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General and efficient algorithms for obtaining maximally localized Wannier functions

Gerd Berghold, Christopher J. Mundy, Aldo H. Romero, Ju¨rg Hutter, and Michele Parrinello
Max-Planck-Institut fu¨r Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany

~Received 16 September 1999; revised manuscript received 6 December 1999!

Recent advances in the theory of polarization and the development of linear-scaling methods have revital-
ized interest in the use of Wannier functions for obtaining a localized orbital picture within a periodic super-
cell. To examine complex chemical systems it is imperative for the localization procedure to be efficient; on
the other hand, the method should also be simple and general. Motivated to meet these requirements we derive
in this paper a spread functional to be minimized as a starting point for obtaining maximally localized Wannier
functions through a unitary transformation. The functional turns out to be equivalent to others discussed in the
literature with the difference of being valid in simulation supercells of arbitrary symmetry in theG-point
approximation. To minimize the spread an iterative scheme is developed and very efficient optimization
methods, such as conjugate gradient, direct inversion in the iterative subspace, and preconditioning are applied
to accelerate the convergence. The iterative scheme is quite general and is shown to work also for methods first
developed for finite systems~e.g., Pipek-Mezey, Boys-Foster!. The applications discussed range from crystal
structures such as Si to isolated complex molecules and are compared to previous investigations on this
subject.
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I. INTRODUCTION

The representation of the electronic ground state in te
of localized Wannier orbitals1 provides a powerful tool in the
study of periodic solids. Recent advances in the formulat
of a theory of electronic polarization2,3 and the developmen
of linear-scaling methods4 have rejuvenated the use of Wa
nier functions as an analysis tool. Namely, Wannier fu
tions afford an insightful picture to the nature of chemic
bonding and aid in the understanding of classical chem
concepts~e.g., nonbonding electron pairs or valency! in
terms of quantum mechanics.

In spite of this wide field of applications, a lack of
practical, general, and efficient methods to calculate Wan
functions is evident. This is in contrast to finite system
where many different criteria for producing localized orbita
have been developed.5–8

Wannier functions~WF! are defined in terms of a unitar
transformation performed on the occupied Bloch orbit
~BO!.1 One major problem in a practical calculation is the
nonuniqueness. This is a result of the indeterminacy of
BO’s, which are, in the case of a single band, only det
mined up to a phase factor, in the multiband case, up to
arbitrary unitary transformation among all occupied orbit
at every point in the Brillouin zone. As proposed recently
Marzari and Vanderbilt,9 one can resolve this nonuniquene
by requiring that the total spread of the localized function
minimal. This criterion is in close analogy with the Boy
Foster method5 for finite systems, here one uses the spre
defined through the conventional position operator. The te
nique has been successfully applied to crystal systems an
small molecules within a generalk-point scheme.9,10 An ex-
tension to disordered systems within theG-point approxima-
tion was recently performed.11 This is of particular interes
when one would like a localized orbital picture within th
framework of Car-Parrinello molecular dynamics~CPMD!.

Here we reexamine the problem focusing on theG-point
PRB 610163-1829/2000/61~15!/10040~9!/$15.00
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approximation only. For this case, Silvestrelli12 has derived a
formula for the spread in three dimensions for a molecu
dynamics cell of arbitrary shape. The formula is based on
formulation of Marzari and Vanderbilt. Recently Resta h
proposed a formula for the spread in one dimension wh
reduces to that of Marzari and Vanderbilt in the limit of larg
cell size.13,14 We generalize Resta’s formulation to three d
mensions and arbitrary molecular dynamics cells. In addit
we derive a formula for the spread and examine the con
gence properties of these three different formulations.

Upon minimization of the spread functional the approp
ate unitary transformation to the localized orbitals can
calculated. With explicit knowledge of the spread function
we can derive the complete expressions required to im
ment the iterative minimization procedure beyond a steep
descent scheme. The steepest descents method, used in
9, 11, and 12, performs reasonably for simple molecular s
tems, but it is known to have convergence problems wh
more complicated systems are analyzed. This can only
remedied by calculating the required gradient of the spr
functional without any simplification, thus allowing the itera
tive calculation of maximally-localized orbitals with very e
ficient optimization schemes~e.g., conjugate gradient15 and
the direct inversion in the iterative subspace16 method!.
Comparisons of the efficiency of the aforementioned optim
zation schemes to the steepest descents method and t
well known Jacobi optimization procedure is made.

The present methodology can be straightforwardly gen
alized to finite~nonperiodic! systems, thus providing a too
for Boys-Foster localization.5 Furthermore we apply our op
timization scheme also to the Pipek-Mezey localizatio6

which is based on Mulliken population analysis.

