PHYSICAL REVIEW B VOLUME 61, NUMBER 15 15 APRIL 2000-I

General and efficient algorithms for obtaining maximally localized Wannier functions
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Recent advances in the theory of polarization and the development of linear-scaling methods have revital-
ized interest in the use of Wannier functions for obtaining a localized orbital picture within a periodic super-
cell. To examine complex chemical systems it is imperative for the localization procedure to be efficient; on
the other hand, the method should also be simple and general. Motivated to meet these requirements we derive
in this paper a spread functional to be minimized as a starting point for obtaining maximally localized Wannier
functions through a unitary transformation. The functional turns out to be equivalent to others discussed in the
literature with the difference of being valid in simulation supercells of arbitrary symmetry il theint
approximation. To minimize the spread an iterative scheme is developed and very efficient optimization
methods, such as conjugate gradient, direct inversion in the iterative subspace, and preconditioning are applied
to accelerate the convergence. The iterative scheme is quite general and is shown to work also for methods first
developed for finite systenig.g., Pipek-Mezey, Boys-FosjeiThe applications discussed range from crystal
structures such as Si to isolated complex molecules and are compared to previous investigations on this
subject.

[. INTRODUCTION approximation only. For this case, Silvestr&llhas derived a
formula for the spread in three dimensions for a molecular
The representation of the electronic ground state in termgynamics cell of arbitrary shape. The formula is based on the
of localized Wannier orbitalgprovides a powerful tool in the formulation of Marzari and Vanderbilt. Recently Resta has
study of periodic solids. Recent advances in the formulatioProposed a formula for the spread in one dimension which
of a theory of electronic polarizatiéri and the development reduces to that of Marzari and Vanderbilt in the limit of large
of linear-scaling methodshave rejuvenated the use of Wan- cell sizex>!* We generalize Resta’s formulation to three di-
nier functions as an ana|ysis tool. Name|y, Wannier func_mensions and arbitrary molecular dynamics cells. In addition
tions afford an insightful picture to the nature of chemicalwe derive a formula for the spread and examine the conver-
bonding and aid in the understanding of classical chemica@e€nce properties of these three different formulations.

concepts(e.g., nonbonding electron pairs or valehdp Upon minimization of the spread functional the appropri-
terms of quantum mechanics. ate unitary transformation to the localized orbitals can be

In spite of this wide field of applications, a lack of a calculated. With explicit knowledge of the spread functional

practical, general, and efficient methods to calculate Wanniei€ can derive the complete expressions required to imple-
functions is evident. This is in contrast to finite systems,ment the iterative minimization procedure beyond a steepest
where many different criteria for producing localized orbitals descent scheme. The steepest descents method, used in Refs.
have been developed® 9, 11, and 12, performs reasonably for simple molecular sys-

Wannier functiongWF) are defined in terms of a unitary tems, but it is known to have convergence problems when
transformation performed on the occupied Bloch orbitalsmore complicated systems are analyzed. This can only be
(BO).! One major problem in a practical calculation is their remedied by calculating the required gradient of the spread
nonuniqueness. This is a result of the indeterminacy of théunctional without any simplification, thus allowing the itera-
BO's, which are, in the case of a single band, only deterdive calculation of maximally-localized orbitals with very ef-
mined up to a phase factor, in the multiband case, up to aficient optimization scheme.g., conjugate gradiefitand
arbitrary unitary transformation among all occupied orbitalsthe direct inversion in the iterative subspdtenethod.
at every point in the Brillouin zone. As proposed recently byComparisons of the efficiency of the aforementioned optimi-
Marzari and Vanderbilt,one can resolve this nonuniquenesszation schemes to the steepest descents method and to the
by requiring that the total spread of the localized function iswell known Jacobi optimization procedure is made.
minimal. This criterion is in close analogy with the Boys-  The present methodology can be straightforwardly gener-
Foster methotifor finite systems, here one uses the spreadlized to finite(nonperiodi¢ systems, thus providing a tool
defined through the conventional position operator. The techfor Boys-Foster localizatioP Furthermore we apply our op-
nique has been successfully applied to crystal systems and tinization scheme also to the Pipek-Mezey localization
small molecules within a genertpoint schemé&!®An ex-  Which is based on Mulliken population analysis.
tension to disordered systems within tepoint approxima-
tion was recently performett. This is of particular interest
when one would like a localized orbital picture within the
framework of Car-Parrinello molecular dynami@GPMD). We begin by reviewing the work of Restaln his treat-

Here we reexamine the problem focusing on Ikeoint  ment, the fundamental object for studying localization of an

II. DERIVATION OF THE FUNCTIONAL
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glectr_oniE sga_tte wit.hinl Born-Vonl Karmatr; boundary condi-yhe center of the distribution such théf , dsh-sne(h-s)

tions Is the dimensioniess complex number, =0. Using the Poisson summation formdfaye rewrite Eq.

