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A number of approaches to treat the electron-positron correlation effects is used to study electron-positron
momentum densities and positron annihilation rates in bulk silicon. Also, the nonlocal effects are explicitly
taken into account within the weighted density approximatMDA), giving rise to nonlocal state-selective
electron-positron correlation functions. The WDA results for the electron-positron momentum densities and
annihilation rates are compared to the experimental data and to calculations performed within the independent-
particle model and local-density approximation. Additionally, the generalized-gradient approximation is used
to calculate nonlocal, but state independent, quantities. The importance of nonlocality and state-dependence of
the electron-positron correlation functions, and the role of the positron wave function, are discussed in detail.

[. INTRODUCTION what shallower in the group-111-V semiconductors than in Si
and Ge has been attributed to symmetry lowering, fmﬁn
The positron lifetimer, and angular correlation of posi- in the group-1V semiconductors fbé in the 11I-V compound
tron annihilation radiatiofACAR) techniques, have become semiconductors. However, Panda and co-worké?s;om-
very useful tools for studying electronic structure of metals. paring the CP data for Si, Ge, and GaAs, arrived at the con-
Due to their technological importance, many elemental an@lusion that the slopes of the dips in the ACAR spectra can-
compound semiconductors have also been fairly extensivelyot be explained in terms of the band contributions alone, but
studied using positron annihilation spectroscopgge®e Refs. are most probably due to the positron density distribution.
2-16, and references cited theneiHowever, as in the case Also, thee-p correlations are expected to contribute substan-
of metals, the interpretation of positron annihilation data fortially to the different shapes of the ACAR spectra in these
semiconductors is not easy, and to extract information on thgystems, in the low-momentum region.
electron momentum densiffEMD) and electron charge den-  Although electron-positron correlations lead to a signifi-
sity of the studied systems, both the electron-posit®p)  cant change in the electron momentum density, it is the
interaction and positron wave functibhave to be consid- independent-particle modélPM) that has been most com-
ered explicitly. The importance of these effects becomes esnonly used in calculations of the electron-positron momen-
pecially apparent when comparing ACAR spectra withtum density in semiconductofs:®’This approach takes into
Compton profiles(CP’s).”1%% In this paper we present a account the effect of the positron wave function, but neglects
detailed study of the influence of these effects on the electronompletely thee-p correlations, thus giving rise to consider-
momentum density, charge distribution, and other positrorable differences between theory and experiment, especially
annihilation characteristics in bulk silicon. in the low-momentum region and at the Jones zone
For semiconductors the importance of the positron wavdaces>*®’As to the differences of the ACAR spectra in the
function for positron annihilation characteristics follows al- low-momentum region, Fujiwara was the first to point out
most naturally from crystal structure. The group-IV elemen-deenhancement effects in the high-momentum region of the
tal semiconductor$Si, Ge and the group-IIl-V compound ACAR spectra in silicod. However, only in more recent
semiconductorge.g., GaAs crystallize in open diamond or calculations of momentum densities in semiconductors have
zinc-blende structures. Therefore, unlike electrons, a positrotwo-particle correlation functions, taking account of gep
in these systems is most likely to be found in the interstitialcorrelations, been considered either within the local-density
region. In fact, over 70% of the positron distribution is lo- approximation(LDA)®%*20r, including some form of non-
cated in this region’ In semiconductors the effect of the locality, within the generalized-gradient approximation
positron wave function is often associated with the charactGGA),'%!! as described in Refs. 13 and 14. Nevertheless,
teristic dips observed in the low-momentum region of thethese correlations have only been included in a state-
ACAR spectra. Specifically, all ong1D), two- (2D), and independent form. By state independence one meansihat
three-dimensional3D) (reconstructedACAR spectra, mea- correlation functions, as employed in calculations of Refs. 8,
sured for elemental and compound semiconductors, show, it0, and 11, have been independent of the initial electron
the low-momentum region, dips and valleys along [th&0] Bloch state. In the application to Si, these state-independent
and[100] directions, while along thgl11] direction a sharp correlation functions gave rise in the low-momentum region
peak is observed. The size of these dips, which varies amortg almost constant enhancement factSrdefined as a ratio
different semiconductors, has been analyzed using groumf the e-p momentum densityp(p), to its IPM counterpart.
theoretical consideratiorfsThe fact that these dips are some- Note that these constant enhancement factors have also been
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obtained in the GGA approach, where th@ correlations usually calculated within the local density approximation to
have been treated nonlocally. In the present paper, howevettensity-functional theor§® In the present calculations, the
we shall argue that it is the state dependence of the correlgelf-consistent electronic structure of bulk Si has been ob-
tion functions that is of paramount importance for obtainingtained using the linear muffin-tin orbitdLMTO) method
the correct low-momentum behavior of the ACAR spectra inwith the atomic sphere approximatio®SA).2* For core
Si. The arguments follow from the fact that the valence elecelectrons the frozen-core approximation has been imple-
trons in Si are mostlgp like, giving rise to nearly parabolic mented. The electron wave functiogé(r.) and the charge
valence band%s.lt has been shown by general theoretical densityn(r,) at the electron position,, consisting of core
conS|dlegrat|0né, and confirmed by experiments for simple n. and valencen, contributions, define both trep momen-
metals,” that for nearly free electrons the state dependencgm gensity and annihilation rates. For periodic solids, the
of e-p correlation functions has_ an important influence ONglectron wave functionsyS(r.), may be labeled by the
the shape of the valence contribution @ép) in the low- Bloch vectork and band inld < namelv i — ki
momentum region. Here it will be shown that the state de-- oc ' Ve¢lork @ a €% nar e,},/b -

