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Post-growth relaxation on a vicinal surface
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College of Engineering and Applied Sciences, State University of New York Stony Brook, Stony Brook, New York 11794

~Received 1 June 1999; revised manuscript received 26 October 1999!

We use a heuristic approach to find an approximate analytical solution to the reaction diffusion equation
describing post-growth relaxation on a vicinal surface at near-step-flow conditions. The decay of the adatom
and dimer densities is seen to be more like that resulting from a logistic equation rather than a sum of
exponentials. An approximate solution for the steady-state growth equation that compares well with earlier
numerical results is backed out from the solution for the relaxation process.
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I. INTRODUCTION

Growth by molecular beam epitaxy~MBE! has been the
focus of considerable interest during the past sev
decades.1 For step-flow growth, an analytical description
both growth and relaxation can be obtained based on
earlier theory of Burton, Cabrera, and Frank2 ~BCF! devel-
oped for conditions of low supersaturation. The usual
proximation that must be made is that the step motion can
neglected; otherwise analytical solutions can only be fou
during steady-state growth.3 In the near-step-flow regime th
BCF theory must be modified3,4 to take into account the for
mation of dimers. This requires including a nonlinear re
tion term in the adatom kinetic equation. If the dimers a
unstable an additional term, accounting for their break
must also be included in the adatom equation. Both step-fl
growth with the step motion taken into account and ne
step-flow growth are nonlinear problems that are not am
nable to current analytical techniques.5 For this reason, com
puter simulations and numerical solutions have been
primary tools for studying these problems1,3,4,6 along with
simpler models that provide less detailed information.6,7

When the beam is turned off the system relaxes to a fi
equilibrium state. This process, referred to as post-gro
recovery when the dimers formed are stable and post-gro
relaxation when they are unstable, has not been extens
studied analytically, presumably because of the same d
culties that occur in studying growth. In describing recove
the step boundary conditions must be treated more care
than those during growth since at long times the ada
equilibrium density is no longer small compared to the a
tom densities on the terraces and cannot be neglected.
perimental studies8 using reflection high-energy electron di
fraction ~RHEED! have shown that the post-growth regim
can be described by two distinct stages, and numer
studies9 have suggested that this is a consequence of fast
slow relaxation modes associated with different island m
phologies.

Our intent here is to provide an analytical description
post-growth relaxation that will add to the current und
standing of this process. We simplify matters here by c
sidering irreversible dimer formation3 so that the final ‘‘equi-
librium’’ state is an empty terrace; the adatoms are unabl
detach from the steps. This idealization allows us to rest
our primary attention solely on the adatoms since the ada
PRB 610163-1829/2000/61~15!/10001~4!/$15.00
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kinetics are decoupled from the dimer kinetics; we will sho
later that the current into the steps contributed by the dim
can be neglected.3 Our goal is to show that even when on
dimers are formed, relaxation is initially fast~in some sense!
and then slows, and is qualitatively better described b
logisticlike decay rather than a sum of exponentials dec
As an additional advantage, we show that our results can
be used to obtain an approximate solution for the steady-s
growth densities for which no explicit exact analytical res
is known.3 Since the analytical technique we use, bas
loosely on the center manifold theory,10 yields approximate
solutions, we also consider the case of pure step flow,
which an exact solution can be found and the validity of t
approximations made can be assessed.

In Sec. II we introduce the notation that will be used a
go on to obtain a qualitative result for the decay of the a
tom density during post-growth relaxation with irreversib
dimer formation. More explicit results, allowing an asse
ment of the approximations made, are then obtained in S
III for the case of step-flow relaxation with the step motio
taken into account. While the latter is an interesting ma
ematical problem, it is not likely to be relevant to experime
tal conditions, and is included here only to provide credib
ity for the results found in the preceding section. W
conclude the paper with a brief discussion of how the res
obtained can be applied to describe the dimer relaxation
the near-step-flow case and also, as an unexpected divid
an approximate solution for the steady-state growth eq
tions.

II. NEAR-STEP-FLOW CONDITIONS
WITH STABLE DIMERS

A. Formulation

The generalized BCF equation describing the adatom d
sity during post-growth relaxation is

nt5nxx1avnx22bn2, ~1!

where the notation is almost identical to that of Refs. 3 a
4. The density, length, and time are dimensionless accord
to n→FL2/Dn[an, x→x/L, t→Dt/L2, where F is the
beam strength during growth,L the terrace width measure
in lattice units,D the adatom surface diffusion coefficien
andb[aL2. The coordinate system moves with the dime
10 001 ©2000 The American Physical Society
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sionless step velocityv→v/FL. For near step flow the cur
rent into the up step atx50 is well approximated by the
adatom current alone,3 so that for stable islands withn(0,t)
5n(1,t)50,v(t)'2nx(x,t)ux50 . Later we will show this is
consistent with the level of approximation that we consid
It should be pointed out that Eq.~1! contains a simplifying
approximation in that the relaxation term,22bn2, should
contain a time-dependent prefactor, the capture numb11

Here, as in previous studies,3,4 we simplify by ignoring this
complication and setting the capture number equal to 1 w
the expectation that this will not alter the qualitative conc
sions that follow.