(5),

z= | dxexpi2mx/L)|y(x)|?. ) . . o
JL | | z/=exp(i2mg] - )N — 27/ -h 1), (6)

Here,L is the linear dimension, angi(x) denotes the wave where ny,. denotes the Fourier transform aof,.. Further-

function. By considering the definition of the spread of themore, since we are considerimg, to be localized, its Fou-
wave function to bef) =(x?)—(x)?, where(- - -) denotes an rier transform is smooth over reciprocal distances and we can

expectation value, Resta has shown thad¢d/L?) the func-  be assured that it is well represented abgut 0. We ex-

tional for the spread in one dimension to be paﬂdﬁmc(—ZTr@T-ﬁ*l) to second order, obtaining
L o an
— 2 A A o A |
€= (277)2IH|Z| ' @ Nl —2mg-h 1):1+§ Ou, = OT R
a, g|:0

One goal of this study is to generalize HG) to three di-

mensions and obtain the appropriate generalization of Eq. 1 A *Njoe
(2). Thus, we choose to study the following dimensionless + 2 aEB gavlgﬁylﬁ i BRRE
complex number within Born-Von Karman boundary condi- ' Ga1 79, 9,=0
tions:
()
The second term in EqY7) is zero given our imposed con-
z= Jvdr exp(iGy - 1)[y(r)|%. (3)  dition (h-s)=0. Thus, we are left with

. . A AT h-1
Here, | labels a general reciprocal lattice vect@,=1,b; Nioe( —27g, -h™7)
+m,b,+n,bs, whereb, are the primitive reciprocal lattice (2m)? w _
vectors, the integers m, andn are the Miller indicesy is =1— VZ éa,léﬁ,lf dss,sg N(h-s).  (8)
the volume of the supercell, anfr) denotes the wave func- 2 a.p -

tion. We must find an appropriate function of thgs that  Combining Eq.(8) and Eq.(6), we obtain

gives the three dimensional spread in the case of an arbitrary (272

simulation cell. We proceed by noting that in a molecular = ™ ~on J” pel
dynamics simulation the cell parameteimitive lattice 1-fz|=V 2 ;B 9a 191 | dSSaSpMioc(n-S). ©
vectorsg to describe systems of general symmetry are given

by a;, a, andas. It is convenient to form a matrix of these Keeping in mind that/” . dsh-snj,(h-s)=0, one can de-
fine the spread of the electronic distribution for the case of a

cell parametersh=(a;,a,,a;3) where the volume/ of the general box through

simulation cell is given by the determinant bf It is also

very useful to define scaled coordinates,ﬁ‘l-r that lie in <r2>—<r>2=((ﬁ-s)2):z gaBfo dss,s; nloc(ﬁ.s)_
the unit cube. In molecular dynamics simulations, this allows ap —
one to perform periodic boundary conditions for systems (10

with general symmetry by first transforming _to the unit C”be’Here,gaﬁ=E#heJMﬁﬂB can be thought of as a metric tensor
performing cubic periodic boundary conditions, and transy, gescribe the corresponding distances in the unit cube.
forming back to the general cell with the actiontof” One  Equation(10) shows us exactly how the length scales are
can also compute the reciprocal space vectors for systems btiilt into the spread through the metric tensor. From direct
general symmetry with knowledge of the matrix of cell pa- comparison of Eq(9) and Eq.(10) we see that for supercells

rameters. Thus theth reciprocal lattice vector, of general symmetry we need to choose linear combinations
of 9,94, that reproduce the metric tensg,;. However,
G =2w(h™HT.qg,. (4)  as stated earlieg,, are dimensionless numbers. Thus, an

. appropriate generalization takes the form of a sum rule,
Here, the superscript T denotes transposition, apd
=(I, ,m,_,n,)_ is thelth Miller index. We_ then substltute_thls gaﬁzz w|§a,|§1g,| _ (12)
expression into Eq(3) and use the definition of to obtain, [