II. DERIVATION OF THE FUNCTIONAL

We begin by reviewing the work of Resta.14 In his treat-
ment, the fundamental object for studying localization of
10 040 ©2000 The American Physical Society
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electronic state within Born-Von Karman boundary con
tions is the dimensionless complex number,

z5E
L
dx exp~ i2px/L !uc~x!u2. ~1!

Here,L is the linear dimension, andc(x) denotes the wave
function. By considering the definition of the spread of t
wave function to beV5^x2&2^x&2, where^•••& denotes an
expectation value, Resta has shown that toO(1/L2) the func-
tional for the spread in one dimension to be

V5
1

~2p!2 lnuzu2. ~2!

One goal of this study is to generalize Eq.~1! to three di-
mensions and obtain the appropriate generalization of
~2!. Thus, we choose to study the following dimensionle
complex number within Born-Von Karman boundary con
tions:

zI5E
V
dr exp~ iGI•r !uc~r !u2. ~3!

Here, I labels a general reciprocal lattice vector,GI5 l Ib1
1mIb21nIb3, whereba are the primitive reciprocal lattice
vectors, the integersl, m, andn are the Miller indices,V is
the volume of the supercell, andc(r ) denotes the wave func
tion. We must find an appropriate function of thezI ’s that
gives the three dimensional spread in the case of an arbi
simulation cell. We proceed by noting that in a molecu
dynamics simulation the cell parameters~primitive lattice
vectors! to describe systems of general symmetry are gi
by a1 , a2, anda3. It is convenient to form a matrix of thes

cell parameters,hI5(a1 ,a2 ,a3) where the volumeV of the

simulation cell is given by the determinant ofhI. It is also

very useful to define scaled coordinates,s5hI21
•r that lie in

the unit cube. In molecular dynamics simulations, this allo
one to perform periodic boundary conditions for syste
with general symmetry by first transforming to the unit cub
performing cubic periodic boundary conditions, and tra

forming back to the general cell with the action ofhI.17 One
can also compute the reciprocal space vectors for system
general symmetry with knowledge of the matrix of cell p
rameters. Thus theI th reciprocal lattice vector,

GI52p~hI21!T
•ĝI . ~4!

Here, the superscript T denotes transposition, andĝI
5( l I ,mI ,nI) is the Ith Miller index. We then substitute thi
expression into Eq.~3! and use the definition ofs to obtain,

zI5dethIE
0

1

dsexp~ i2pĝI
T
•s!uc~hI•s!u2. ~5!

Note that the exponential in Eq.~5! is independent of any
coordinate system. Following Resta14 we can write the elec-
tron density in terms of a superposition of localized dens

and its periodic images,uc(hI•s)u25(`
m̂52`nloc(hI•s

2hI•s02hI•m̂). Here m̂ is a vector of integers andhI•s0 is
-
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the center of the distribution such that*2`
` ds hI•snloc(hI•s)

50. Using the Poisson summation formula,18 we rewrite Eq.
~5!,

zI5exp~ i2pĝI
T
•s0!n̂loc~22pĝI

T
•hI21!, ~6!

where n̂loc denotes the Fourier transform ofnloc . Further-
more, since we are consideringnloc to be localized, its Fou-
rier transform is smooth over reciprocal distances and we
be assured that it is well represented aboutĝI50. We ex-

pandn̂loc(22pĝI
T
•hI21) to second order, obtaining

n̂loc~22pĝI
T
•hI21!511(

a
ĝa,I

]n̂loc

]ĝa,I
U

ĝI50

1
1

2 (
a,b

ĝa,I ĝb,I

]2n̂loc

]ĝa,I]ĝb,I
U

ĝI50

1•••.

~7!

The second term in Eq.~7! is zero given our imposed con

dition ^hI•s&50. Thus, we are left with

n̂loc~22pĝI
T
•hI21!

512
~2p!2

2
V(

a,b
ĝa,I ĝb,IE

2`

`

dssasb nloc~hI•s!. ~8!

Combining Eq.~8! and Eq.~6!, we obtain

12uzI u5V
~2p!2

2 (
a,b

ĝa,I ĝb,IE
2`

`

dssasbnloc~hI•s!. ~9!

Keeping in mind that*2`
` ds hI•snloc(hI•s)50, one can de-

fine the spread of the electronic distribution for the case o
general box through

^r 2&2^r &25^~hI•s!2&5(
a,b

gab VE
2`

`

dssasb nloc~hI•s!.

~10!