When the step motion is neglected, Eq.~1! is an example
of a ‘‘simple’’ reaction-diffusion equation. Such equation
are known to be analytically intractable despite the cons
erable effort that has been expended to illuminate th
behavior.12 With the inclusion of the nonlinear step motio
term in Eq.~1!, this intractability becomes compounded.
view of the above, a heuristic approach to solving Eq.~1!
seems to offer better prospects than more orthodox techn
methods. Motivated in part by the procedure used to ob
normal solutions to the Boltzmann equation,13 and in part by
the more formal center manifold theory,10 we adopt such a
heuristic approach here to study Eq.~1!. This does not lead
to an explicit solution forn since the initial condition for Eq.
~1! is not known, but in Sec. IV we show how an approx
mate initial condition can be found when growth is term
nated after a steady state is reached. We are able to o
explicit results for the nonlinear step-flow equation, i.e., E
~1! without the reaction term. These results, described in
next section, allow us to assess the validity of the appro
mations made since the initial condition is known in th
case.

It is well known that methods of solution that rely o
superposition, such as Fourier analysis, are not applicab
nonlinear equations. However, we will make use of the f
that n is small3,4 to look for a Fourier series solution wher
the primary Fourier coefficient parameterises the other c
ficients. Specifically, we consider

n5(
j

nj sin~ j px!, ~2!

where thenj , j .1, are functionals ofn1(t) and satisfy
nj /n1→0 asn1→0. Solutions of the above form are clear
approximations. In particular, the exact initial conditio
which is unknown, can be written in a Fourier seri
n(x,0)5( jAj sin(jpx), where theAj are numbers. If we ex-
pand Aj5ajA11bjA1

21¯ , j .1, the coefficients can be
chosen in an infinite number of ways, e.g.,aj5(Aj /A1),
bj50, etc. However, the evolution equation for the Four
coefficients derived from Eqs.~1! and ~2! provide the con-
straint necessary to allow us to consistently formulate
algorithm to uniquely determine thenj . We describe this
next.

B. Determining the nj

From Eq. ~2! it follows that v5(8nj (2p j ), where the
prime indicates oddj only are included in the summation
The coupled set of equations for thenj are found by substi-
r.

.

h
-

-
ir

al
in

ain
.
e
i-

to
t

f-

r

n

tuting Eq. ~2! into Eq. ~1!, multiplying the sin(pjx) and in-
tegrating over the terrace. The first and most important
these equations is

n1t52p2n12~16b/3p!n1
21O~n1n2 ,n1n3 ,...!. ~3!

There is noO(n1
2) contribution from the step motion. Th

equation forn3 provides a basis for subsequent generali
tion,

n3t529p2n31K3n1
21O~n1n2 ,n1n3 ,...!, ~4!

whereK3 is a constant. Our basic assumption, that the o
explicit time dependence is throughn1 , implies that thenj
for j .1 can be expanded in a power series inn1 so that if
n35A3n11B3n1

21¯ ,n3t in Eq. ~4! becomes replaced b
(dn3 /dn1)n1t so that

n3t5~A312B3n11¯ !n1t529p2~A3n11B3n1
21¯ !

1K3n1
21higher-order terms, ~5!

where we have anticipated that all thenj for j .1 areO(n1
2)

and no longer explicitly identify the higher-order terms. Su
stituting from Eq.~3! for n1t and equating like powers ofn1 ,
we then find

n3~K3/7p2!n1
21higher-order terms. ~6!

Thus, toO(n1
2) we have, from Eq.~3!,

n1~ t !5n1~0!exp~2p2t !$11@16bn1~0!/3p3#

3@12exp~2p2t !#%21. ~7!

Since thenj for j .1 are O(n1
2), the long-time decay is

given by Eq.~7! and is exponential, while the initial decay
much faster, due to the exponential term in the denomina
and more like a logistic decay.11

III. STEP FLOW

Relaxation following step-flow growth provides a nonlin
ear model for which the initial condition is explicitly known
allowing us to assess the approximations of the heuristic
lution. This is, for the most part, a mathematical exercise
the context of MBE since the conditions for which step m
tion will be significant are those where reaction effects c
not be ignored.3 Furthermore, as shown in the preceding se
tion, the reaction term provides the dominant nonline
effect. Nevertheless, step-flow growth with step moti
taken into account has been the subject of several, mo
numerical, studies.6

Our starting point here is Eq.~1! with the reaction term
omitted, i.e.,b set to zero. As an aside, we note that for sm
values ofa a perturbation solution provides little in the wa
of useful information with successive terms containing m
tiple infinite summations that, unlike the heuristic solutio
do not provide insights into the relaxation process. The
tial condition is3

n~x,0!5@12e2x#@12e21#212x, ~8!
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where for convenience we takea51. Knowing the initial
condition allows us to make an assessment of the accurac
the heuristic solution.

