that is of paramount importance for obtaini
the correct low-momentum behavior of the ACAR spectra
Si. The arguments follow from the fact that the valence el
trons in Si are mostlysp like, giving rise to nearly parabolic
valence bands.2 It has been shown by general theoretic
considerations,18 and confirmed by experiments for simp
metals,19 that for nearly free electrons the state depende
of e-p correlation functions has an important influence
the shape of the valence contribution tor(p) in the low-
momentum region. Here it will be shown that the state
pendence of thee-p correlation functions, whether local o
nonlocal, is the most important factor for obtaining a corr
description of the experimentally observed ACAR spectra
semiconductors. The nonlocal effects are important for c
electron but also reflect the localization of the valence e
tron density along the tetrahedral bonds. Nevertheless
silicon the core electron contribution to the annihilation ch
acteristics is very small~below 3%!, and therefore nonloca
effects are not expected to have an important influence
r(p), but can be seen in the core part of the total annihilat
rate,l51/t.17

In the present paper we implement the weighted-den
approximation ~WDA!17 to calculate the nonlocal state
dependente-p correlation functions, and with them thee-p
momentum densityr(p) and positron lifetimet for bulk Si.
We discuss in detail the effect of nonlocality of thee-p
correlations on the resulting positron annihilation charac
istics. Additionally, following the approach of Daniu
et al.,20 we calculate the latter quantities within the loc
density approximation using the state-selective enhancem
factors ~SEF’s!, while calculating thee-p correlation func-
tions. Note that since the state selectivity of the correlat
functions is usually expressed through the dependence o
electron energy eigenvalues, the state-selective correla
functions are in fact the selective energy functions.21 These
results are further compared to the calculations perform
within IPM, and the LDA and GGA approaches, where t
e-p correlation functions are state independent, namely, t
have been calculated with the constant enhancement fa
~CEF!, with respect to their dependence on the electron s
kj. Thus, in contrast to the state-selectivee-p correlation
functions, the state-independente-p correlation functions are
the constant energy functions. For all studied quantities,
make contact with the experimental data.6,22 We emphasize
the importance of the state dependence of thee-p correlation
functions for all positron annihilation characteristics. Mor
over, we discuss the influence of thee-p interaction on the
positron charge distribution, and study the effect of the
sulting positron wavefunction on all quantities of intere
Also, the contribution of individual annihilation-active band
to EMD, andr(p) is thoroughly analyzed.

The paper is organized as follows. In Sec. II we descr
the formalism and provide details on the calculations. T
results are presented and discussed in Sec. III, and in Se
we conclude the paper.

II. THEORY

A. EMD and annihilation characteristics

The electronic structure of solids, required as an inpu
the calculation of positron annihilation characteristics,
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usually calculated within the local density approximation
density-functional theory.23 In the present calculations, th
self-consistent electronic structure of bulk Si has been
tained using the linear muffin-tin orbital~LMTO! method
with the atomic sphere approximation~ASA!.24 For core
electrons the frozen-core approximation has been im
mented. The electron wave functionsc i

e(re) and the charge
densityn(re) at the electron positionre , consisting of core
nc and valencenv contributions, define both thee-p momen-
tum density and annihilation rates. For periodic solids,
electron wave functions,c i

e(re), may be labeled by the
Bloch vectork and band indexj, namely,i 5k j .

The electron momentum densityrEMD(p) and thee-p
momentum densityr(p) are determined, respectively, by1

rEMD~p!5
1

V (
i occ

U E
V

e2 ip.rec i
e~re!dreU2

~1!

and

r~p!5(
i occ

U E
V

e2 ip.rpc1~r p!c i
e~r p!Ag i~r p!dr pU2

, ~2!

where p is the electron momentum in the extended zo
scheme,c1(r p) is the wave function of a thermalized pos
tron ~at positionr p) in the Bloch state ofk150 and j 51,
andV is the volume of the sample. The summations in E
~1! and ~2! are over all occupied electron statesi. The func-
tions g i(r p) are the state-dependent two-particlee-p corre-
lation functions, defined as the ratio of perturbed to unp
turbed electron densities in the initial statei at the positron
position r p .