The electron momentum densipFMP(p) and thee-p

pendence of the-p correlation functions, whether local or . ; ivelv. o
nonlocal, is the most important factor for obtaining a correct™omentum density(p) are determined, respectively, by

description of the experimentally observed ACAR spectra in

semiconductors. The nonlocal effects are important for core EMDy s

electron but also reflect the localization of the valence elec- p o (p)= Q |2

tron density along the tetrahedral bonds. Nevertheless, in oce

silicon the core electron contribution to the annihilation char-, 4

acteristics is very smalbelow 3%, and therefore nonlocal

effects are not expected to have an important influence on

p(p), but can be seen in the core part of the total annihilation _

rate,\ = 1/7.1 P(P) %C
In the present paper we implement the weighted-density

approximation (WDA)'" to calculate the nonlocal state- wherep is the electron momentum in the extended zone

dependene-p correlation functions, and with them thep  schemey. (r,) is the wave function of a thermalized posi-

momentum density(p) and positron lifetimer for bulk Si. tron (at positionr,,) in the Bloch state ok, =0 andj=1,

We discuss in detail the effect of nonlocality of tikep  and() is the volume of the sample. The summations in Egs.

correlations on the resulting positron annihilation character(1) and(2) are over all occupied electron staie§he func-

istics, Additionally, following the approach of Daniuk ons ¥i(r,) are the state-dependent two-partielg corre-

etal,”” we calculate the latter quantities within the local |ation ‘functions, defined as the ratio of perturbed to unper-
density approximation using t_he state-selective _enhanceme rbed electron densities in the initial statat the positron
factors (SEF’9, while calculating thee-p correlation func- rpositionr

pe

tions. Note that since the state selectivity of the correlatio The positron wave functioss., (r ;) is the solution of the

functions is usually expressed through the dependence on t hiadi i ith th i tential st
electron energy eigenvalues, the state-selective correlatio chraiinger equation, wi € positron potential consisting
functions are in fact the selective energy functiéhhese ©f the external potential due to ions, the Hartree potential,

results are further compared to the calculations performeg@nd thee-p correlation ¥co(r) pmem'aﬁz'ZSfZGThe positron
within IPM, and the LDA and GGA approaches, where theHartree potential and the _extemal potential are _equal to the
e-p correlation functions are state independent, namely, thejespective electron potentials with the opposite sign. The en-
have been calculated with the constant enhancement facto@§dy E . is the bottom of the positron band. The potential
(CEP), with respect to their dependence on the electron stat¥corr» describing the positron interaction with the electron
kj. Thus, in contrast to the state-selectigep correlation screening cloud, can be determined from the Feynmann
functions, the state-independep correlation functions are theorem:**"?>2"For the IPM, Vo\(r,)=0, while within

the constant energy functions. For all studied quantities, wehe LDA thee-p correlation potential is approximated by the
make contact with the experimental d&f&We emphasize quantity obtained for the homogeneous electron gas, namely,

the importance of the state dependence ofetipecorrelation Végr/?(rp)IVEon[n(rp)], parametrized in terms of the uni-

functions for all positron annihilation characteristics. More-torm electron density,.2° Details on the evaluation of the
over, we discuss the influence of teep interaction on the \ypA and GGA e-p correlation potentials were given in
positron charge distribution, and study the effect of the "®Refs. 17 and 13 respectively
sulting positron wavefunction on all quantities of interest. Tﬁe total anni’hilation rata i'S defined as
Also, the contribution of individual annihilation-active bands
to EMD, andp(p) is thoroughly analyzed.

The paper is organized as follows. In Sec. Il we describe 2
the formalism and provide details on the calculations. The Azwroc(z—)sj p(p)dp
results are presented and discussed in Sec. lll, and in Sec. IV ™
we conclude the paper.

2

(D)

Jﬂe“p-fezﬂ?(re)dre

2

fﬂe*ip-rp¢+(rp)¢f(rp) Vyi(rp)drpl, (2)

=mrie> f|l//+(rp)|2nt(rp)7t(rp)drpr 3
Il. THEORY t
A. EMD and annihilation characteristics with ro and ¢ being the classical electron radius and the

The electronic structure of solids, required as an input toselocity of light, respectively. Hererefers to different types
the calculation of positron annihilation characteristics, isof electrons, e.g., core or valence.
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B. Enhancement factors and weighted density approximation  (2), with the state-dependent WDA correlation functions

When a positron enters a solid, it attracts the surroundingi(rp) = €[ E; /Eg ,n(r,) ] , whereE; is the electron eigenen-
electrons, and a polarization cloud is formed. As a result, th€rgy in the initial state, andE is the Fermi energy. For the
densities of individual electron statésat the positron posi- €nhancement factorg E,ny] , we have used the values cal-
tion, become strongly enhanced, as compared to their initisggulated in Ref. 28. In the LDA-SEF approach, the quantities
values. In calculations of positron annihilation characteris<€[E;/Eg,n(r,)] have been substituted for tieep correla-
tics, this effect can be accounted for by defining the two-tion functionsy;(r,) in Eq. (2).2°
particle e-p correlation functionsy;(rp). In the IPM these