Here,gab5(mhJam
T hJmb can be thought of as a metric tenso

to describe the corresponding distances in the unit cu
Equation ~10! shows us exactly how the length scales a
built into the spread through the metric tensor. From dire
comparison of Eq.~9! and Eq.~10! we see that for supercells
of general symmetry we need to choose linear combinatio
of ĝa,I ĝb,I that reproduce the metric tensor,gab . However,
as stated earlier,ĝa,I are dimensionless numbers. Thus, a
appropriate generalization takes the form of a sum rule,

gab5(
I

v I ĝa,I ĝb,I . ~11!

Here,v I are the ‘‘weights’’ with the appropriate dimension
to be determined in Appendix A. Thus, it should also b
clear thatgab will have at most six independent entries~for
triclinic symmetry! and thus a maximum of six weights ar
needed. It is interesting to note that by multiplying Eq.~11!

on the left and right hand sides byhI21 and using the defini-
tion of GI , one will recover the rule used by Silvestrelli12

and by Marzari and Vanderbilt.9 Finally, we generalize to
more than one state,uc&→ucn& and the desired expressio
for the spread,V in a supercell of general symmetry is
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V5
2

~2p!2 (
n

Nstates

(
I

v I~12uzI ,nu!1O„~2pĝI
T
•hI21!2

…,

zI ,n5E
V
dr exp~ iGI• r !ucn~r !u2, ~12!

where Eq.~11! determine theGI ’s .
At this point it is useful to make contact with other spre

formulas that are present in the current literature. Follow
Resta’s derivation one finds the formula,14 that in our nota-
tion reads

V52
1

~2p!2 (
n

Nstates

(
I

v I loguzI ,nu2, ~13!

with zI ,n defined as above. Equation~13! is obtained by in-
serting Eq.~8! into Eq. ~6!, taking the log of the absolute
value and expanding to consistent order.

Silvestrelli12 on the other hand uses~again, in our nota-
tion!

V5
1

~2p!2 (
n

Nstates

(
I

v I~12uzI ,nu2!, ~14!

with a similar defininition forzI ,n . Obviously, Eq.~14! is
obtained from Eq.~13! by an expansion of the log.

At first glance, it seems confusing that there are differ
definitions for the spread. Admittedly, one has to keep
mind that all formulas are only valid up to the order given
Eq. ~12!. Thus, although different, they are consistent a
there is no fundamental reason to choose one definitio
the spread over another. Consequently, we compare in
IV the spreads of various model systems using all differ
definitions.

One can also derive a general expression for the expe
tion value of the periodic position operator for computing t
center of the localized function. Recall that for a cubic sim
lation supercell the expectation value of the position opera
is given as

r a,n52
L

2p
Im logza,n ,

za,n5E
V
dr exp~ i ĝa•r !ucn~r !u2, ~15!

where ĝ15(1,0,0), ĝ25(0,1,0), andĝ35(0,0,1), and Im
denotes the imaginary part. Again, the salient feature of
~15! is that the expectation value of the exponential is inva
ant with respect to the choice of cell. Thus, a general eq
tion for the expectation value of the position operator
supercells of arbitrary symmetry is

r a,n52(
b

hJab

2p
Im logza,n . ~16!

Having established the definition of the spread formulas
the context of WF’s we proceed with a detailed descript
of their computation.
g

t
n

d
of
ec.
t

ta-

-
r

q.
-
a-

n
n

III. A GENERALIZED LOCALIZATION PROCEDURE

The mathematical problem which defines the localizat
procedure is to find the unitary transformation,U, on the
orbitals,

uc̃n&5(
i

Uinuc i&, ~17!

that simultaneously minimizes the spread functional,V. To
present a general formulation it is convenient to work with
generalized form

V5(
n

(
I

f ~ uzI ,nu2!,

zI ,n5^cnuOI ucn&, ~18!

wheref andOI denote an appropriate function and operat
If we neglect the weights and constants in favor of si

plicity, we obtain the different spread functionals of the la
section, defined through Eq.~12!, Eq. ~13!, and Eq.~14! by
setting

OI5exp~ iGI•r !

f 1~ uzI ,nu2!5AuzI ,nu25uzI ,nu,

f 2~ uzI ,nu2!5 log~ uzI ,nu2!,

f 3~ uzI ,nu2!5uzI ,nu2. ~19!

The values of indexI will range at most from one to six. It is
important to notice that maximizing Eq.~18! is equivalent to
minimizing the spread functional.

At this point it is useful to make the connection wit
methods used in traditional applications of quantum chem
try. Due to its general form, Eq.~18! is also suited for finite
systems. The Boys-Foster and the Pipek-Mezey metho5,6

which are widely used to obtain localized molecular orbit
~MO! in quantum chemistry, can both be formulated
working with f 3. Using MO’s instead of BO’s we define th
operator,OI , in Eq. ~19! for the Boys-Foster and Pipek
Mezey scheme, respectively, as

OI5r I or OJ5 (
mPJ

1

2
$um̃&^mu1um&^m̃u%. ~20!