The positron wave functionc1(r p) is the solution of the
Schrödinger equation, with the positron potential consisti
of the external potential due to ions, the Hartree potent
and thee-p correlation (Vcorr) potential.12,25,26The positron
Hartree potential and the external potential are equal to
respective electron potentials with the opposite sign. The
ergy E1 is the bottom of the positron band. The potent
Vcorr , describing the positron interaction with the electr
screening cloud, can be determined from the Feynm
theorem.12,17,25,27For the IPM, Vcorr

IPM(r p)[0, while within
the LDA thee-p correlation potential is approximated by th
quantity obtained for the homogeneous electron gas, nam
Vcorr

LDA(r p)5Vcorr
h @n(r p)#, parametrized in terms of the un

form electron densityn0.25 Details on the evaluation of the
WDA and GGA e-p correlation potentials were given i
Refs. 17 and 13, respectively.

The total annihilation ratel is defined as

l5pr 0
2c

V

~2p!3E r~p!dp

5pr 0
2c(

t
E uc1~r p!u2nt~r p!g t~r p!dr p , ~3!

with r 0 and c being the classical electron radius and t
velocity of light, respectively. Heret refers to different types
of electrons, e.g., core or valence.
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10 102 PRB 61A. RUBASZEK, Z. SZOTEK, AND W. M. TEMMERMAN
B. Enhancement factors and weighted density approximation

When a positron enters a solid, it attracts the surround
electrons, and a polarization cloud is formed. As a result,
densities of individual electron states,i, at the positron posi-
tion, become strongly enhanced, as compared to their in
values. In calculations of positron annihilation characte
tics, this effect can be accounted for by defining the tw
particle e-p correlation functionsg i(r p). In the IPM these
correlation effects are totally neglected. In the LDA, the c
relation functionsg i(r p) are approximated by the respectiv
quantities for the homogeneous electron gas,g i

h@n(r p)#,27

with the local electron densityn(r p) at the positron position
r p . In the LDA, we can define both the state-dependent
-independent correlation functions which, however, are
ways local quantities. To introduce the nonlocal effects,
yond the LDA description, Barbiellini and co-workers13,14

used a parameter-dependent GGA approach and define
nonlocal state-independent GGA correlation functio
~GGA-CEF’s!. For the state-dependent and nonlocal desc
tion of the correlation functions, we have used the weight
density approximation. Since a detailed description a
implementation of the WDA correlation functions we
given in Ref. 17, here we only summarize the main poin

In the WDA, thee-p correlation functions have been a
proximated byg t

WDA(r p)5g t
h@ ñt(r p)#, where the effective

WDA electron densitiesñt(r p) have been defined for all dif
ferent typest of electrons, meaning that for anyt andr p we
have calculated the densityñt(r p) as the solution of the
charge-neutrality condition

$g t
h@ ñt~r p!#21%E nt~re!e

2a[ ñt(rp)] ure2rpudre

5$g t
h@n~r p!#21%nt~r p!8p/aLDA

3 @n~r p!#, ~4!

with

a3@ ñt~r p!#5
nt* ~r p!$g t

h@ ñt~r p!#21%

nt~r p!$g t
h@n~r p!#21%

aLDA
3 @n~r p!#

and

aLDA
3 @n~r p!#58p(

t
nt~r p!$g t

h@n~r p!#21%.

Herent* and ñt are related by

ñt~r p!5n~r p!1@nt* ~r p!2nt~r p!#.

Further technical details of calculating the effective elect
densities were given in Ref. 17.

The corresponding correlation functionsg t
h(n0) for core

and valence electrons, respectively, have been approxim
by17 gc

h(n0)5e(0,n0)20 andgv
h(n0)5gh(n0).12,13,20Here the

quantitiese are the Kahana-like energy-dependente-p en-
hancement factors, and are evaluated at the energyE50 and
electron densityn0.27,28

In the present application of the above methodology
bulk Si, we first evaluate the effective WDA electron den
ties according to Eq.~4!. Then, for electrons of typet, we
approximate thee-p correlation functions, appearing in Eq
g
e
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~2!, with the state-dependent WDA correlation functio
g i(r p)5e@Ei /EF ,ñt(r p)# , whereEi is the electron eigenen
ergy in the initial statei, andEF is the Fermi energy. For the
enhancement factorse@E,n0# , we have used the values ca
culated in Ref. 28. In the LDA–SEF approach, the quantit
e@Ei /EF ,n(r p)# have been substituted for thee-p correla-
tion functionsg i(r p) in Eq. ~2!.20

