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Post-growth relaxation on a vicinal surface
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We use a heuristic approach to find an approximate analytical solution to the reaction diffusion equation
describing post-growth relaxation on a vicinal surface at near-step-flow conditions. The decay of the adatom
and dimer densities is seen to be more like that resulting from a logistic equation rather than a sum of
exponentials. An approximate solution for the steady-state growth equation that compares well with earlier
numerical results is backed out from the solution for the relaxation process.

[. INTRODUCTION kinetics are decoupled from the dimer kinetics; we will show
later that the current into the steps contributed by the dimers
Growth by molecular beam epitaXf¥BE) has been the can be neglectetlOur goal is to show that even when only
focus of considerable interest during the past severadlimers are formed, relaxation is initially fagh some sensge
decades. For step-flow growth, an analytical description of @nd then slows, and is qualitatively better described by a
both growth and relaxation can be obtained based on thi®gisticlike decay rather than a sum of exponentials decay.
earlier theory of Burton, Cabrera, and FrafBCF) devel- Asan additional advantage, we show that our results can also
oped for conditions of low supersaturation. The usual apbe used to obtain an approximate solution for the steady-state
proximation that must be made is that the step motion can pgrowth densities for which no explicit exact analytical result
neglected; otherwise analytical solutions can only be founds known® Since the analytical technique we use, based
during steady-state growftin the near-step-flow regime the 100sely on the center manifold theotyyields approximate
BCF theory must be modifiéd to take into account the for- solutions, we also consider the case of pure step flow, for
mation of dimers. This requires including a nonlinear reacWhich an exact solution can be found and the validity of the
tion term in the adatom kinetic equation. If the dimers are@PPproximations made can be assessed.
unstable an additional term, accounting for their breakup, In Sec. Il we introduce the notation that will be used and
must also be included in the adatom equation. Both step-floO On to obtain a qualitative result for the decay of the ada-
growth with the step motion taken into account and nearfom density during post-growth relaxation with irreversible
step-flow growth are nonlinear problems that are not amedimer formation. More explicit results, allowing an assess-
nable to current analytical techniqueBor this reason, com- ment of the approximations made, are then obtained in Sec.
puter simulations and numerical solutions have been thél for the case of step-flow relaxation with the step motion
primary too's for Studying these prob|eh‘?’§116 a|0ng with taken. Into aCCOUHF. .Wh||e the |atter IS an |nterest|ng .math'
simpler models that provide less detailed informafidn. ematical problem, it is not likely to be relevant to experimen-
When the beam is turned off the system relaxes to a findlal conditions, and is included here only to provide credibil-
equilibrium state. This process, referred to as post-growthfy for the results found in the preceding section. We
recovery When the dimers formed are Stab'e and post_growtﬁonclude the paper with a brief discussion of how the results
relaxation when they are unstable, has not been extensivefptained can be applied to describe the dimer relaxation in
studied analytically, presumably because of the same diffithe near-step-flow case and also, as an unexpected dividend,
culties that occur in studying growth. In describing recovery,@n approximate solution for the steady-state growth equa-
the step boundary conditions must be treated more carefull{fons.
than those during growth since at long times the adatom
equilibrium density is no longer small compared to the ada- Il. NEAR-STEP-ELOW CONDITIONS
tom densities on the terraces and cannot be neglected. Ex- WITH STABLE DIMERS
perimental studiésusing reflection high-energy electron dif-
fraction (RHEED) have shown that the post-growth regime
can be described by two distinct stages, and numerical The generalized BCF equation describing the adatom den-
studie§ have suggested that this is a consequence of fast angity during post-growth relaxation is
slow relaxation modes associated with different island mor-
phologies. Ny= Ny + avn,— 28N, )
Our intent here is to provide an analytical description of
post-growth relaxation that will add to the current under-where the notation is almost identical to that of Refs. 3 and
standing of this process. We simplify matters here by con4. The density, length, and time are dimensionless according
sidering irreversible dimer formatidiso that the final “equi- to n—FL2%/Dn=an, x—x/L,t—Dt/L?, where F is the
librium” state is an empty terrace; the adatoms are unable tbeam strength during growtlh, the terrace width measured
detach from the steps. This idealization allows us to restricin lattice units,D the adatom surface diffusion coefficient,
our primary attention solely on the adatoms since the adatorand 8= «L2. The coordinate system moves with the dimen-

A. Formulation
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sionless step velocity —v/FL. For near step flow the cur- tuting Eq.(2) into Eq. (1), multiplying the singrjx) and in-
rent into the up step at=0 is well approximated by the tegrating over the terrace. The first and most important of
adatom current aloriéso that for stable islands with(0,t) these equations is
=n(1t)=0,v(t)~2n,(X,t)|=o. Later we will show this is
consistent with the level of approximation that we consider. Ny=— 772n1_(16,3/377)n§+ O(nyn,,ning,...). (3
It should be pointed out that Eql) contains a simplifying
approximation in that the relaxation term,28n?, should There is noO(n?) contribution from the step motion. The
contain a time-dependent prefactor, the capture nuﬁ+ber.equation forn; provides a basis for subsequent generaliza-
Here, as in previous studiéé,we simplify by ignoring this  tion,
complication and setting the capture number equal to 1 with
the expectation that this will not alter the qualitative conclu- Ny = — 9723+ K3n2+0(niny,nong,...), (4)
sions that follow.