Here, r I denotes the conventional position operator, ru
from one to three,J runs from one to the number of atom
$um&,mPJ% denotes the atomic basis set of atomJ, and
um̃&5(nSnm

21un&, whereS is the overlap matrix of the atomic
basis set.

While the Boys-Foster method minimizes the total spre
V5^r 2&n2^r &n

2 ~and hence maximizeŝr &n
2!,5 the Pipek-

Mezey method is different and warrants some explanat
The projection operator in Eq.~20! used by Pipek and Meze
~PM! is closely related to the Mulliken population analysis6

In fact, maximizing the PM functional corresponds to a min
mization of the number of atoms over which an orbital
spread. The popularity of the PM functional originates fro
two sources. First, it is very easy to implement and leads
a fast algorithm when combined with the linear combinati
of atomic orbitals method. Second, the PM functional, unl
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the Boys-Foster method, preserves thes-p separation of
double bonds. This picture of double bonds is in chemis
usually preferred over thet ~banana! bond picture generate
by the Boys-Foster localization procedure.

The actual calculation of maximally localized WF’s o
maximally localized MO’s within our localization procedur
is relatively simple. First, we take the output of a conve
tional electronic structure calculation~BO’s in the periodic,
MO’s in the finite case!, choose a spread functional an
solve for the unitary transformation producing the orbit
that maximize Eq.~18!. As stated earlier, we have tw
choices of spread functionals for finite systems and th
choices of spread functionals for periodic systems. The
tails of the calculation are described in the following.

One must now focus on the computation ofU. To ensure
a maximally localized function, we would like to find a
efficient solution to

]V

]Ui j
50, ~21!

whereU is considered to be real since we are working with
the G-point approximation. There are two principal altern
tives for parametrizing the unitary transformation,U, first as
a direct product of elementary plane rotations, and secon
the exponential of an antisymmetric matrix. The first para
etrization scheme, discussed in the next subsection, amo
to the well known Jacobi optimization procedure for findi
eigenvalues of general matrices. The second parametriza
choice ofU, used in our method, is based on the exponen
alternative as investigated in Sec. III B.

A. Orbital rotations

The traditional method in quantum chemistry for comp
ing localized MO’s is the method of two-by-two orbital ro
tations first introduced by Edmiston and Ruedenberg.7 The
basic idea of the method is to tackle the problem of findingU
by performing a sequence of consecutive two-by-two ro
tions among all pairs of orbitals. The elementary step c
sists of a plane rotation where two orbitalsi andj are rotated
through an angle,f. To proceed we select an optimal ang
to ensure that our spread functional, as defined in Eq.~18!, is
iteratively maximized. The transformed expectation valu
are denoted withz̃I ,i / j and are obtained as

z̃I ,i5cos~f!zI ,i1sin~f!zI , j ,

z̃I , j52sin~f!zI ,i1cos~f!zI , j . ~22!

Thus, combining Eq.~22! with Eq. ~18! it is straightforward
to calculate the change in the functional value,DV as a
function of f. The most natural way to obtain the optim
angle which maximizes the change in the functional value
to compute the derivative ofDV with respect tof, set it to
zero and solve forf. This is precisely the way the method o
orbital rotations is implemented and an explicit calculati
yields
y

-

e
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s

is

tan~4f!52
a

b
,

~23!

a5Re@Mi j ~M̄ ii 2M̄ j j !#, b5uMi j u22
1

4
uMii 2M j j u2,

where Mi j 5( IzI ,i j and Re denotes the real part.f
1np/4, nPZ are the solutions of Eq.~23! corresponding to
maxima and minima. For a maximum the conditio
]2DV/]f2516b cos(4f)216a sin(4f),0 has to be ful-
filled.

Unfortunately there is one severe restriction. Equat
~23! is only valid in the case,f 3(x)5x, namely in connec-
tion with the Silvestrelli-Marzari-Vanderbilt, the Boys an
the Pipek-Mezey functional~see Sec. III B!. In the other
cases, f 1(x)5Ax ~functional of the present work! and
f 2(x)5 log(x) ~Resta!, no analogous formula is derivable
The reason is that the explicit solution of]DV/]f50 with
respect tof seems not analytically tractable. Neverthele
one can still implement the method of orbital rotations in t
above cases by a numerical maximization ofDV as a func-
tion of f using derivative information.

B. Exponential representation

The ansatz,uc̃n&5( iUinuc i&, whereU is a unitary ma-
trix, leads to the transformed expectation value

z̃I ,n5(
i j

Uin
T U jnzI ,i j , ~24!

with zI ,i j 5^c i uOI uc j&. As discussed above, we parametri
U5exp(A) as the exponential of an antisymmetric matr
and calculate the gradient with respect toA. Using the chain
rule the gradient splits into two pieces,

]V

]Ai j
5(

st

]V

]Ust

]Ust

]Ai j
5(

I ,n
(
st

] f ~ uzI ,nu2!