III. RESULTS AND DISCUSSION

In this section we study in detail the influence of the po
itron distribution ande-p correlations on the resulting pos
tron annihilation characteristics. Since in Si the core el
trons contribution to positron annihilation is very small,
what follows we concentrate mainly on the valence el
trons, but give also some results for the core electrons.
analyze the effect of different approaches to thee-p corre-
lations on the resulting positron density distributions. Als
we discuss the importance of the nonlocal effects for
calculation of the total and partial positron annihilation rat
Moreover, the role of the state dependence of thee-p corre-
lations is examined. To afford this, we have calculated
positron annihilation characteristics for a number of differe
approximations to the positron wave function ande-p corre-
lations. Specifically, we have studied the EMD in compa
son with thee-p momentum densityr(p), calculated within
the IPM, LDA ~both CEF and SEF!, GGA, and WDA ap-
proaches. When calculating a given positron wave functi
e.g., IPM, LDA, WDA, or GGA, the corresponding approx
mation for the positron correlation potentialVcorr , occurring
in the positron Schro¨dinger equation, has been used. Add
tionally, we have separated the contributions due to differ
annihilation-active bands to the relevant momentum de
ties.

As mentioned earlier, we have used the LMTO-AS
method for electronic structure calculations. According
the atomic sphere approximation, the polyhedral Wign
Seitz cell is approximated by slightly overlapping atom ce
tered spheres, with the total volume equal to the actual c
tal volume. Since the diamond structure is an open struct
to improve its packing, an additional two empty AS
spheres have been introduced at the high-symmetry inte
tial sites. For the basis functions we have useds, p, andd
partial waves on both the Si and empty-sphere sites. In
calculations we have assumed an experimental lattice c
stant ofa510.26 atomic units. Moreover, in all calculation
the Jarlborg–Singh~JS! correction,29 taking into account the
nonorthogonality of the plane waves in the ASA spheres,
been included when evaluating the EMD andr(p), as given
by Eqs.~1! and ~2!. However, for diamond structure the J
overlap matrix has turned out to be almost diagonal, a
therefore the JS correction has not influenced substant
the calculated EMD ande-p momentum densities for silicon

The calculated valence energy bands along three cry
lographic directions in the$001% plane are shown in Fig. 1
Due to the symmetry rules, only the bands represented
solid curves contribute to the electron ande-p momentum
densities. From Fig. 1~a! one can see that for momenta alon
the@110# direction only the first and third bands contribute
the momentum densities, while the second and fourth ba
are inactive, and this holds for all Brillouin zones~BZ’s!. As
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PRB 61 10 103ELECTRON-POSITRON CORRELATIONS IN SILICON
can be seen in Figs. 1~b! and 1~c!, the situation is different
for momenta along the directions parallel to the@100# direc-
tion. The first band contributes to the momentum densi
for momenta in the first BZ~1BZ!, but becomes inactive in
the second BZ~2BZ!, while the second band, which is ina
tive in the 1BZ, becomes active in the 2BZ. The doub
degenerate uppermost band is inactive for the mome
along theG-X-G8 line. When increasing the Jones inde
then also the upper bands along the lines parallel to the@100#
direction start contributing to the EMD and positron anni
lation spectra. For momenta along the line starting
(0,p/a,0) and finishing at (0,p/a,4p/a) @see Fig. 1~c!#, the
third band interchanges with the fourth band at theW point,
similarly to the previously mentioned interchange of the fi
band with the second band. Note, however, that in orde
obtain 1D and 2D ACAR spectra, measured experimenta

FIG. 1. Energy bands in Si along three crystallographic dir
tions in the$001% plane. Momenta are expressed in units of 2p/a.
The solid curves denote the annihilation active bands, contribu
to the EMD ande-p momentum densities, while the dashed curv
denote the inactive bands.
s

ta

t

t
to
y,

one has to perform the planar and linear integrals ofr(p),
respectively, which of course involves contributions from
four electron bands, since in the general points of the BZ
symmetry rules excluding some bands apply.30 In other
words, after performing 1D or 2D integration ofr(p) , the
above characteristic asymmetry of the energy bands is
Therefore, the dips, observed in the 1D and 2D experime
ACAR spectra for Si, would be difficult to explain in term
of the symmetry of the active bands alone.6 This further sug-
gests that in the interpretation of the ACAR spectra in ter
of EMD, more reliable conclusions can be drawn from 3
~reconstructed! data than from ‘‘raw’’ 1D and 2D ACAR
spectra. Consequently, below we present and discuss re
for the calculated 3D momentum densities in bulk Si,
comparison with the 3D reconstructed experimental data
Tanigawa.6