N Here,w, are the “weights” with the appropriate dimensions
z|=detﬁf dsexr(inréf-s)M(ﬁ-s)l? (5)  to be determined in Appendix A. Thus, it should also be
0 clear thatg,; will have at most six independent entrigfier
o o triclinic symmetry and thus a maximum of six weights are
Note that the exponential in E¢5) is independent of any npeeded. It is interesting to note that by multiplying Etyl)

coordinate system. Following Re&tave can write the elec- on the left and right hand sides lﬁy’l and using the defini-

tron density in terms of a superposition of localized EenSitytion of G,, one will recover the rule used by SilvestrHii

and its periodic images,|¥(h-9)|?>=2"5_ .ne(N-s  and by Marzari and VanderbfltFinally, we generalize to

—h-s—h-m). Herem is a vector of integers anbl-s, is ~ More than one stat¢y)—|4,) and the desired expression
for the spread(2 in a supercell of general symmetry is
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2 Nstates Ill. A GENERALIZED LOCALIZATION PROCEDURE

— _ AT R-1y2
Q= (2m)° ; Z (1=[2,0)+O((2mg - h ™57, The mathematical problem which defines the localization

procedure is to find the unitary transformatidd, on the
orbitals,
20= [ dr eic Dlwl 12

, 9n)=2 Uinlth), 17)
where Eq.(11) determine theG,’s. :
At this point it is useful to make contact with other spreadthat simultaneously minimizes the spread functiohl, To

formulas that are present in the current literature. Followingyresent a general formulation it is convenient to work with a
Resta’s derivation one finds the formdfethat in our nota-  generalized form

tion reads

1 Nstates Q:; EI f(|zl,n|2)a
0=-F5z 2 2 o logz,l (13
Zl,n:<¢n|ol|¢n>' (18
wheref andO' denote an appropriate function and operator.
If we neglect the weights and constants in favor of sim-

plicity, we obtain the different spread functionals of the last
section, defined through E@l2), Eq. (13), and Eq.(14) by

with z, , defined as above. Equati@h3) is obtained by in-
serting Eq.(8) into Eq. (6), taking the log of the absolute
value and expanding to consistent order.

Silvestrellt? on the other hand usdagain, in our nota-

tion) setting
1 Nstates o} =eme| -T)
Q:(ZT)Z ; El o1(1=[z,4/%), (14
f1(|21.nl?) = VIz nl*=121 al,

with a similar defininition forz, . Obviously, Eq.(14) is ) 5
obtained from Eq(13) by an expansion of the log. f2(12 %) =109(|2; 0|,

At first glance, it seems confusing that there are different o 2
definitions for the spread. Admittedly, one has to keep in fa(lznl®) =210l (19)

mind that all formulas are only valid up to the order given in The values of index will range at most from one to six. It is
Eq. (12). Thus, although different, they are consistent andmportant to notice that maximizing E¢L8) is equivalent to
there is no fundamental reason to choose one definition ghinimizing the spread functional.
the spread over another. Consequently, we compare in Sec. At this point it is useful to make the connection with
IV the spreads of various model systems using all differentnethods used in traditional applications of quantum chemis-
definitions. try. Due to its general form, Eq18) is also suited for finite
One can also derive a general expression for the expectgystems. The Boys-Foster and the Pipek-Mezey metfiod,
tion value of the periodic position operator for computing thewhich are widely used to obtain localized molecular orbitals
center of the localized function. Recall that for a cubic simu-(MO) in quantum chemistry, can both be formulated by
lation supercell the expectation value of the position operatoforking with f5. Using MO’s instead of BO’s we define the
is given as operator,O', in Eq. (19) for the Boys-Foster and Pipek-
Mezey scheme, respectively, as

L
ra,n:__lmlogza,n! 1 - ~
27 O'=r; or 0%= 3 SH{[u)ul+lw)ul} (0
M E
Za,n:f dr exﬂiﬁa'f)|¢n(r)|2, (15) Here, r, denotes the conventional position operator, runs
% from one to threeJ runs from one to the number of atoms,

R R R {|u),mwed} denotes the atomic basis set of atanand
where g;=(1,0,0), 8=(0,1,0), andg;=(0,0,1), and Im |%y—~ g ;) whereSis the overlap matrix of the atomic
denotes the imaginary part. Again, the salient feature of Egyagis set.