]Ust

]Ust

]Ai j
. ~25!

It is worthwhile to note that only the first piece depends
the type of spread functional and its evaluation is straightf
ward,

] f ~ uzI ,nu2!

]Ust
5 f 8~ uzI ,nu2!

]uzI ,nu2

]Ust

52 f 8~ uzI ,nu2! S (
i

Uin
T d tnzI ,isD

3S (
kl

Ukn
T Ulnz̄I ,klD 1c.c., ~26!

wherez̄ denotes the complex conjugate~c.c.! of z and f 8 is
the derivative off. Combining Eq.~25! and Eq.~26! a gen-
eral form for the gradient is obtained as

]V

]Ai j
5(

st
Mst

]Ust

]Ai j
5TrFMT

]Ust

]Ai j
G , ~27!

whereM is defined via Eq.~26!. However, the Pipek-Mezey
functional has to be treated with special care. Since the s
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mation index,I runs from one to the number of atoms of th
system, one has to use the separability of the correspon
operator,OI to calculateM in an efficient way.

The calculation of]Ust /]Ai j is more subtle. We have to
calculate the derivative of a matrix function, here the exp
nential function,U5exp(A) with respect toA. This can be
done by writing the matrix function in an alternative wa
using a complex contour integral,19

]U

]Ai j
5

] exp~A!

]Ai j

5
1

2p i

]

]Ai j
R exp~z!~z12A!21dz

5
1

2p i R exp~z!~z12A!21~1i j 21 j i !~z12A!21dz

5R†
1

2p i R exp~z!~z12L!21R~1i j 21 j i !

3R†~z12L!21dzR. ~28!

1 denotes the identity matrix, (1i j )kl5dkid l j , R is the eigen-
vector matrix ofA with eigenvalueslk andLkl5lkdkl . Car-
rying out the integration overz, one obtains

1

2p i R exp~z!

~z2lk!~z2l l !
dz5H elk, lk5l l ,

elk2el l

lk2l l
, lkÞl l .

~29!

Performing some simple algebraic transformations, Eq.~27!
becomes

]V

]Ai j
5Tr@MTR†$Ci j ,B%R#

5~R†$RMTR†,B%R! j i 2~R†$RMTR†,B%R! i j ,

~30!

where theBkl components are defined through Eq.~29!,
$Ci j ,B% denotes a component-wise matrix multiplication a
Ci j 5R(1i j 21 j i )R†. The final transformation in Eq.~30! is
verified by inserting the explicit definition of the matrix 1i j .

Using the results above we have now a very use
scheme to optimizeV by iterating the following steps.

Start with an arbitrary matrix, e.g.,A50.
DiagonalizeA to obtain the eigenvector matrixR and the

diagonal matrixL with the eigenvalues as diagonal el
ments.

Calculate the unitary matrix viaU5exp(A)5R†eLR.
ComputeM and B defined in Eq.~27!, respectively, Eq.

~29!.
Calculate the gradient according to Eq.~30!.
UpdateA and repeat process.
Within the above scheme the desired gradient is obtai

analytically and we are able to combine our iterative loc
ization procedure with gradient methods developed to ac
erate convergence.
ng

-

l

d
-
l-

In addition we have calculated a simplified expression
the second derivative to be used as a preconditioner fo
further speed up of the iterative localization~see Appendix
B!. There we also compute the gradient atA50 which is
equivalent to the gradient used by Sivestrelliet al.11,12 Sec-
tion IV is devoted to a detailed comparison of the metho
presented in this section.

IV. RESULTS AND DISCUSSION

The iterative localization algorithm, presented in th
work, has been implemented in a hybrid Gaussian and p
wave ~PW! density functional scheme20 and in the CPMD
code21 which is based on a plane wave expansion. Both p
grams are suited for periodic and for finite systems.

One of the goals of our work is to make a comparison
the different spread functionals proposed in the literatu
including the one derived in this work for supercells of ge
eral symmetry. In order to perform a comparison, we ha
chosen a simple system which has been previously stu
using different spread functionals. Thus, we consider
case of one isolated water molecule periodically replicated
different supercell symmetries~simple cubic, orthorhombic
hexagonal, fcc, bcc, hexagonal, and triclinic! where the same
cell volume is maintained.22 It is clear that the centroid of the
localized functions@Eq. ~16!# should remain in the same po
sitions relative to the atoms for all supercells considered~ig-
noring the negligible effects of distortion from the period
images for the cell parameters chosen!. Following the work
of Ref. 12 we use the general form of the functional@Eq.
~18!#, and specifically the spread functionals given by E
~12!, ~13!, and~14! for the iterative maximization.