corrglation effects are totally negle'cted. In the LDA, the cor- IIl. RESULTS AND DISCUSSION
relation functionsy;(r,) are approximated by the respective
quantities for the homogeneous electron gg¥n(r,)1,%’ In this section we study in detail the influence of the pos-

with the local electron density(r,,) at the positron position  itron distribution ande-p correlations on the resulting posi-
rp. In the LDA, we can define both the state-dependent andron annihilation characteristics. Since in Si the core elec-
-independent correlation functions Which’ however' are a|Ir0nS contribution to pOSitI‘OI’I annihilation is very Sma”, in
ways local quantities. To introduce the nonlocal effects, bewhat follows we concentrate mainly on the valence elec-
yond the LDA description, Barbiellini and co-workéts*  trons, but give also some results for the core electrons. We
used a parameter-dependent GGA approach and defined tABalyze the effect of different approaches to ép corre-
nonlocal state-independent GGA correlation functiongations on the resulting positron density distributions. Also,
(GGA-CEF'S. For the state-dependent and nonlocal descripwe discuss the importance of the nonlocal effects for the
tion of the correlation functions, we have used the weightedcalculation of the total and partial positron annihilation rates.

density approximation. Since a detailed description andvioreover, the role of the state dependence ofetfecorre-
imp|ementaﬁon of the WDA correlation functions were lations is examined. To afford this, we have calculated the

given in Ref. 17, here we 0n|y summarize the main points_ pOSitron annihilation characteristics for a number of different
In the WDA, thee-p correlation functions have been ap- @pproximations to the positron wave function ang corre-
proximated byy¥VDA )= 7?[ﬁt(fp)], where the effective Iatlong. Specifically, we have stu'dled the EMD in compari-
o~ . .. son with thee-p momentum density(p), calculated within
WDA electron densities(r,) ha\_/e been defined for all dif- the IPM, LDA (both CEF and SEF GGA, and WDA ap-
ferent typest of electrons, meaning that for amandr, we 5 55ches. When calculating a given positron wave function,
have calculated the density(r,) as the solution of the e.g. IPM, LDA, WDA, or GGA, the corresponding approxi-
charge-neutrality condition mation for the positron correlation potent\l,,, , occurring
in the positron Schidinger equation, has been used. Addi-
{VP[ﬁt(rp)]_ 1}f nt(re)e*aﬁ‘t(rp)l|re*’p'dre tiongll_y, we haye separated the contributions due to diﬁerent
annihilation-active bands to the relevant momentum densi-
_g.h 3 ties.
={InIn(rp)l=Lin(rp)8m/aipan(rp)l,  (4) As mentioned earlier, we have used the LMTO-ASA
with method for electronic structure calculations. According to
the atomic sphere approximation, the polyhedral Wigner-
nf(rp){y{‘[ﬁt(rp)]— 1} 3 Seitz cell is approximated by slightly overlapping atom cen-
n(roH AN = 1) aipaln(ry)] tered spheres, with the total volume equal to the actual crys-
trpt N P tal volume. Since the diamond structure is an open structure,
and to improve its packing, an additional two empty ASA
spheres have been introduced at the high-symmetry intersti-
tial sites. For the basis functions we have useg, andd
aEDA[”(rp)]:SWZ ny(rp){¥In(rp)1-1}. partial waves on both the Si and empty-sphere sites. In all
calculations we have assumed an experimental lattice con-
Heren? andn, are related by stant ofa=10.26 atomic units. Moreover, in all calculations
the Jarlborg—SinghJ9 correction?® taking into account the
ﬁt(rp) =n(ry)+ [n¥ (rp)—Ne(rp)]. nonorfchogonality of the plang waves in the ASA sphe_res, has
) . . . been included when evaluating the EMD a#(gh), as given
Furthgr technlca[ detaﬂs of calculating the effective electronyy Egs.(1) and (2). However, for diamond structure the JS
densities were given in Ref. 17. overlap matrix has turned out to be almost diagonal, and
The corresponding correlation function$(no) for core  therefore the JS correction has not influenced substantially
and valence electrons, respectively, have been approximatefe calculated EMD and-p momentum densities for silicon.
by” yh(no) = €(0.ng)® and ¥} (ng) = ¥"(no) .*>***°Here the The calculated valence energy bands along three crystal-
quantitiese are the Kahana-like energy-dependenp en-  lographic directions in th¢001 plane are shown in Fig. 1.
hancement factors, and are evaluated at the erterg§ and  Due to the symmetry rules, only the bands represented by
electron density,.?"?8 solid curves contribute to the electron aeagp momentum
In the present application of the above methodology tadensities. From Fig. (&) one can see that for momenta along
bulk Si, we first evaluate the effective WDA electron densi-the[110] direction only the first and third bands contribute to
ties according to Eq(4). Then, for electrons of typg we  the momentum densities, while the second and fourth bands
approximate thee-p correlation functions, appearing in Eq. are inactive, and this holds for all Brillouin zon€éBZ'’s). As