(15) is that the expectation value of the exponential is invari-  \yhile the Boys-Foster method minimizes the total spread,
ant with respect to the choice of cell. Thus, a general eqan:<rz>n_<r>2 (and hence maximizeér)z) 5 the Pipek-
n n/1

tion for the expgctation value O_f the position operator ir‘Mezey method is different and warrants some explanation.
supercells of arbitrary symmetry is The projection operator in EqR0) used by Pipek and Mezey
- (PM) is closely related to the Mulliken population analy3is.
S —E M Im loaz (16) In fact, maximizing the PM functional corresponds to a mini-
an— 7 2w 9Zan- mization of the number of atoms over which an orbital is
spread. The popularity of the PM functional originates from
Having established the definition of the spread formulas irntwo sources. First, it is very easy to implement and leads to
the context of WF’s we proceed with a detailed descriptiona fast algorithm when combined with the linear combination
of their computation. of atomic orbitals method. Second, the PM functional, unlike
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the Boys-Foster method, preserves ther separation of
double bonds. This picture of double bonds is in chemistry tan(4¢)=— b
usually preferred over the (bananabond picture generated 23)
by the Boys-Foster localization procedure. L
The actual calculation of maximally localized WF's or  a=RegM;;(M;;—M;;)], b=|Mij|2—Z|M“—ij|2,
maximally localized MO'’s within our localization procedure
is relatively simple. First, we take the output of a conven-where M=%,z and Re denotes the real part
tional electronic structure calculatigBO’s in the periodic, +nsx/4, n eZ are the solutions of Eq23) corresponding to
MO’s in the finite casg choose a spread functional and maxima and minima. For a maximum the condition,
solve for the unitary transformation producing the orbitalsg?A )/ 5¢4?= 16b cos(4p)—16a sin(44)<0 has to be ful-
that maximize Eq.(18). As stated earlier, we have two fijled.
choices of spread functionals for finite systems and three uUnfortunately there is one severe restriction. Equation
choices of spread functionals for periodic systems. The de(3) is only valid in the casefs(x)=x, namely in connec-
tails of the calculation are described in the following. tion with the Silvestrelli-Marzari-Vanderbilt, the Boys and
One must now focus on the computationlbfTo ensure  the Pipek-Mezey functionalsee Sec. Ill B. In the other
a maximally localized function, we would like to find an cases, f,(x)=yx (functional of the present woykand

efficient solution to fo(x)=log(X) (Resta, no analogous formula is derivable.
The reason is that the explicit solution @A Q)/d¢=0 with
ETe) respect togp seems not analytically tractable. Nevertheless,
W, =0, (21)  one can still implement the method of orbital rotations in the

above cases by a numerical maximizationAdd as a func-

) ] ) ) .. tion of ¢ using derivative information.
whereU is considered to be real since we are working within

the I'-point approximation. There are two principal alterna-
tives for parametrizing the unitary transformatidnh,first as

a direct product of elementary plane rotations, and second as The ansatz]%):ziumwi), whereU is a unitary ma-
the exponential of an antisymmetric matrix. The first param-rix, leads to the transformed expectation value
etrization scheme, discussed in the next subsection, amounts

to the well known Jacobi optimization procedure for finding

B. Exponential representation

S — T
eigenvalues of general matrices. The second parametrization Zlvn_%: UinUjnZi ij (24)
choice ofU, used in our method, is based on the exponential
alternative as investigated in Sec. Il B. with z, ;; =<wi|O'|¢j). As discussed above, we parametrize

U=exp@) as the exponential of an antisymmetric matrix
. i and calculate the gradient with respectAtoUsing the chain
A. Orbital rotations rule the gradient splits into two pieces,

The traditional method in quantum chemistry for comput-
ing localized MO's is the method of two-by-two orbital ro- i) o 9 dUg f(|z) n?) 9Us
tations first introduced by Edmiston and RuedenHdefde IA; ; IUg IA; % ; Uy, W
basic idea of the method is to tackle the problem of findihg
by performing a sequence of consecutive two-by-two rotadt is worthwhile to note that only the first piece depends on
tions among all pairs of orbitals. The elementary step conthe type of spread functional and its evaluation is straightfor-
sists of a plane rotation where two orbitalandj are rotated ward,
through an angle$. To proceed we select an optimal angle
to ensure that our spread functional, as defined in(Eg), is 07f(|2|,n| ) — (|72 | |n|2
iteratively maximized. The transformed expectation values dUg (20l —5u

are denoted witE,,i,j and are obtained as

(25

B =21"(|z,0? (E_ UL(smzl,is)
z,=cog$)z, i +sin(¢)z '