Table I reports our results for the distances between
oxygen atom and the centroids of the four different WF
@calculated using Eq.~16!#, and the spreads for the differen
supercell symmetries. No systematic differences in the
tances are recognizable. Besides numerical noise, all con
ered spread functionals lead, independent from the choic
the supercell, to the same position of the centroids relativ
the oxygen atom. This fact is in contrast to the calcula
spread, here the distinct definitions result in slightly differe
values, even though one finds qualitative agreement.

After having compared our functional to previous work
literature, we examine possible ways to improve the iterat
localization beyond a simple steepest descent scheme
achieve a faster convergence the following optimizat
methods, in connection with the scheme described in Sec
are implemented.

A steepest descent~SD! with line search procedure per
formed in the following way. After bracketing the maximum
a parabolic fit through three points is carried out. The S
serves as a benchmark, since one can combine the me
also with the approximate gradient@Eq. ~B1!#.

The Polak-Ribie`re conjugate gradient method~CG!.15

The Polak-Ribie`re conjugate gradient method in combin
tion with a preconditioner (CG1PR). Close to the maxi-
mum we replace the pure gradientg by H21g whereH21

denotes the inverse of the approximate diagonal Hessian
trix calculated via Eq.~B1!.

The direct inversion in the iterative subspace metho16

~DIIS! in combination with a preconditioner. In addition th
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TABLE I. Distances, with respect to the position of the oxygen ion, and spreads of the two cov
orbital WF’s (dC1/2 andVC1/2 in Å) and the two lone-pair WF’s (dL1/2 andVL1/2 in Å) of the isolated water
molecule . Data have been computed for different supercell symmetries, using the functional of prese
@PW, Eq.~12!#, the Resta functional@R, Eq.~13!#, and the Silvestrelli-Marzari-Vanderbilt functional@SMV,
Eq. ~14!#. For details see text.

Symmetry Functional dC1 VC1 dC2 VC2 dL1 VL1 dL2 VL2

PW 0.53 0.72 0.53 0.72 0.30 0.75 0.30 0.75
Simple cubic R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.7

SMV 0.53 0.71 0.53 0.71 0.30 0.75 0.30 0.75

PW 0.53 0.72 0.53 0.72 0.30 0.75 0.30 0.75
Orthorhombic R 0.53 0.72 0.53 0.72 0.31 0.76 0.30 0.7

SMV 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.75

PW 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.74
fcc R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.75

SMV 0.54 0.70 0.54 0.70 0.30 0.74 0.30 0.73

PW 0.53 0.73 0.53 0.72 0.31 0.77 0.30 0.76
bcc R 0.53 0.73 0.53 0.72 0.30 0.78 0.30 0.76

SMV 0.53 0.73 0.53 0.72 0.30 0.77 0.29 0.76

PW 0.53 0.74 0.53 0.72 0.31 0.78 0.30 0.77
Hexagonal R 0.53 0.73 0.53 0.72 0.30 0.78 0.30 0.7

SMV 0.54 0.74 0.53 0.72 0.31 0.78 0.30 0.77

PW 0.53 0.71 0.53 0.71 0.31 0.75 0.30 0.75
Triclinic R 0.53 0.72 0.53 0.72 0.30 0.76 0.30 0.76

SMV 0.54 0.71 0.53 0.71 0.30 0.75 0.30 0.75
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diagonal approximation of the Hessian matrix is improv
by making use of the information gained by calculati
exact first derivatives at a series of iteration points.
our implementation the limited memory–BFGS method23 is
used which directly updates the inverse of the Hess
matrix.

Method of orbital rotations~OR! as discussed in Sec
III A.

To study the effect of the different optimization metho
on the convergence of our scheme we consider four peri
systems, using the functional proposed in this work@PW, Eq.
~12!#, the Resta functional@R, Eq.~13!#, and the Silvestrelli-
Marzari-Vanderbilt functional@SMV, Eq. ~14!# and five fi-
nite systems using the Pipek-Mezey~PM! and the Boys-
Foster~BF! functional. As finite systems we have chosen t
formaldehyde derivate formamide CHONH2 ~9!, the alkane
pentane C5H12 ~16!, the aromate naphthalene C10H8 ~24!, the
amino acid histidine C6H9N3O2 ~30! and the steroid test
osterone C19H28O2 ~58!. As periodic benchmark system
serve bulk silicon Si8 ~16!, bulk water (H2O)8 ~32!, diamond
C32 ~64! and b-Cristobalite (SiO2)16 ~128!. The number of
doubly occupied orbitals is added in parentheses. The c
rion used to classify the properties of a given method is
follows, we have always maintain the same accuracy in c
vergence and only evaluate the number of steps require
reach this.