a’[ny(ry)]=
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0.04 one has to perform the planar and linear integralg @),
’ respectively, which of course involves contributions from all
four electron bands, since in the general points of the BZ no
-0.24 -
symmetry rules excluding some bands ap{lyin other
mﬁ words, after performing 1D or 2D integration p{p) , the
-0.44 - ;
= above characteristic asymmetry of the energy bands is lost.
= oa. Therefore, the dips, observed in the 1D and 2D experimental
TR ACAR spectra for Si, would be difficult to explain in terms
084 1st band 1st band of the symmetry of the active bands aldhi€his further sug-
’ gests that in the interpretation of the ACAR spectra in terms
10 of EMD, more reliable conclusions can be drawn from 3D
T X K 1_. (reconstructed data than from “raw” 1D and 2D ACAR
spectra. Consequently, below we present and discuss results
for the calculated 3D momentum densities in bulk Si, in
0.04 comparison with the 3D reconstructed experimental data of
1 Tanigawa®
-0.24
@ 0.4 A. Momentum density distributions
? 1 In Fig. 2 we present the contour plots @fMP(p),
T p'"M(p), p"PAF(p), and p"PA(p) in the {004 plane.
T . These we compare with the relevant contour plots of the
-0.81  1stband T experimentally reconstructed 3D ACAR spedirgiven in
T Fig. 3. The experimental spectra are the raw data measured at
-1.0 i 14 K with resolution of 0.7%0.73 mrad. All spectra have
r T . . . .
been normalized to unity at the maximum value in the plane.
Both for the calculated momentum densities and the experi-
0.0 (©) ment, the contours have been plotted with the spacing of
4th band 0.04.
0.2 First thing to observe in Figs. 2 and 3 is that both LDA-
] SEF and WDA approaches are in very good agreement with
& -04- experiment, and that they are an enormous improvement on
‘é J the EMD and IPM results. This is indicative of the fact that
T -06- the e-p correlations are vital for a correct interpretation of
w the experimental ACAR data, especially in the low-
0.8 momentum region. There, similarly to the experimental
curves, all calculated spectra show dips along the lines par-
1.0 allel to the[100] direction and in thg110] direction. One

(0,1/2,0)

(0,112,2)

can see that when the Jones zone index is increased these
dips become more and more pronounced along [fG9]

_ FIG. 1. Energy bands in Si along three crystallographic direcqinag The maximum value of the momentum density in the
The a0l crves denoie he anmihtin acive bands, conrbuingoC:) PIane is found along thELLA directon. For EMD and

i ) ’ PM contour plots the dips along thel10] direction are
to the EMD ande-p momentum densities, while the dashed curves . .
denote the inactive bands. much more shallow than the one observed in the experimen-

tal spectra. When comparing the EMD and IPM results, one

can be seen in Figs.(ld) and Xc), the situation is different can see that taking into account the positron wave function
for momenta along the directions parallel to fi€0] direc- leads to a slight improvement of the agreement between
tion. The first band contributes to the momentum densitiesheory and experiment. This is in line with the earlier obser-
for momenta in the first BZ1BZ), but becomes inactive in vation made by Panda and co-worKef$Nevertheless, as
the second BZ2BZ), while the second band, which is inac- already mentioned, the major improvement comes only from
tive in the 1BZ, becomes active in the 2BZ. The doublythee-p correlations.
degenerate uppermost band is inactive for the momenta Another thing to notice is that the differences between the
along thel-X-I'’ line. When increasing the Jones index, local, LDA-SEF, and nonlocal, WDA approaches are not sig-
then also the upper bands along the lines parallel 9186  nificant although, as can be clearly seen in Figs. 4 and 5,
direction start contributing to the EMD and positron annihi- p-?*SEf(p) is a slightly faster increasing function of mo-
lation spectra. For momenta along the line starting amentump than p"YPA(p). In these figures we show all rel-
(0,7/a,0) and finishing at (@;/a,4n/a) [see Fig. {c)], the  evant 3D momentum densities for the same crystallographic
third band interchanges with the fourth band at¥iepoint,  directions as those in Fig. 1. Specifically, in Fig. 4 we com-
similarly to the previously mentioned interchange of the firstpare, to the experimental ACAR spectra, the EMD ang
band with the second band. Note, however, that in order tonomentum densities along theK-X'-K'-I'" line, as calcu-
obtain 1D and 2D ACAR spectra, measured experimentallylated within the IPM, LDA(both CEF and SEF GGA, and
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(0,2,0) (2200 (020 (2.2,0)

(EMD)

(0,0,0) (2,0,0) (0,0,0) (2,0,0)

(0,2,0) (2,2,0)  (0,2,0) 2,2,0)

(LDA)

N

(0,0,0) (20,0)  (0,0,0) (2,0,0)

FIG. 2. Contour plots due to the EMD, IPM, LDA-SEF, and WDA approaches, for monpentthe {001} plane. Momenta are expressed
in units of 27r/a. Spectra are normalized to unity at the maximum in the plane. The contour spacing is 0.04 to agree with the spacing of the
experimental data in Fig. 3.