+c.c., (26)

~ x| > UgUinzi

2, j==sin($)z;+cog¢)z, ;. (22 .
wherez denotes the complex conjugdiec) of zandf’ is

Thus, combining Eq(22) with Eq. (18) it is straightforward  the derivative of. Combining Eq.(25) and Eq.(26) a gen-

to calculate the change in the functional valde) as a eral form for the gradient is obtained as

function of ¢. The most natural way to obtain the optimal

angle which maximizes the change in the functional value is Q) U ¢

to compute the derivative af() with respect top, set it to W: gf Mstm =

zero and solve fog. This is precisely the way the method of

orbital rotations is implemented and an explicit calculationwhereM is defined via Eq(26). However, the Pipek-Mezey

yields functional has to be treated with special care. Since the sum-

T(?USI
ﬁA” ’

(27)
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In addition we have calculated a simplified expression for

system, one has to use the separability of the correspondirthe second derivative to be used as a preconditioner for a

operator,0' to calculateM in an efficient way.

further speed up of the iterative localizatiggee Appendix

The calculation obU/dA;; is more subtle. We have to B). There we also compute the gradientfet0 which is
calculate the derivative of a matrix function, here the expo-equivalent to the gradient used by Sivestretlial!''2 Sec-

nential function,U=exp(A) with respect toA. This can be

tion IV is devoted to a detailed comparison of the methods

done by writing the matrix function in an alternative way presented in this section.

using a complex contour integral,

au 9 exp(A)

N
1 1-A) i
B 27i aA” quZ)(Z_ ) z

= % 3€ exp(z)(z1—A) (1T -1)(z1-A) tdz

1 L
=RTﬁ 35 exﬁz)(z}—A)‘lR(l”—l“)

XR'(z1-A) " dzR (28)

1 denotes the identity matrix, ()= o4 » Ris the eigen-
vector matrix ofA with eigenvalues., andA =\, éy,. Car-
rying out the integration ovez, one obtains

A —
ek, )\k_)\l s
ehk—eM

k |

1 exp(z)

2ni P ez 0

MEN
(29

Performing some simple algebraic transformations, (@)
becomes

o TMTRYCY BIR]
=(R{RM'R",B}R); — (R'{RM'R",B}R);; ,
(30

where theB,, components are defined through EQ9),

IV. RESULTS AND DISCUSSION

The iterative localization algorithm, presented in this
work, has been implemented in a hybrid Gaussian and plane
wave (PW) density functional scheri@and in the CPMD
codée! which is based on a plane wave expansion. Both pro-
grams are suited for periodic and for finite systems.

One of the goals of our work is to make a comparison of
the different spread functionals proposed in the literature,
including the one derived in this work for supercells of gen-
eral symmetry. In order to perform a comparison, we have
chosen a simple system which has been previously studied
using different spread functionals. Thus, we consider the
case of one isolated water molecule periodically replicated in
different supercell symmetrigsimple cubic, orthorhombic,
hexagonal, fcc, bee, hexagonal, and triclinichere the same
cell volume is maintaineét It is clear that the centroid of the
localized functiongEq. (16)] should remain in the same po-
sitions relative to the atoms for all supercells considdigd
noring the negligible effects of distortion from the periodic
images for the cell parameters chosdfollowing the work
of Ref. 12 we use the general form of the functioh@&f.
(18)], and specifically the spread functionals given by Egs.
(12), (13), and(14) for the iterative maximization.

Table | reports our results for the distances between the
oxygen atom and the centroids of the four different WF’s
[calculated using Eq16)], and the spreads for the different
supercell symmetries. No systematic differences in the dis-
tances are recognizable. Besides numerical noise, all consid-
ered spread functionals lead, independent from the choice of
the supercell, to the same position of the centroids relative to
the oxygen atom. This fact is in contrast to the calculated
spread, here the distinct definitions result in slightly different
values, even though one finds qualitative agreement.