The results of our calculation are summarized in Table
for the finite and in Table III for the periodic system
n

ic

e

e-
s
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I

Obviously there is a wide range in convergence behav
depending on the system size but also on the specific ch
cal properties. Small, fully saturated systems are easy
localize (Si8 ,C5H12) and in those cases a steepest desc
scheme is sufficient. However, this is no longer true if o
switches to more complicated systems including elect
lone pairs, double bonds or aromatic rings in connection w
an increasing number of orbitals. In these cases, a cons
able gain is obtained using high level optimization metho
~CG, CG1PR, DIIS!. For the biggest system we hav
studied, more than an order of magnitude increase in con
gence speed is observed compared to the steepest de
with line search procedure. On the other hand
OR scheme, in spite of its simplicity, is remarkab
efficient.24

It is not surprising that the more sophisticated iterat
schemes are more efficient than the steepest des
procedure. However, for cases where one would like
WF’s not only for the final configuration, but for evenl
sampled times along the trajectory, an efficient scheme
imperative.

One last comment is in order. We find the best conv
gence using the preconditioned DIIS scheme. Unfortunat
the method converges to the ‘‘closest’’ stationary po
which in many cases is not the global maxima. Thus,
seems more advantageous to work in a practical implem
tation with the CG1PR method.
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V. CONCLUSIONS

We have generalized the work of Resta to three dim
sions to derive a spread functional as a starting point to
culate maximally-localized Wannier functions in simulatio
cells of general symmetry suitable for periodic systems in
G-point approximation. Thus, one can easily perform a c
culation in a supercell with arbitrary symmetry with know
edge of only the cell parameters.

The functional turns out to be equivalent to others d
cussed in the literature, it differs, besides its more gen
form, only in the higher-order terms from either th
Silvestrelli-Marzari-Vanderbilt or Resta proposals.

In addition, we have derived an iterative scheme to obt
maximally-localized orbitals. The method is also suited
finite systems and combination with very efficient optimiz
tion procedures is possible.

To compare the efficiency of our approach with the st
dard method in quantum chemistry proposed by Edmis
and Ruedenberg,7 we generalize the method of orbital rot
tions to a wider class of spread functionals.

Test calculation show that with increasing system s
and chemical complexity the use of high level optimizati
methods lead to a considerably faster convergence,
the biggest systems the performance is improved
more than a factor of ten. On the other hand, the sim
orbital rotation scheme is surprisingly efficient. Wi
respect to an practical implementation both metho
have advantages, the orbital rotation method is easie

TABLE II. Number of iteration steps to reach convergence
different optimization methods. Convergence is assumed if the r
tive value of the spread functional is decreasing by less than 128

for successive iteration steps. The considered methods are a ste
descent~SD! with line search procedure, the Polak-Ribie`re conju-
gate gradient method~CG!, the Polak-Ribie`re conjugate gradien
method with a preconditioner (CG1PR), the direct inversion in
iterative subspace method~DIIS! with a preconditioner, and the
orbital rotation method~OR!. One step of OR is about three time
more expensive in CPU time compared to the other methods
denotes the Boys, PM the Pipek-Mezey functional. The numbe
double occupied orbitals of the respective system is added in pa
theses.

Functional SD CG CG1PR DIIS OR

Formamide~9!

BF 394 62 52 48 19
PM 187 39 36 30 24

Pentane~16!

BF 57 26 25 24 34
PM 26 18 15 16 30

Naphtalene~24!

BF 614 104 76 75 62
PM 172 47 39 31 58

Histidine ~30!

BF 2036 182 156 117 77
PM 365 90 70 66 66

Testosterone~58!

BF 1444 236 202 122 152
PM 567 77 73 54 160
-
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implement, nevertheless the efficiency is fairly good, o
method is more general by being, at least for larger syste
clearly faster.

ACKNOWLEDGMENTS

We would like to thank S. Goedecker, R. Martonak, a
P. Silvestrelli for useful discussions.