WDA approaches. In Fig. 5 the relevant quantities are giveniors, e(p), with the GGA curve rising slightly faster with
along the line starting at (@/a,0) and finishing at momentum than the LDA-CEF curve, possibly reflecting the
(0,7r/a,4mla). yinfluence of nonlocal effects. Further comparing the WDA
One should remember that tleep correlation functions and LDA-SEF curves, one can see that the latter curve is a
¥kj(r), determined within the LDA-SEF and WDA ap- more quickly increasing function of momentum than the
proaches, are state dependent, and they are increasing fuyDA curve, and that the nonlocal effects are not very im-
tions of the electron enerdy,; . Other approaches, like the portant. Nevertheless, the effect of nonlocality is different for
LDA-CEF and GGA, are state independent, and, as can bstate-dependent and -independent quantities, but it is the
seen in Figs. 4 and 5, cannot reproduce the experimentallstate dependence that is vital for comparison with the experi-
observed rise of the-p momentum density when approach- mental data. The state dependence of ¢hg correlation
ing the Jones zone face. Looking at the GGA curve, includfunctions leads to a considerable improvement of the agree-
ing some form of nonlocality, and comparing it to the resultsment between theory and experiment, as compared to the
of the LDA-CEF approach, one can observe that both oftate-independent LDA-CEF and GGA approaches. For mo-
these approaches lead to nearly constant enhancement fawentap in the 1BZ, both LDA-SEF and WDA momentum
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(020) (220)
& 1.0 gEITI
R
Q.
< 0.8
0.6-
---- EMD
044 ....... IPM
e LDA-CEF
0.24 expt
—— resolution
0.0 . ; . v T
r K X K r
1.2
I ~ 1.0
o
(000) (200) T
2 08
FIG. 3. Contour plots of the 3D reconstructed experimental data & ]
of Ref. 6 for momenta in the {001} plane. Momenta are expressed 064
in units of 27/a. Spectra are normalized to unity at the maximum ]
in the plane. The contour spacing is 0.04. 0.4
densities reproduce the experimental spectra quite well 0.2
From Fig. 5 one can see that for momenta along the —+— resolution e
(0,7/a,0)-W line the agreement betwee'°®A(p) and the 0.0 e
experiment is excellent. For momenta along T line T ' ) K )é K’ ) ' ¢
(see Fig. 4, it is difficult to decide whether the LDA-SEF or
WDA approach is better. However, in the low-momentum 1.2 =
region, the slope of the characteristic dippdf®(p) follows ] LT
nearly exactly the experimental slope, while close to kkhe = 1.04 AT
points the LDA-SEF approach provides better results. Onex |
can say that the effect @-p correlations is stronger in the % 0.8

LDA-SEF approach, and that the WDA approach leads to

more averaged quantities. 0.6
For the high-momentum region a negative slope of the ]| IPM
e-p momentum densities is observed. However, these are , | ___gDGA;\SEF
only the LDA-SEF and WDA curves, which intersect the I ---- woa
experimental spectra at about half of their maximum height. | expt-0.04
Taking into account a finite experimental resolutiomarked " || —— resolution
in Figs. 4 and B we can conclude that the state dependence 00' )
of the e-p correlations improves the agreement between the : r ) ) K )'( K ) ) r
theory and experiment, as compared with IPM, LDA-CEF,
and GGA approaches. Note that for higher momemtihe FIG. 4. Momentum densities calculated within various ap-

EMD approach reproduces the shape of the experiment@koaches and compared to the experimental data for monmenta
ACAR spectra surprisingly well, much better than the IPM, along the[110] direction. Spectra are normalized to unitypatO.
LDA-CEF, and GGA approaches. Finally, it should be

pointed out here that, in the experimental spectra, large taildue to the valence electrons are what matters here. Conse-
are seen along th¢’-I"’ line in the high-momentum region. quently, it seems justified to assume that the constant tails in
Such tails should not be attributed to the core electrons, sinate experimental data are due to a constant background of
in Si their contribution to the positron annihilation is very the raw ACAR data. As a result, for comparison with the
smalll” This statement is reinforced by Fig. 6, where we present calculations, in Figs. 4 and 5 we have subtracted this
show, as a function of momentum, the ratio of the calculate¢onstant background from the experimental spectra. This
core electron momentum distributiop,..e(P), to the total subtraction does not influence the comparison between
value of thee-p momentum distributionp(p) + pcore(P), at  theory and experiment, except at the high-momentum region,
p=0, for IPM, LDA, and WDA approaches. It can be seenwhere all calculations show much better agreement with ex-
that thee-p correlations further reduce the already small coreperiment.

electron contribution to the totalp momentum distribution, Let us look in detail at the band-by-band decomposed
as calculated within the IPM approach. Note that correlationsnomentum densities along theX-I"" line (the[100] direc-
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1.2
1 0.005 -
8 1.0 _
2 S
€ 08 § 0.004
&
S
0.6 &
= 0.003
(=)
---- EMD T
044l ....... IPM &
-+ LDA-CEF
0.002
0.24] —— Expt.
=t resolution ) T T T T
0.0 - . . llence r K X' K' r'
(0,1/2,0) w 0,1/2,2) FIG. 6. The momentum dependence of the calculated ratios of
12 the core electron to tota-p momentum distribution ap=0 for
| eIl IPM, LDA, and WDA approaches. All curves are normalized in the
~ 10 e — 3 same way as those for the valence electron momentum densities,
% ' ] shown in Figs. 4 and 5. That is, the value of total momentum
Y 0.8 distribution, p(p) + pcore(P), atp=0, is set equal to unity.
Q .0 ]
06_' band contributions decrease with momentisee Figs. 8 and
) 9). However, the third and fourth band contributions increase
oad LDA-SEF sharply before falling toward the Jones zone face. It is the
(. \(,3\,%': third and fourth bands that give rise to the hump in the LDA-
0.2 Expt SEF and WDA momentum density curves. Here the shape of
’ resolution 3 the momentum densities is a combined effect of the indi-
00 RN vidual band contributions, where the third and fourth bands

reflect the strong energy dependence of the corresponding
correlation functions. From Figs. 8 and 9, it can be seen that
12 the negative slope of the momentum densities is characteris-
tic of lower, first and second, electron bands. The electron

(0,1/2,0) w 0,112,2)