After having compared our functional to previous work in

{C",B} denotes a component-wise matrix multiplication andliterature, we examine possible ways to improve the iterative

C=R(1-1"R". The final transformation in E30) is
verified by inserting the explicit definition of the matrix 1

localization beyond a simple steepest descent scheme. To
achieve a faster convergence the following optimization

Using the results above we have now a very usefulmethods, in connection with the scheme described in Sec. llI

scheme to optimiz€) by iterating the following steps.
Start with an arbitrary matrix, e.gA=0.
DiagonalizeA to obtain the eigenvector matrRR and the

are implemented.
A steepest desceriSD) with line search procedure per-
formed in the following way. After bracketing the maximum,

diagonal matrix A with the eigenvalues as diagonal ele- a parabolic fit through three points is carried out. The SD

ments.
Calculate the unitary matrix vill = expd)=R'e'R.

ComputeM and B defined in Eq.(27), respectively, Eq.

(29.
Calculate the gradient according to Eg0).
UpdateA and repeat process.

serves as a benchmark, since one can combine the method
also with the approximate gradiefq. (B1)].

The Polak-Ribiee conjugate gradient methd@G).°

The Polak-Ribiee conjugate gradient method in combina-
tion with a preconditioner (C&PR). Close to the maxi-
mum we replace the pure gradiegtby H 'g whereH !

Within the above scheme the desired gradient is obtainedenotes the inverse of the approximate diagonal Hessian ma-
analytically and we are able to combine our iterative local-trix calculated via Eq(B1).
ization procedure with gradient methods developed to accel- The direct inversion in the iterative subspace method

erate convergence.

(DIIS) in combination with a preconditioner. In addition the
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TABLE I. Distances, with respect to the position of the oxygen ion, and spreads of the two covalent
orbital WF’s (dcy, andQcyj0 in A) and the two lone-pair WF'sd 1., and{), 4, in A) of the isolated water
molecule . Data have been computed for different supercell symmetries, using the functional of present work
[PW, Eq.(12)], the Resta functiondR, Eq.(13)], and the Silvestrelli-Marzari-Vanderbilt functionNe8MV,

Eq. (14)]. For details see text.

Symmetry Functional  d¢, Qcy deo Qc» di, Q4 dp, Q5
PW 0.53 0.72 0.53 0.72 0.30 0.75 0.30 0.75
Simple cubic R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.76
SMV 0.53 0.71 0.53 0.71 0.30 0.75 0.30 0.75
PW 0.53 0.72 0.53 0.72 0.30 0.75 0.30 0.75
Orthorhombic R 0.53 0.72 0.53 0.72 0.31 0.76 0.30 0.76
SMV 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.75
PW 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.74
fcc R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.75
SMV 0.54 0.70 0.54 0.70 0.30 0.74 0.30 0.73
PW 0.53 0.73 0.53 0.72 0.31 0.77 0.30 0.76
bce R 0.53 0.73 0.53 0.72 0.30 0.78 0.30 0.76
SMV 0.53 0.73 0.53 0.72 0.30 0.77 0.29 0.76
PW 0.53 0.74 0.53 0.72 0.31 0.78 0.30 0.77
Hexagonal R 0.53 0.73 0.53 0.72 0.30 0.78 0.30 0.76
SMV 0.54 0.74 0.53 0.72 0.31 0.78 0.30 0.77
PW 0.53 0.71 0.53 0.71 0.31 0.75 0.30 0.75
Triclinic R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.76
SMV 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.75

diagonal approximation of the Hessian matrix is improvedObviously there is a wide range in convergence behavior
by making use of the information gained by calculatingdepending on the system size but also on the specific chemi-
exact first derivatives at a series of iteration points. Incal properties. Small, fully saturated systems are easy to
our implementation the limited memory—BFGS metfitid  |ocalize (Si,CsHy,) and in those cases a steepest descent
used which directly updates the inverse of the HessiaRcheme is sufficient. However, this is no longer true if one
matrix. _ _ _ _ switches to more complicated systems including electron
Method of orbital rotationSOR) as discussed in Sec. |gne pairs, double bonds or aromatic rings in connection with

EA. ) L an increasing number of orbitals. In these cases, a consider-
To study the effect of the different optimization methods 5, o gain is obtained using high level optimization methods

on the convergence of our scheme we consider four periodiE‘CG CGHPR, DIIS. For the biggest system we have
systems, using the functional proposed in this WétW, Eq. studied, more than an order of magnitude increase in conver-