APPENDIX A: DETERMINATION OF THE WEIGHTS

In this appendix we determine the weights,v I as defined
in the sum rule Eq.~11! for supercells of general symmetry
Recall that the metricgI will contain at most six independen
entries as defined by the case of least symmetry, tricli
Thus, Eq.~11! is a linear set of six equations with six un
knowns. We have freedom to choose the six Miller indic
ĝI of which we are to take the linear combinations. For co
putational convenience of computingzI we choose the first
six indices that take you from one to the next point in t
Brillouin zone. Namely, ĝ15(1,0,0), ĝ25(0,1,0), ĝ3

5(0,0,1), ĝ45(1,1,0), ĝ55(1,0,1), ĝ65(0,1,1). With
this choice ofĝI the explicit system of equations based
Eq. ~11! takes the following simple form:

r
a-

pest

B
of
n-

TABLE III. Number of iteration steps to reach convergence f
different optimization methods. Convergence is assumed if the r
tive value of the localization functional is decreasing by less th
1028 for successive iteration steps. The considered methods a
steepest descent~SD! with line search procedure, the Polak-Ribie`re
conjugate gradient method~CG!, the Polak-Ribie`re conjugate gra-
dient method with a preconditioner (CG1PR), the direct inversion
in iterative subspace method~DIIS! with a preconditioner, and the
method of orbital rotations~OR!. One step of OR is about thre
times more expensive in CPU time compared to the other meth
PW denotes the functional of present work@Eq. ~12!#, R the Resta
functional @Eq. ~13!#, and SMV the Silvestrelli-Marzari-Vanderbil
functional@Eq. ~14!#. The number of double occupied orbitals of th
respective system is added in parentheses.

Function SD CG CG1PR DIIS OR

Si8 ~16!

PW 28 19 19 19 25
R 29 19 19 19 37
SMV 28 19 18 18 32

(H2O)8 ~32!

PW 323 60 44 42 67
R 740 89 72 61 92
SMV 248 71 61 53 87

C32 ~64!

PW 216 52 38 32 109
R 301 73 66 52 141
SMV 197 57 39 35 184

(SiO2)16 ~128!
PW 5199 479 253 178 261
R 8634 2932 478 394 307
SMV 3348 415 210 172 375
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S 1 0 0 1 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 1 0 1 0 1

0 0 0 0 0 1

0 0 1 0 1 1

D S v1

v2

v3

v4

v5

v6

D 5S g11

g12

g13

g22

g23

g33

D . ~A1!

Thus, the solution to Eq.~A1! yields the following set of
general weights:

v15g112g122g13,

v25g222g122g23,

v35g332g132g23,

v45g12,

v55g13,

v65g23. ~A2!

Equation~A2! indeed reduces to the specific cases compu
in Ref. 12. However, here, the case for triclinic symmetry
also included. Thus, with knowledge of the cell paramete
in conjunction with Eq.~12! allows one to compute the
maximally localized WF.

APPENDIX B: APPROXIMATE EXPRESSIONS
FOR THE GRADIENT AND THE SECOND DERIVATIVE

We can also calculate the second derivative analytic
by the same methods as described in Sec. III. However,
our purposes an approximate solution is sufficient. The s
plest approximation is to neglect all off-diagonal elemen
thus allowing for an easy matrix inversion as needed in
timization schemes. This approximation is justified near
maximum where the Hessian matrix is diagonal dominan

Further we can calculate the diagonal elements in an
,

ry
d

s,

ly
or
-
,
-
e

p-

proximate way too. Using a power series expansion of
exponential function and exchanging limit and summatio
it is easy to show that limA→0exp(6A)51,
limA→0]exp(6A)/]Aij56(1ij21ji), and limA→0]2exp(6A)/
]Aij

25(1ij21ji)252(1ii11j j). With this we get

lim
A→0

]2V

]Ai j
2

524(
I

„uzI ,i u2f 8~ uzI ,i u2!1uzI , j u2f 8~ uzI , j u2!…

116(
I

„Re@zI ,i j z̄I , j #
2f 9~ uzI , j u2!

1Re@zI ,i j z̄I ,i #
2f 9~ uzI ,i u2!…, ~B1!

ending up with an expression for the second derivative in
limiting case,A→0. In order to use Eq.~B1!, we first per-
form an optimization until close to the maximum, then w
update the expectation values via Eq.~24! and restart the
iteration with A50. At that point Eq.~B1! is a reasonable
estimate of the diagonal elements of the second deriva
and we can use the inverse of the approximate diagonal
trix as a preconditioner.

We can also calculate the gradient in the same limit,

lim
A→0

]V

]Ai j
54(

I
„Re@zI ,i j z̄I , j # f 8~ uzI , j u2!

2Re@zI ,i j z̄I ,i # f 8~ uzI ,i u2!…. ~B2!

Equation ~B2! amounts to the gradient used by Sivestre
et al.11,12 for general functionals. In each iteration step o
has to update the expectation values via Eq.~24! and to
restart withA50. This amounts to a redefinition of the op
timization parameters, making the use of global schemes
possible. In addition, to update the expectation values me
to diagonalizeA in order to obtain the unitary matrix,U
5exp(A). Since the diagonalization is also the most tim
consuming step in the calculation of the full gradient, the u
of Eq. ~30! is in any case advantageous.
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