A. Momentum density distributions

In Fig. 2 we present the contour plots ofrEMD(p),
r IPM(p), rLDA-SEF(p), and rWDA(p) in the $001% plane.
These we compare with the relevant contour plots of
experimentally reconstructed 3D ACAR spectra,6 given in
Fig. 3. The experimental spectra are the raw data measur
14 K with resolution of 0.7330.73 mrad2. All spectra have
been normalized to unity at the maximum value in the pla
Both for the calculated momentum densities and the exp
ment, the contours have been plotted with the spacing
0.04.

First thing to observe in Figs. 2 and 3 is that both LDA
SEF and WDA approaches are in very good agreement w
experiment, and that they are an enormous improvemen
the EMD and IPM results. This is indicative of the fact th
the e-p correlations are vital for a correct interpretation
the experimental ACAR data, especially in the low
momentum region. There, similarly to the experimen
curves, all calculated spectra show dips along the lines
allel to the @100# direction and in the@110# direction. One
can see that when the Jones zone index is increased
dips become more and more pronounced along the@100#
lines. The maximum value of the momentum density in t
$001% plane is found along the@110# direction. For EMD and
IPM contour plots the dips along the@110# direction are
much more shallow than the one observed in the experim
tal spectra. When comparing the EMD and IPM results, o
can see that taking into account the positron wave func
leads to a slight improvement of the agreement betw
theory and experiment. This is in line with the earlier obs
vation made by Panda and co-workers7,10 Nevertheless, as
already mentioned, the major improvement comes only fr
the e-p correlations.

Another thing to notice is that the differences between
local, LDA-SEF, and nonlocal, WDA approaches are not s
nificant although, as can be clearly seen in Figs. 4 and
rLDA-SEF(p) is a slightly faster increasing function of mo
mentump than rWDA(p). In these figures we show all rel
evant 3D momentum densities for the same crystallograp
directions as those in Fig. 1. Specifically, in Fig. 4 we co
pare, to the experimental ACAR spectra, the EMD ande-p
momentum densities along theG-K-X8-K8-G8 line, as calcu-
lated within the IPM, LDA~both CEF and SEF!, GGA, and

-

g
s
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FIG. 2. Contour plots due to the EMD, IPM, LDA-SEF, and WDA approaches, for momentap in the$001% plane. Momenta are expresse
in units of 2p/a. Spectra are normalized to unity at the maximum in the plane. The contour spacing is 0.04 to agree with the spacin
experimental data in Fig. 3.
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WDA approaches. In Fig. 5 the relevant quantities are gi
along the line starting at (0,p/a,0) and finishing at
(0,p/a,4p/a).

One should remember that thee-p correlation functions
gk j (r ), determined within the LDA-SEF and WDA ap
proaches, are state dependent, and they are increasing
tions of the electron energyEk j . Other approaches, like th
LDA-CEF and GGA, are state independent, and, as can
seen in Figs. 4 and 5, cannot reproduce the experimen
observed rise of thee-p momentum density when approac
ing the Jones zone face. Looking at the GGA curve, incl
ing some form of nonlocality, and comparing it to the resu
of the LDA-CEF approach, one can observe that both
these approaches lead to nearly constant enhancemen
n

nc-

be
lly

-
s
f

fac-

tors, e(p), with the GGA curve rising slightly faster with
momentum than the LDA-CEF curve, possibly reflecting t
yinfluence of nonlocal effects. Further comparing the WD
and LDA-SEF curves, one can see that the latter curve
more quickly increasing function of momentum than t
WDA curve, and that the nonlocal effects are not very i
portant. Nevertheless, the effect of nonlocality is different
state-dependent and -independent quantities, but it is
state dependence that is vital for comparison with the exp
mental data. The state dependence of thee-p correlation
functions leads to a considerable improvement of the ag
ment between theory and experiment, as compared to
state-independent LDA-CEF and GGA approaches. For m
mentap in the 1BZ, both LDA-SEF and WDA momentum
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PRB 61 10 105ELECTRON-POSITRON CORRELATIONS IN SILICON
densities reproduce the experimental spectra quite w
From Fig. 5 one can see that for momenta along
(0,p/a,0) –W line the agreement betweenrWDA(p) and the
experiment is excellent. For momenta along theG-K line
~see Fig. 4!, it is difficult to decide whether the LDA-SEF o
WDA approach is better. However, in the low-momentu
region, the slope of the characteristic dip ofrWDA(p) follows
nearly exactly the experimental slope, while close to theK
points the LDA-SEF approach provides better results. O
can say that the effect ofe-p correlations is stronger in th
LDA-SEF approach, and that the WDA approach leads
more averaged quantities.