(12)], the Resta functiondR, Eq.(13)], and the Silvestrelli- .
Marzari-Vanderbilt functiona[SMV, Eq. (14)] and five fi- gence speed is observed compared to the steepest descent
oh with line search procedure. On the other hand the

nite systems using the Pipek-MezéyM) and the Boys- } . . L .
Foster(BF) functional. As finite systems we have chosen theOR Sctﬁime' in_spite of its simplicity, is remarkably

formaldehyde derivate formamide CHOMKD), the alkane ~ ©fficien n N o
pentane GHy, (16), the aromate naphthaleng g (24), the It is not surprising tha_t _the more sophisticated iterative
amino acid histidine §HoNsO, (30) and the steroid test- schemes are more efficient than the steepest _descent
osterone GoH,g0, (58). As periodic benchmark systems procedure. However, fo_r cases yvhere_ one would like the
serve bulk silicon $i(16), bulk water (HO)g (32), diamond ~ WF’S not _only for the final configuration, _bt_Jt for evenly_
Cs, (64) and B-Cristobalite (SiQ) (128. The number of _sampleq times along the trajectory, an efficient scheme is
doubly occupied orbitals is added in parentheses. The critdmperative.
rion used to classify the properties of a given method is as One last comment is in order. We find the best conver-
follows, we have always maintain the same accuracy in congence using the preconditioned DIIS scheme. Unfortunately,
vergence and only evaluate the number of steps required thhe method converges to the “closest” stationary point
reach this. which in many cases is not the global maxima. Thus, it
The results of our calculation are summarized in Table llseems more advantageous to work in a practical implemen-
for the finite and in Table Il for the periodic systems. tation with the CG- PR method.
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TABLE Il. Number of iteration steps to reach convergence for TABLE Ill. Number of iteration steps to reach convergence for
different optimization methods. Convergence is assumed if the reladifferent optimization methods. Convergence is assumed if the rela-
tive value of the spread functional is decreasing by less thaff 10 tive value of the localization functional is decreasing by less than
for successive iteration steps. The considered methods are a steep#8t® for successive iteration steps. The considered methods are a
descent(SD) with line search procedure, the Polak-Rilsi€conju-  steepest desce(BD) with line search procedure, the Polak-Riigie
gate gradient methodCG), the Polak-Ribiee conjugate gradient conjugate gradient methdd€G), the Polak-Ribiee conjugate gra-
method with a preconditioner (C&PR), the direct inversion in  dient method with a preconditioner (G&°R), the direct inversion
iterative subspace methd®IIS) with a preconditioner, and the in iterative subspace methd®1lS) with a preconditioner, and the
orbital rotation methodOR). One step of OR is about three times method of orbital rotation$OR). One step of OR is about three
more expensive in CPU time compared to the other methods. Bimes more expensive in CPU time compared to the other methods.
denotes the Boys, PM the Pipek-Mezey functional. The number oPW denotes the functional of present wdkEq. (12)], R the Resta
double occupied orbitals of the respective system is added in pareffanctional[Eq. (13)], and SMV the Silvestrelli-Marzari-Vanderbilt
theses. functional[Eq. (14)]. The number of double occupied orbitals of the
respective system is added in parentheses.

Functional SD CG CGPR DIIS OR
- Function SD CG CGPR DIIS OR
Formamide(9)
BF 394 62 52 48 19 Sig (16)
PM 187 39 36 30 24 PW 28 19 19 19 25
Pentang16) R 29 19 19 19 37
BF 57 26 25 24 34 SMV 28 19 18 18 32
PM 26 18 15 16 30 (H20)s (32
Naphtaleng24) PW 323 60 44 42 67
BF 614 104 76 75 62 R 740 89 72 61 92
PM 172 47 39 31 58 SMV 248 71 61 53 87
Histidine (30) Cs; (64)
BF 2036 182 156 117 77 PW 216 52 38 32 109
PM 365 90 70 66 66 R 301 73 66 52 141
Testosterong58) SMV 197 57 39 35 184
BF 1444 236 202 122 152 (SI0,) 16 (128
PM 567 77 73 54 160 PW 5199 479 253 178 261
R 8634 2932 478 394 307
SMV 3348 415 210 172 375

V. CONCLUSIONS

. We have_ generalized the v_vork of Resta t_o thre_e Ollmen|'mplement, nevertheless the efficiency is fairly good, our
sions to de_rlve a sprez_id functlongl as a starting point to Calr'nethod is more general by being, at least for larger systems,
culate maximally-localized Wannier functions in simulation learly fast

cells of general symmetry suitable for periodic systems in th&'eary faster.
I'-point approximation. Thus, one can easily perform a cal-

culation in a supercell with arbitrary symmetry with knowl-

edge of only the cell parameters. ACKNOWLEDGMENTS
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In addition, we have derived an iterative scheme to obtain
maximally-localized orbitals. The method is also suited for
finite Systems and combination with very efficient optimiza— In this appendix we determine the Weights, as defined
tion procedures is possible. in the sum rule Eq(11) for supercells of general symmetry.