1.0

density is so strongly varying a function, especially in the
§_ ] interstitial region, where the positron is found, that the
E 0.84 dependence of the-p correlation functions;y,;(r), domi-
& ] nates over their energ¥,; dependence. Except for the mo-
064 menta falling very close to th& point, the (normalized
R IPM WDA and LDA-SEF momentum densities are intermediate
oad| ":-3':():;35': between the EMD and IPM approaches. Close tdifmint,
Il 7 the WDA and LDA-SEF enhancement factors are decreasing
0.2- :\évxDpﬁom functions of momentunp, and a small dip is seen in both
|| —— resolution spectra for momenta close to zero. Also, very close tdthe
0.0 . . ' point, in the 2BZ, the WDA and LDA-SEF enhancement
(0,1/2,0) w (0,2,0)
1.0- :
FIG. 5. Momentum densities calculated within various ap- :
proaches and compared to the experimental data for monpenta 084 *
along the line parallel to th€100] direction in the{001} plane. S Ry
Momenta are expressed in unitsr/A. Spectra are normalized to & i
unity atp=0. % 0.6- E
tion), as shown in Fig. 7, and for thE-K-X-K’-I'' and 0.44
(0,7/a,0)-W—(0,m/a,4w/a) lines, respectively, as pre- { ——EMD ;
sented in Figs. 8 and 9. In contrast to all other directions, the g4 —— IPM :
momentum densities along tHe-X-T'’ line are decreasing | e LDA-SEF ; y
functions of momentunp . As can be seen in Fig. 7, in the T WA i Ty
[100] direction only the first and second bands contribute to 0'01_ )'( o

the momentum densities, and these contributions are de-

creasing functions of momentum, possibly reflecting spatial FIG. 7. Momentum densities calculated within the EMD, IPM,
localization of the electron distribution, away from the pos-LDA-SEF, and WDA approaches, for momergaalong the[100]
itron position. Also, in other directions the first and seconddirection. Spectra are normalized to unitypat0.
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0.754 TRy 0.75-
1st band \\
5 \‘ 8 S~al
%‘ \ o 1stband "
0.50 \ 0.50 *
\\,'
0.254 \ 025
3rd band \ 3rd band
000 s 000 FIG. 8. Momentum densities calculated
r K x K r r o within the EMD, IPM, LDA-SEF, and WDA ap-
proaches, for momenta along the[110] direc-
.5 .5 tion. The total curves are decomposed into the
) e — ) WDA contributions from the first(dashed ling and
3.0 3.0 third (dotted ling bands.
g 25 € 251
2.0
1.5
1.0 ’
3rdband !
05 ‘\‘
00 b
r Kk x K r

factors show a negative slope as a function of momentum>i- TO facilitate a comparison with experiment, in Fig. 10

along the tetrahedral bonds. Finally, note that due to th@robability densities,

This effect could be attributed to localization of electrons(top panel we show our calculated positron annihilation

strong localization of the positron in the interstitial region, in
the [100] direction the effect of the positron distribution is
stronger than the-p correlation effects.

Before leaving this subsection let us discuss the core elec-
tron contribution to the total 1@-p momentum densities for

doerr— J
08 . EMD 08 PM
1stband <
) . P P
3 . .
< 0.6 \ 08Tl
AN 1stband <
\‘ \\
0.4 0.4 Nt .
"\ 14thband )
A% )
0.2 0.2 K \
L Srdband . N
3rd band . - A . ~
ondband - S~
0.0 Seo 0.04ez 2nd band™~. _
(0,1/2,0) w 0,112,2) (0,172,0) W 0,112,2)
35 35
LDA-SEF WDA
3.0 3.0
B 25 s B 25
o 1stband S\ <
AY
2.0 N 2.0-/—\
A
N -
:“ =~ -~
151 '\ 151 1stbang AN PR
h N, “iathband')
4 4 h3
1.0 1.0 >
054 ¢ 05 N
.* 3rd band \\
okt oodeer” kA bongpani-~.
0,1/2,0) w 0,112.2) 0,1/2,0) w

0,112,2)

P(pz)ZZWfp ‘ppcore(|p|)dpv

FIG. 9.

Momentum densities calculated
within the EMD, IPM, LDA-SEF, and WDA ap-

proahces, for momengaalong the line parallel to
the [100] direction in the{001} plane. Momenta
are expressed in units ofiZa. The total curves
are decomposed into the contributions from the

first, seconddashed lines third, and fourth(dot-
ted lines bands.
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for IPM, LDA, and WDA approaches, with the experimental -1.0
data obtained by scan from Ref. 14. Additionally, in the bot- 1
tom panel of this figure, we include a complete set of experi- -1.59
mental and theoretical results for Si from the latter reference — ]
(see Fig. 3 of that referenceHere the theoretical curves Q,': 204
correspond to IPM, LDA, and GGA approahces. The thing to 8 2 5_'
note, when comparing the theoretical results in both panels 2z ]
of Fig. 10, is that both IPM curves are very similar. Whatis &, 3.
also encouraging is that although the theoretical curves inthe o J
top panel of the figure have not been convoluted with a 2 35
Gaussian, to account for the experimental resolution func- 1
tion, the agreement of the WDA curve with the experimental -4.04
data is quite satisfactory. That our LDA curve runs lower T
than the data, and as compared to the LDA curve in the 4.5 '