For the high-momentum region a negative slope of
e-p momentum densities is observed. However, these
only the LDA-SEF and WDA curves, which intersect th
experimental spectra at about half of their maximum heig
Taking into account a finite experimental resolution~marked
in Figs. 4 and 5!, we can conclude that the state depende
of the e-p correlations improves the agreement between
theory and experiment, as compared with IPM, LDA-CE
and GGA approaches. Note that for higher momentap, the
EMD approach reproduces the shape of the experime
ACAR spectra surprisingly well, much better than the IP
LDA-CEF, and GGA approaches. Finally, it should b
pointed out here that, in the experimental spectra, large
are seen along theK8-G8 line in the high-momentum region
Such tails should not be attributed to the core electrons, s
in Si their contribution to the positron annihilation is ve
small.17 This statement is reinforced by Fig. 6, where w
show, as a function of momentum, the ratio of the calcula
core electron momentum distribution,rcore(p), to the total
value of thee-p momentum distribution,r(p)1rcore(p), at
p50, for IPM, LDA, and WDA approaches. It can be se
that thee-p correlations further reduce the already small co
electron contribution to the totale-p momentum distribution,
as calculated within the IPM approach. Note that correlati

FIG. 3. Contour plots of the 3D reconstructed experimental d
of Ref. 6 for momentap in the $001% plane. Momenta are expresse
in units of 2p/a. Spectra are normalized to unity at the maximu
in the plane. The contour spacing is 0.04.
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due to the valence electrons are what matters here. Co
quently, it seems justified to assume that the constant tai
the experimental data are due to a constant backgroun
the raw ACAR data. As a result, for comparison with t
present calculations, in Figs. 4 and 5 we have subtracted
constant background from the experimental spectra. T
subtraction does not influence the comparison betw
theory and experiment, except at the high-momentum reg
where all calculations show much better agreement with
periment.

Let us look in detail at the band-by-band decompos
momentum densities along theG-X-G8 line ~the @100# direc-

ta

FIG. 4. Momentum densities calculated within various a
proaches and compared to the experimental data for momenp
along the@110# direction. Spectra are normalized to unity atp50.



-
th

e
t
d

tia
s
nd

se
the
A-
e of
di-
ds

ding
that
eris-
ron
he

-

te

ing
h

nt

p
ta

o

s of

he
ities,
um

,

10 106 PRB 61A. RUBASZEK, Z. SZOTEK, AND W. M. TEMMERMAN
tion!, as shown in Fig. 7, and for theG-K-X-K8-G8 and
(0,p/a,0) –W–(0,p/a,4p/a) lines, respectively, as pre
sented in Figs. 8 and 9. In contrast to all other directions,
momentum densities along theG-X-G8 line are decreasing
functions of momentump . As can be seen in Fig. 7, in th
@100# direction only the first and second bands contribute
the momentum densities, and these contributions are
creasing functions of momentum, possibly reflecting spa
localization of the electron distribution, away from the po
itron position. Also, in other directions the first and seco

FIG. 5. Momentum densities calculated within various a
proaches and compared to the experimental data for momenp
along the line parallel to the@100# direction in the$001% plane.
Momenta are expressed in units 2p/a. Spectra are normalized t
unity at p50.
e

o
e-
l

-

band contributions decrease with momentum~see Figs. 8 and
9!. However, the third and fourth band contributions increa
sharply before falling toward the Jones zone face. It is
third and fourth bands that give rise to the hump in the LD
SEF and WDA momentum density curves. Here the shap
the momentum densities is a combined effect of the in
vidual band contributions, where the third and fourth ban
reflect the strong energy dependence of the correspon
correlation functions. From Figs. 8 and 9, it can be seen
the negative slope of the momentum densities is charact
tic of lower, first and second, electron bands. The elect
density is so strongly varying a function, especially in t
interstitial region, where the positron is found, that ther
dependence of thee-p correlation functions,gk j (r ), domi-
nates over their energy,Ek j dependence. Except for the mo
menta falling very close to theG point, the ~normalized!
WDA and LDA-SEF momentum densities are intermedia
between the EMD and IPM approaches. Close to theG point,
the WDA and LDA-SEF enhancement factors are decreas
functions of momentump, and a small dip is seen in bot
spectra for momenta close to zero. Also, very close to theG8
point, in the 2BZ, the WDA and LDA-SEF enhanceme