To compare the efficiency of our approach with the stan-Recall that the metrigj will contain at most six independent
dard method in quantum chemistry proposed by Edmistorntries as defined by the case of least symmetry, triclinic.
and Ruedenberfe generalize the method of orbital rota- Thus, Eq.(11) is a linear set of six equations with six un-
tions to a wider class of spread functionals. knowns. We have freedom to choose the six Miller indices,

Test calculatlon shqw that with Increasing system ?'Zef;. of which we are to take the linear combinations. For com-
and chemical complexity the use of high level optimization

_ dputational convenience of computizg we choose the first
metho_ds lead 10 a considerably faster convergence, Ty indices that take you from one to the next point in the
the biggest systems the performance is improved by . =~ A -~ A
more than a factor of ten. On the other hand, the simplérIIIOUIn zone. Namely, g,=(1,0,0), g,=(0,1,0), gs
orbital rotation scheme is surprisingly efficient. With =(0,0,1), 9,=(1,1,0), g5=(1,0,1), gs=(0,1,1).  With
respect to an practical implementation both methodshis choice ofg, the explicit system of equations based on
have advantages, the orbital rotation method is easier tBq. (11) takes the following simple form:

APPENDIX A: DETERMINATION OF THE WEIGHTS
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1 0 0 1 1 w, 911 proximate way too. Using a power series expansion of the
00010 0 exponential function and exchanging limit and summation,
@2 912 it is easy to show that ligoexp(=A)=1,
0 00010 w3 J13 lima_.odexpEA)/dA;=*(1"-1"), and limy_ g9%exp(EA)/
0101 0 1| wl| |gn|l AY @=@I-1)=—"+1). Wit this we get
0 000 01 ws J23 20
0010 1 1 \ws a3 /Iximo 8—22—42 (2,112 (121,312 + 1z 512" (122,41%))
— ij
Thus, the solution to Eq(Al) yields the following set of
general weights: — o
+162| (Re 745211 (|12 ;1%
®1=011~ 9127 913,
+RE 7 ;2 1%"(12:19), Bl
wzzgzz_glz_gza, qt 1,ij I,|] (| I,|| )) ( )
ending up with an expression for the second derivative in the
®3=033~ 0137~ 23, limiting case,A—0. In order to use EqB1), we first per-
form an optimization until close to the maximum, then we
®4=012, update the expectation values via E84) and restart the
iteration with A=0. At that point Eq.(B1) is a reasonable
w5=013, estimate of the diagonal elements of the second derivative
B A2 and we can use the inverse of the approximate diagonal ma-
@6~ J2s3- (A2) trix as a preconditioner.

Equation(A2) indeed reduces to the specific cases computed We can also calculate the gradient in the same limit,
in Ref. 12. However, here, the case for triclinic symmetry is 20

also included. Thus, with knowledge of the cell parameters, lim -4 Rz 7 18 (lz |2

in conjunction with Eq.(12) allows one to compute the Ao OA; Z (Retz5521,11" (1211
maximally localized WF.

—Rez ;2,1 (|2,1]?)). (B2)

Equation(B2) amounts to the gradient used by Sivestrelli
et al*'2for general functionals. In each iteration step one
We can also calculate the second derivative analyticallpas to update the expectation values via Ef) and to
by the same methods as described in Sec. lll. However, forestart withA=0. This amounts to a redefinition of the op-
our purposes an approximate solution is sufficient. The simtimization parameters, making the use of global schemes im-
plest approximation is to neglect all off-diagonal elementspossible. In addition, to update the expectation values means
thus allowing for an easy matrix inversion as needed in opto diagonalizeA in order to obtain the unitary matrix)
timization schemes. This approximation is justified near the=exp(d). Since the diagonalization is also the most time
maximum where the Hessian matrix is diagonal dominant. consuming step in the calculation of the full gradient, the use
Further we can calculate the diagonal elements in an apf Eq. (30) is in any case advantageous.
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