When the step motion is neglected, Et). is an example whereKj; is a constant. Our basic assumption, that the only
of a “simple” reaction-diffusion equation. Such equations explicit time dependence is through, implies that then;
are known to be analytically intractable despite the considfor j>1 can be expanded in a power seriesiinso that if
erable effort that has been expended to illuminate theing=Agn;+Bsn2+---,ng in Eq. (4) becomes replaced by
behavior*? With the inclusion of the nonlinear step motion (dns/dn;)n;, so that
term in Eq.(1), this intractability becomes compounded. In

view of the above, a heuristic approach to solving Eq.  Ng=(A3+2Ban;+--)ny = —97(Agny+Bgn3+-+)
seems to offer better prospects than more orthodox technical A
methods. Motivated in part by the procedure used to obtain +Ksni+higher-order terms, 6)

normal solutions to the Boltzmann equatiirand in part by . i 5
the more formal center manifold theolywe adopt such a Where we have anticipated that all thefor j>1 areO(ny)

heuristic approach here to study E@). This does not lead and no longer explicitly identify the higher-order terms. Sub-
to an explicit solution fon since the initial condition for Eq.  Stituting from Eq.(3) for n;; and equating like powers of; ,

(1) is not known, but in Sec. IV we show how an approxi- We then find

mate initial condition can be found when growth is termi-

nated after a steady state is reached. We are able to obtain na(Ka/7m?)ni + higher-order terms. (6)
explicit results for the nonlinear step-flow equation, i.e., Eq. )
(1) without the reaction term. These results, described in thd hus, toO(n1) we have, from Eq(3),

next section, allow us to assess the validity of the approxi- 5 3
mations made since the initial condition is known in this ny(t)=ny(0)exp( — wt){1+[168n,(0)/37°]

case. 203111
X[1- — 7t . 7
It is well known that methods of solution that rely on [1=exp=m 0l @

superposition, such as Fourier analysis, are not applicable i§jnce then; for j>1 are O(n?), the long-time decay is
nonlinear equations. However, we will make use of the facbiven by Eq.(7) and is exponential, while the initial decay is

thatn is smalf* to look for a Fourier series solution where much faster, due to the exponential term in the denominator
the primary Fourier coefficient parameterises the other coefy,g more like a logistic decdy.

ficients. Specifically, we consider
Il. STEP FLOW

n= 2 n; sin(j x), @) Relaxation following step-flow growth provides a nonlin-
ear model for which the initial condition is explicitly known,

where then;, j>1, are functionals ofn,(t) and satisfy allowing us to assess the approximations of the heuristic so-
n;/n;—0 asn;—0. Solutions of the above form are clearly lution. This is, for the most part, a mathematical exercise in
approximations. In particular, the exact initial condition, the context of MBE since the conditions for which step mo-
which is unknown, can be written in a Fourier seriestion will be significant are those where reaction effects can-
n(x,0)=2;A; sin(j7X), where theA; are numbers. If we ex- not be ignorecf‘.!:urthermore, as shown in thelpreceding.sec—
pand A;=ajA; + bin+---, j>1, the coefficients can be tion, the reaction term provides the dommant nonllngar
chosen in an infinite number of ways, e.g;=(A;/A,), effect._ Nevertheless, step-flow growth with step motion
b;=0, etc. However, the evolution equation for the Fouriertaken into account has been the subject of several, mostly
coefficients derived from Eqg1) and (2) provide the con- Nnumerical, studieS.
straint necessary to allow us to consistently formulate an Our starting point here is Eq1) with the reaction term

algorithm to uniquely determine the;. We describe this omitted, i.e.,8 set to zero. As an aside, we note that for small
next. values ofa a perturbation solution provides little in the way

of useful information with successive terms containing mul-

tiple infinite summations that, unlike the heuristic solution,

do not provide insights into the relaxation process. The ini-
From Eq.(2) it follows thatv=3'n;(2wj), where the tial condition is

prime indicates odd only are included in the summation.