-

FIG. 6. The momentum dependence of the calculated ratio
the core electron to totale-p momentum distribution atp50 for
IPM, LDA, and WDA approaches. All curves are normalized in t
same way as those for the valence electron momentum dens
shown in Figs. 4 and 5. That is, the value of total moment
distribution,r(p)1rcore(p), at p50, is set equal to unity.

FIG. 7. Momentum densities calculated within the EMD, IPM
LDA-SEF, and WDA approaches, for momentap along the@100#
direction. Spectra are normalized to unity atp50.
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FIG. 8. Momentum densities calculate
within the EMD, IPM, LDA-SEF, and WDA ap-
proaches, for momentap along the@110# direc-
tion. The total curves are decomposed into t
contributions from the first~dashed line! and
third ~dotted line! bands.
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factors show a negative slope as a function of moment
This effect could be attributed to localization of electro
along the tetrahedral bonds. Finally, note that due to
strong localization of the positron in the interstitial region,
the @100# direction the effect of the positron distribution
stronger than thee-p correlation effects.

Before leaving this subsection let us discuss the core e
tron contribution to the total 1De-p momentum densities fo
.

e

c-

Si. To facilitate a comparison with experiment, in Fig. 1
~top panel! we show our calculated positron annihilatio
probability densities,

P~pz!52pE
upzu

`

prcore~ upu!dp,
d

he
FIG. 9. Momentum densities calculate
within the EMD, IPM, LDA-SEF, and WDA ap-
proahces, for momentap along the line parallel to
the @100# direction in the$001% plane. Momenta
are expressed in units of 2p/a. The total curves
are decomposed into the contributions from t
first, second~dashed lines!, third, and fourth~dot-
ted lines! bands.
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for IPM, LDA, and WDA approaches, with the experiment
data obtained by scan from Ref. 14. Additionally, in the b
tom panel of this figure, we include a complete set of exp
mental and theoretical results for Si from the latter refere
~see Fig. 3 of that reference!. Here the theoretical curve
correspond to IPM, LDA, and GGA approahces. The thing
note, when comparing the theoretical results in both pan
of Fig. 10, is that both IPM curves are very similar. What
also encouraging is that although the theoretical curves in
top panel of the figure have not been convoluted with
Gaussian, to account for the experimental resolution fu
tion, the agreement of the WDA curve with the experimen
data is quite satisfactory. That our LDA curve runs low
than the data, and as compared to the LDA curve in
bottom panel, is an effect of the form of the positron wa
function. This can easily be seen in Fig. 11, where we h
plotted the theoretical curvesPcore

IPM(pz) for positron wave

FIG. 10. Positron annihilation probability densitiesP(pz) for
bulk Si, from the present calculations for IPM, LDA, and WD
approaches, in comparison with the experimental data extracte
scan from the paper by Alataloet al. @Phys. Rev. B54, 2397
~1996!# ~top panel!. The theoretical curves have not been conv
luted with a Gaussian, meant to mimic the experimental resolut
Since the experimental Doppler broadering data for bulk Si of A
talo et al. have been normalized to unit volume, our theoreti
curves for the core electrons have been normalized tolcore /lexpt,
wherelexpt51/218 ps21 has been taken from Alataloet al. In the
bottom panel of the figure, both the measured data, and the the
ical results for Si for IPM, LDA, and GGA approaches, from th
above reference~see Fig. 3 of that reference! are shown. The theo
retical results have been convoluted with a Gaussian. The two
ferent GGA curves are due to LMTO-ASA~solid curve! and the
atomic superposition band-structure methods~dashed curve!.
l
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functions obtained with IPM, LDA, and WDA correlatio
potentials. The shape of the curves is similar, but the valu
although very small, differ quite noticeably from one a
other. Apart from Fig. 11, from Table I one can also see t
the calculated core electron contributions to the total ann
lation rates are strongly dependent on the positron w
function used in the calculations. The largest values, a
given positron wave function, are due to the LDA, meani
that the nonlocal effects reduce the core electron contribu
to the total annihilation rate. Finally, the difference betwe
the present LDA calculation for the core electrons, as co
pared to the one of Ref. 14, is also partially due to the f
that, when calculating correlation functions, we have
sumed the enhancement factors to bee(0,r s), while Alatalo
et al.14 assumed correlation functionsgh(r s) which are ap-
proximately equal toe(0.64,r s).