. , 0 5 10 15 20 25 30 35 40
bottom panel, is an effect of the form of the positron wave
function. This can easily be seen in Fig. 11, where we have

plotted the theoretical curveB-M(p,) for positron wave

-3

p, (10" myc)
FIG. 11. The momentum dependence of the positron annihila-
tion probability densityP(p,) for bulk Si, calculated within the

IPM approach for different positron wave functions.

functions obtained with IPM, LDA, and WDA correlation
potentials. The shape of the curves is similar, but the values,
although very small, differ quite noticeably from one an-
other. Apart from Fig. 11, from Table | one can also see that
the calculated core electron contributions to the total annihi-
lation rates are strongly dependent on the positron wave
function used in the calculations. The largest values, at a
given positron wave function, are due to the LDA, meaning
that the nonlocal effects reduce the core electron contribution
to the total annihilation rate. Finally, the difference between
the present LDA calculation for the core electrons, as com-
pared to the one of Ref. 14, is also partially due to the fact
- that, when calculating correlation functions, we have as-

10 sumed the enhancement factors todf8r ), while Alatalo
o et al'* assumed correlation functiong'(r;) which are ap-
T 107} proximately equal ta(0.64r).
g Summarizing the results of this section, it can be said that
i the WDA approach works well for all positron annihilation
= 10} characteristics calculated here for bulk Si. In line with what
& has already been said, the satisfactory agreement with ex-
g 5 periment reflects the paramount importance of ¢hg cor-

10 relation effects in the first place, but nonlocal effects also

play a role here.
-6 1 1 1 1 1 [|
10 15 20 25 3 35 40 B. Effect of positron distribution on positron
13 annihilation characteristics
P (107 myc)

The e-p correlation effects are also seen in the positron

FIG. 10. Positron annihilation probability densiti€¢p,) for distribution, through thee-p correlation potentials used in

bulk Si, from the present calculations for IPM, LDA, and WDA
approaches, in comparison with the experimental data extracted by TABLE I. The core annihilation rates{10° s 1) for bulk Si,
scan from the paper by Alatalet al. [Phys. Rev. B54, 2397  calculated for different theoretical approaches according toHg.
(1996] (top pane). The theoretical curves have not been convo-The superscripts i specify the approximation used for tleep
luted with a Gaussian, meant to mimic the experimental resolutioncorrelation functionsy,(r), and superscripts iy, correspond to
Since the experimental Doppler broadering data for bulk Si of Ala-the type of thee-p correlation potential, used in the positron Sehro
talo et al. have been normalized to unit volume, our theoretical dinger equation. The value afSC2 is taken from Ref. 13.

curves for the core electrons have been normalized.§Q./ N expt,

where) gy, =1/218 ps* has been taken from Alataket al. In the Y'PM YLbA YVoA
bottom panel of the figure, both the measured data, and the theorct-lp,vI

ical results for Si for IPM, LDA, and GGA approaches, from the Acore 0.060 0.076 0.086
above referencésee Fig. 3 of that referengare shown. The theo- Ntore 0.113 0.142 0.158
retical results have been convoluted with a Gaussian. The two dif\S5g 0.110

ferent GGA curves are due to LMTO-AS#solid curve and the — \WPA 0.101 0.128 0.143

core
atomic superposition band-structure methédisshed curve
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0.10
= Si site
z* WDA B
---- LDA 3
“a

00 05 10 15 20 25
Distance r (a.u.)

L0204 08
S . ) 0.7-
g8 T
= £ oe{"
0.15- empty sphere a |
’ WDA 0.54
4 -7 LDA 0.4
...... |PM 4
0.10 +——— — 0.31
0.0 0.5 1.0 1.5 2.0 25 0.2
Distance r (a.u.) |
0.1
FIG. 12. Positron density distribution as calculated within vari- |
ous approximations for the-p correlation potential as a function of 0.0 T
distancer from the center of the Si ASAupper panéland the 0.1/2.0) w 0,12,2)

empty spherglower panel. FIG. 13. The IPM momentum density, calculated according to
Eq. (2) for different positron wave functions, shown in Fig. 9, for

the positron Schidinger equation. The corresponding posi- Momenta alond110] and (0,1/2,0) to (0,1/2,2) directions. Mo-
tron distributions ¢"'PA(r)|2 and| #-PA(r)|?, relative to the ~MeNta are expressed in units ofA.
IPM distribution, are shown in Fig. 12. As mentioned earlier,
::) Ir:?prci\r/e f[h? paclklnlg tci)f :nhev(\jiltirr;ﬁndLSI\BIr'lI'ngfArgAl\nngh?heldecbared with the case of the LDA positron wave function.
tv?o Zn?pglcsupﬁe(r::scﬁsvg bseen incISded As_ can beeseoen, R The effect Ofvcof"|ids Zven more pronoun(;:ed %the Lock-
' risp-West(LCW) folded IPM momentum densi
Fig. 12, it is in the empty spheres that the positron distribu- P ( )
tion has the highest weighiabout 75%. Electron-positron
correlations shift the weight of the positron distribution from p}PM(k)=2 pi" M (k+ G)=f | (D2 (r)|2dr,
the interstitial regior{represented here by the empty sphgres G @
:/(\)/"I;aAr C;;B'fa?éﬁgs igzgsifrstﬁﬁggfs?;‘edd sbig;[:he f[ﬁre ';gr'ise;r;dyyhere(} are the reciprocal-lattice vectors. The results for the