The coupled set of equations for thg are found by substi- n(x,00=[1—e XJ[1—-e 1] 1—x, (8)

B. Determining the n;
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where for convenience we take=1. Knowing the initial N;=avN,+ B8nZ. (12
condition allows us to make an assessment of the accuracy of hich . v h
the heuristic solution. Unlike the adatoms, which continually leave the terraces by

Since our interest is in assessing the accuracy of the hediffusion, reaction, and by being collected by the advancing

ristic solution we restrict our discussion to those details necSt€P: the dimer density continues to be increased by the di-

essary for this purpose. Proceeding as before we find that fgpinishing reaction process and simultaneously decreased
all j then. satisfy ue to collection by the slowing step. Therefore, it seems
i

reasonable to séd;~0 in Eq.(12) so that we find

1
2 2 2 o 1
Np=—J"7 nJ+47rn1f0 dx r cosx sinj mx N(x,t)w(ﬁnilcw)f dx(sinx)?+ higher-order terms.
X

+ higher-order terms 9) 13

and that the equation far; contains noO(n?) term. Deter- ThenN;~O(ny) and e_ach of its Fourier_ modes decays as
mining then; as before, we find n;. It follows that the dimers do not contribute g through
J )

O(nf) and that the contribution of the dimers to the step

N1+ (- 1)4jn3[m(j2-2)(j?-1)] velocity can also be neglected through this order of approxi-
_ _ mation. Note that the above approximation fompreserves
+ higher-order terms, j>1. (100 the correct initial condition since the same relationship holds

whenn andN are given by their steady-state solutions, the
=0 condition here.

The initial condition for near step flow can be approxi-
mated by making use of the known valueuq)= 1, so that

The maximum error for the heuristic solution should occur a
t=0. This is similar to the initial slip error found in normal
solutions to the Boltzmann equatidhAs the solution de-
cays,n; slower than the remaining; , the error due to the
higher order terms is reduced. Therefore, a stringent error 1=2n,(x,0)|g+2aN(0,0). (14)
assessment can be based on a comparison af;taét=0 ) ) )
found using Eq.(10) with the “true” Fourier coefficients ~Then; are easily determined as shown in Sec. IIC, and we
determined from Eq(8). find

The initial value of the primary Fourier coefficiemt; , is
given by the “true” value,n;(0)=0.127, and from Eq(8)
we find where the step motion can be negleat8dc. 11)) so that only

. s I oddj is required.
n=[(1+e )/(1-e )]T1+(jm ] (2[m), (1)  sypstituting from Eq(13) for x=0, and Eq.(15) into Eq.

where5=0, j even, ands=1,  odd. For allj we easily find (14, we find
that the numerical difference between the approxingte

nj=16pn%/(j?-2)(j>-1)=°, j=35,... (15

determined from Eq(10) and the truen; given by Eq.(11) is 1=27n,(0)+27, " 168n%(0)/w%(j?—2)(j?>-1)
of O(n§)=10‘3. In fact, the onlyn;, approximate or true, =3
that is itself larger tha® (10" %) is the approximate value of + Bn2(0)+ higher-order terms. (16)

n,, 0.014, compared to the true value of 0.008, resulting in
an error of 0.006 O(10 %)=0(n3). These results, while As an example we take=1Q’1, B=22.5, which allows us
by no means conclusive, provide a degree of creditability foto compare with the numerical results shown in Ref. 3. The

the heuristic method of solution used in this paper. latter are an=0.01 and aN=0.12, while we find an;
=0.01 andaN=0.11, where botm andN are evaluated at
IV. CONCLUSIONS their maxima. The coincidence is certainly fortuitous and

also somewhat misleading as some additional small effects

We have shown that even in the simple case where onlgre considered in Ref. 3. Also, the higher Fourier modes will
stable dimers are formed the initial fast relaxation of thehave a very small numerical effect on our results. Still, the
adatoms slows as the final equilibrium state is reached iglose order of magnitude match indicates that the approach
which the terraces are empty. If the dimers are unstable, saken here should provide an adequate qualitative description
that a true equilibrium is established with adatoms andf the post-growth recovery. Serendipitously, we have also
dimers present on the terraces, the problem becomes mopeovided an approximate method of solution for the steady-
complex. A complication here is that the usual boundarystate growth equation. This was unexpected, since the heu-
condition for immobile dimers*® is that no dimers are ristic method is not directly applicable to the adatom growth
present at the down stepl(1,t)=0, whereN is the dimer equation due to the presence of the beam term.
density. This implies that there is no true equilibrium with  In summary, we have shown that post-growth relaxation
space-independent dimer and adatom densities. If the dimeogcurs in two distinct stages, fast and then slow, and that
are able to diffusé,even slowly relative to the adatoms, this there is no need to invoke morphological-based arguments
difficulty is avoided, and a true space uniform equilibrium isto reach this conclusion, which follows directly from Ed).
established. In this paper we only consider the case wher/hile this qualitative behavior has been our major focus, we
dimers are stable and E(.) does not need to be modified to have also found a quantitative solution for the steady-state
include a gain term accounting for dimer breakup. In thisgrowth equation that compares favorably with earlier nu-
case the dimer density satisfies merical results.
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