Summarizing the results of this section, it can be said t
the WDA approach works well for all positron annihilatio
characteristics calculated here for bulk Si. In line with wh
has already been said, the satisfactory agreement with
periment reflects the paramount importance of thee-p cor-
relation effects in the first place, but nonlocal effects a
play a role here.

B. Effect of positron distribution on positron
annihilation characteristics

The e-p correlation effects are also seen in the positr
distribution, through thee-p correlation potentials used in

by

-
n.
-
l

et-

if-

FIG. 11. The momentum dependence of the positron annih
tion probability densityP(pz) for bulk Si, calculated within the
IPM approach for different positron wave functions.

TABLE I. The core annihilation rates (3109 s21) for bulk Si,
calculated for different theoretical approaches according to Eq.~3!.
The superscripts inl specify the approximation used for thee-p
correlation functionsg t(r ), and superscripts inc1 correspond to
the type of thee-p correlation potential, used in the positron Schr¨-
dinger equation. The value oflcore

GGA is taken from Ref. 13.

c1
IPM c1

LDA c1
WDA

lcore
IPM 0.060 0.076 0.086

lcore
LDA 0.113 0.142 0.158

lcore
GGA 0.110

lcore
WDA 0.101 0.128 0.143
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the positron Schro¨dinger equation. The corresponding po
tron distributionsuc1

WDA(r )u2 and uc1
LDA(r )u2, relative to the

IPM distribution, are shown in Fig. 12. As mentioned earli
to improve the packing of the diamond structure, in the el
tronic structure calculations with the LMTO-ASA metho
two empty spheres have been included. As can be see
Fig. 12, it is in the empty spheres that the positron distri
tion has the highest weight~about 75%!. Electron-positron
correlations shift the weight of the positron distribution fro
the interstitial region~represented here by the empty spher!
toward the Si site. This effect, observed both for LDA a
WDA appraoches, is easy to understand, since the ‘‘dress
positron is more neutral to ions. Nonlocality of thee-p cor-
relations enhances the above redistribution ofuc1(r )u2 in the
Wigner-Seitz cell, as compared to the LDA approach. T
explanation is that positron is mainly screened by the vale
electrons, which are found with the highest probability at
Si sites. Within the WDA approach, positron follows i
screening cloud,17 moving toward the Si atoms.

Let us now concentrate on the influence of the posit
wave function on thee-p momentum densities and positro
annihilation rates. For this we start with the discussion of
IPM results, because they contain unperturbed informa
on the overlap of the electron and positron wave functio
In Fig. 13, the effect of the positron distribution on the IP
momentum density is shown for two crystallographic dire
tions in the$001% plane. One can see that including thee-p
correlation potential in the positron Schro¨dinger equation in-
creases the overlap of the positron wave function with
electron wave functions. Concerning the momentum dep
dence ofr IPM(p) in the 1BZ, it is only very slightly affected
by the positron distribution. The nonlocality ofVcorr(r ) does

FIG. 12. Positron density distribution as calculated within va
ous approximations for thee-p correlation potential as a function o
distancer from the center of the Si ASA~upper panel! and the
empty sphere~lower panel!.
,
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not change the IPM momentum density very much, as co
pared with the case of the LDA positron wave function.

The effect ofVcorr is even more pronounced in the Lock
Crisp-West~LCW! folded IPM momentum density31

r j
IPM~k!5(

G
r j

IPM~k1G!5E
V

uck j~r !u2uc1~r !u2dr ,

whereG are the reciprocal-lattice vectors. The results for t
four bands along the (0,p/a,0) to (0,p/a,2p/a) line are
presented in Fig. 14. Note that the LCW momentum den
ties also contain information on the high-momentum com
nents of the ACAR spectra. The effect of thee-p correlations
is most pronounced in the fourth, highest, occupied ba
Here the nonlocality of thee-p correlations does not seem t
be of vital importance.