: X - : our bands along the (8/a,0) to (Om/a,2w/a) line are
positron is more neutral to ions. Nonlocality of tbgp €O~ presented in Fig. 14. Note that the LCW momentum densi-
relations enhances the above redistributiofyof(r)| in the

ties also contain information on the high-momentum compo-

Wigner-Seitz cell, as compared to the LDA approach. Th&,ents of the ACAR spectra. The effect of te correlations
explanation is that positron is mainly screened by the valencg, st pronounced in the fourth, highest, occupied band.

electrons, which are found with the highest probability at they e the nonlocality of the-p correlations does not seem to
Si sites. Within the WDA approach, positron follows its o of vital importance.

screening cloud’ moving toward the Si atoms.
Let us now concentrate on the influence of the positron
wave function on thee-p momentum densities and positron
annihilation rates. For this we start with the discussion of the A good test of the quality of any approach is the calcu-
IPM results, because they contain unperturbed informatiomated value of the positron lifetime. In Table Il we present the
on the overlap of the electron and positron wave functionspositron lifetimes for bulk Si, calculated for different ap-
In Fig. 13, the effect of the positron distribution on the IPM proximations with respect to the positron wave function and
momentum density is shown for two crystallographic direc-the e-p correlations. Looking at the second row of the table,
tions in the{001} plane. One can see that including one can see that the shape of the positron wave function has
correlation potential in the positron Schlinger equation in- a substantial influence on the resulting IPM positron life-
creases the overlap of the positron wave function with thd¢imes. The IPM positron wave function gives rise to longer
electron wave functions. Concerning the momentum deperpositron lifetime than is the case for the LDA and WDA
dence ofp'"M(p) in the 1BZ, it is only very slightly affected approaches. The nonlocality of tlep correlations in the
by the positron distribution. The nonlocality ¥§,,(r) does  positron correlation potential substantially increases the total

not change the IPM momentum density very much, as com-

C. Positron lifetime
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TABLE Il. Positron lifetimes(in picosecondsfor bulk Si, cal-
0.8 culated for different approximations. The superscripts ispecify
the approximation used for theep correlation functionsy,(r), and
superscripts iy, correspond to the type of the-p correlation
0.7 1st band potential, used in the positron Schinger equation. The value of
7CCA is taken from Ref. 13.

Pk

wIPM (!;LDA l,//WDA
+ + +
FPM 1005 936.7 914.3
o5l ---- v. sLDA-CEF 210.5
_\VQWDA 7_GGA 210
LDA-SEF 219.3 211.7 209.2
0,1/2,0 w 0,1/2,0 i
( ) ( ) 7WDA 229.4 220.0 217.0

that plays the most significant role here. Except for the
momenta along thELOQ] direction, the effect of the positron
distribution on the resulting ACAR spectra is much less
important. Also, the nonlocal effects are not crucial for
the e-p momentum densities; however, they are vital for
the evaluation of the positron lifetime. This follows from

Pk

v the fact that it is not the difference in the shape of the
W 4th band WDA and LDA-SEF curves which matters, but their
0.5 W magnitude. That the nonlocal effects do not matter too much

can also be seen when comparing the state-independent, i.e.,
) ) LDA-CEF and GGA, results. Further support for the
w 0,1/2,0 ) : .
(0,1/2.0) ¢ ) importance of the state dependence of the correlation
FIG. 14. Contribution of different occupied electron bands tofunctions, as opposed to the nonlocality, is provided by a
the downfolded IPM momentum density, calculated for differentcomparison of the WDA and GGA momentum densities,
positron wave functions, shown in Fig. 9, for momenta along thedlthough both of these approaches include the nonlocal
(0,1/2,0) to (0,1/2,2) direction. Momenta are expressed in units offfects in a different way. Nevertheless, the GGA does not
2mla. reproduce the characteristic hump close to the Jones zone
face. Finally, these calculations show that to obtain good
annihilation rate,\ (=1/7), as compared to the LDA. agreement with experiment, both the state-dependent
For the positron lifetime the present calculations givecorrelation functions and positron wave function have to be
the best agreement with the experimental value of©rrectly incorporated into calculations of the positron
217+2 ps (Ref. 22 in two cases: first, within the WDA annihilation characteristics in silicon. Therefore, for
approach with the WDA positron wave function; and second@ny study of the electronic properties of perfect or defective

within the LDA approach with the IPM positron wave Semiconductors, neither IPM  nor state-independent
function. In the second case, the LDA values of the@PPproaches would be satisfactory. As for the possible future

correlation functions,y,(r), have been used, but trep fapplicati_on of the present methodology to study defects
correlation potentiaV,,, has been neglected in the positron !N Sémiconductors, both the LMTO-ASA and WDA
Schralinger equation. Although giving a better agreement@PProaches are general enough to be extended to such
with experiment, the second approach violates Feynmann'®ystéms. In fact, the intention of the present authors
theorem, relating thee-p correlation potential to the IS t0 reach this goal in the long run, and this is why
distribution of the screening electron cloud surrounding thd"€ Present study was undertaken in the first place.
positron. Therefore, the WDA value is considered to be inHoWeVver, one has to be careful with respect to calculating
the best agreement with the experimental value. This givel’® effective charge der713|t|e8t to obtain the corrrect
us confidence concerning the application of the WDAMoMentum d|s_tr|but|on%. Therefore, ~ for supercells
approach to calculations of tep momentum densities and of defective semiconductors, that part of the implementation
annihilation rates, in other semiconductors, and also fotVill need additional effort and modifications.

studying defects and vacancies.
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