Since our interest is in assessing the accuracy of the
ristic solution we restrict our discussion to those details n
essary for this purpose. Proceeding as before we find tha
all j the nj satisfy

njt52 j 2p2nj14pn1
2E

0

1

dx p cospx sin j px

1higher-order terms ~9!

and that the equation forn1 contains noO(n1
2) term. Deter-

mining thenj as before, we find

nj@11~21! j #4 jn1
2/@p~ j 222!~ j 221!#

1higher-order terms, j .1. ~10!

The maximum error for the heuristic solution should occur
t50. This is similar to the initial slip error found in norma
solutions to the Boltzmann equation.14 As the solution de-
cays,n1 slower than the remainingnj , the error due to the
higher order terms is reduced. Therefore, a stringent e
assessment can be based on a comparison of thenj at t50
found using Eq.~10! with the ‘‘true’’ Fourier coefficients
determined from Eq.~8!.

The initial value of the primary Fourier coefficient,n1 , is
given by the ‘‘true’’ value,n1(0)50.127, and from Eq.~8!
we find

nj5@~11e21!/~12e21!#d@11~ j p!2#1~2/j p!, ~11!

whered50, j even, andd51, j odd. For allj we easily find
that the numerical difference between the approximatenj
determined from Eq.~10! and the truenj given by Eq.~11! is
of O(n1

3)51023. In fact, the onlynj , approximate or true
that is itself larger thanO(1023) is the approximate value o
n2 , 0.014, compared to the true value of 0.008, resulting
an error of 0.0065O(1023)5O(n1

3). These results, while
by no means conclusive, provide a degree of creditability
the heuristic method of solution used in this paper.

IV. CONCLUSIONS

We have shown that even in the simple case where o
stable dimers are formed the initial fast relaxation of t
adatoms slows as the final equilibrium state is reached
which the terraces are empty. If the dimers are unstable
that a true equilibrium is established with adatoms a
dimers present on the terraces, the problem becomes m
complex. A complication here is that the usual bound
condition for immobile dimers3,4,8 is that no dimers are
present at the down step,N(1,t)50, whereN is the dimer
density. This implies that there is no true equilibrium wi
space-independent dimer and adatom densities. If the dim
are able to diffuse,1 even slowly relative to the adatoms, th
difficulty is avoided, and a true space uniform equilibrium
established. In this paper we only consider the case wh
dimers are stable and Eq.~1! does not need to be modified t
include a gain term accounting for dimer breakup. In t
case the dimer density satisfies
of
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Nt5avNx1bn2. ~12!

Unlike the adatoms, which continually leave the terraces
diffusion, reaction, and by being collected by the advanc
step, the dimer density continues to be increased by the
minishing reaction process and simultaneously decrea
due to collection by the slowing step. Therefore, it see
reasonable to setNt'0 in Eq. ~12! so that we find

N~x,t !'~bn1
2/av !E

x

1

dx~sinpx!21higher-order terms.

~13!

Then N1;O(n1) and each of its Fourier modes decays
n1 . It follows that the dimers do not contribute tonj through
O(n1

2) and that the contribution of the dimers to the st
velocity can also be neglected through this order of appro
mation. Note that the above approximation forN preserves
the correct initial condition since the same relationship ho
when n and N are given by their steady-state solutions, t
t50 condition here.

The initial condition for near step flow can be approx
mated by making use of the known value ofv(0)51, so that

152nx~x,0!u012aN~0,0!. ~14!

The nj are easily determined as shown in Sec. II C, and
find

nj516bn1
2/~ j 222!~ j 221!p3, j 53,5, . . . ~15!

where the step motion can be neglected~Sec. III! so that only
odd j is required.
Substituting from Eq.~13! for x50, and Eq.~15! into Eq.
~14!, we find

152pn1~0!12p(
j 53

8 16bn1
2~0!/p2~ j 222!~ j 221!

1bn1
2~0!1higher-order terms. ~16!

As an example we takea51021, b522.5, which allows us
to compare with the numerical results shown in Ref. 3. T
latter are an50.01 and aN50.12, while we find an1
50.01 andaN50.11, where bothn andN are evaluated a
their maxima. The coincidence is certainly fortuitous a
also somewhat misleading as some additional small eff
are considered in Ref. 3. Also, the higher Fourier modes w
have a very small numerical effect on our results. Still, t
close order of magnitude match indicates that the appro
taken here should provide an adequate qualitative descrip
of the post-growth recovery. Serendipitously, we have a
provided an approximate method of solution for the stea
state growth equation. This was unexpected, since the
ristic method is not directly applicable to the adatom grow
equation due to the presence of the beam term.

In summary, we have shown that post-growth relaxat
occurs in two distinct stages, fast and then slow, and
there is no need to invoke morphological-based argume9

to reach this conclusion, which follows directly from Eq.~1!.
While this qualitative behavior has been our major focus,
have also found a quantitative solution for the steady-s
growth equation that compares favorably with earlier n
merical results.
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