C. Positron lifetime

A good test of the quality of any approach is the calc
lated value of the positron lifetime. In Table II we present t
positron lifetimes for bulk Si, calculated for different ap
proximations with respect to the positron wave function a
thee-p correlations. Looking at the second row of the tab
one can see that the shape of the positron wave function
a substantial influence on the resulting IPM positron li
times. The IPM positron wave function gives rise to long
positron lifetime than is the case for the LDA and WD
approaches. The nonlocality of thee-p correlations in the
positron correlation potential substantially increases the t

-

FIG. 13. The IPM momentum density, calculated according
Eq. ~2! for different positron wave functions, shown in Fig. 9, fo
momenta along@110# and (0,1/2,0) to (0,1/2,2) directions. Mo
menta are expressed in units of 2p/a.
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annihilation rate,l (51/t), as compared to the LDA
For the positron lifetime the present calculations g
the best agreement with the experimental value
21762 ps ~Ref. 22! in two cases: first, within the WDA
approach with the WDA positron wave function; and seco
within the LDA approach with the IPM positron wav
function. In the second case, the LDA values of t
correlation functions,g t(r ), have been used, but thee-p
correlation potentialVcorr has been neglected in the positro
Schrödinger equation. Although giving a better agreeme
with experiment, the second approach violates Feynma
theorem, relating thee-p correlation potential to the
distribution of the screening electron cloud surrounding
positron. Therefore, the WDA value is considered to be
the best agreement with the experimental value. This g
us confidence concerning the application of the WD
approach to calculations of thee-p momentum densities an
annihilation rates, in other semiconductors, and also
studying defects and vacancies.

IV. CONCLUSIONS

Summarizing the results of the present paper, it should
stressed thate-p correlations are absolutely essential for o
taining good agreement of the calculated and experime
momentum densities in silicon. It is the state depende
of the e-p correlation functions, whether local or nonloca

FIG. 14. Contribution of different occupied electron bands
the downfolded IPM momentum density, calculated for differe
positron wave functions, shown in Fig. 9, for momenta along
(0,1/2,0) to (0,1/2,2) direction. Momenta are expressed in unit
2p/a.
f

,

t
’s

e
n
s

r

e
-
al
e

that plays the most significant role here. Except for t
momenta along the@100# direction, the effect of the positron
distribution on the resulting ACAR spectra is much le
important. Also, the nonlocal effects are not crucial f
the e-p momentum densities; however, they are vital f
the evaluation of the positron lifetime. This follows from
the fact that it is not the difference in the shape of t
WDA and LDA-SEF curves which matters, but the
magnitude. That the nonlocal effects do not matter too m
can also be seen when comparing the state-independent
LDA-CEF and GGA, results. Further support for th
importance of the state dependence of the correla
functions, as opposed to the nonlocality, is provided by
comparison of the WDA and GGA momentum densitie
although both of these approaches include the nonlo
effects in a different way. Nevertheless, the GGA does
reproduce the characteristic hump close to the Jones z
face. Finally, these calculations show that to obtain go
agreement with experiment, both the state-depend
correlation functions and positron wave function have to
correctly incorporated into calculations of the positr
annihilation characteristics in silicon. Therefore, f
any study of the electronic properties of perfect or defect
semiconductors, neither IPM nor state-independ
approaches would be satisfactory. As for the possible fut
application of the present methodology to study defe
in semiconductors, both the LMTO-ASA and WDA
approaches are general enough to be extended to
systems. In fact, the intention of the present auth
is to reach this goal in the long run, and this is wh
the present study was undertaken in the first pla
However, one has to be careful with respect to calculat
the effective charge densitiesnt to obtain the corrrect
momentum distributions.17 Therefore, for supercells
of defective semiconductors, that part of the implementat
will need additional effort and modifications.
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TABLE II. Positron lifetimes~in picoseconds! for bulk Si, cal-
culated for different approximations. The superscripts int specify
the approximation used for thee-p correlation functionsg t(r ), and
superscripts inc1 correspond to the type of thee-p correlation
potential, used in the positron Schro¨dinger equation. The value o
tGGA is taken from Ref. 13.

c1
IPM c1

LDA c1
WDA

t IPM 1005 936.7 914.3
tLDA-CEF 210.5
tGGA 210
tLDA-SEF 219.3 211.7 209.2
tWDA 229.4 220.0 217.0
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