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Second magnetization peak in flux lattices: The decoupling scenario

Baruch Horovitz
Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

~Received 10 March 1999!

The second peak phenomenon of flux lattices in layered superconductors is described in terms of a disorder
induced layer decoupling transition. For weak disorder the tilt modulus undergoes an apparent discontinuity
which leads to an enhanced critical current and reduced domain size in the decoupled phase. The Josephson
plasma frequency is reduced by decoupling and by Josephson glass pinning; in the liquid phase it varies as
1/@BT(T1T0)#, where T is temperature,B is field, andT0 is the disorder dependent temperature of the
multicritical point. @S0163-1829~99!51738-4#
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Vortex matter in the presence of disorder has emerge
a fundamental problem of elastic manifolds in a rand
media.1 Impurity disorder does not allow long-range trans
tional order of the flux lattice and finite domains a
expected.2 At low temperatures and fields the system is
Bragg glass,3,4 i.e., the lattice is dislocation free, and at lon
scales the displacement correlations decay as a power
and Bragg peaks are expected. The impurity-induced
mains are essential for the description of both equilibriu
e.g., thermodynamic phase transitions and nonequilibri
e.g., critical current phenomena.

The critical currentj c measures the pinning force in th
domains.1,2 Increasing the magnetic field or temperature
duces the pinning force andj c is decreased. However, i
many type II superconductors, a sharp enhancement ofj c is
observed at a ‘‘second peak’’ fieldB0. This peak phenomen
is most pronounced in layered superconductors such
Bi2Sr2CaCu2O8 ~BSSCO!,5–7 YBa2Cu3O7 ~YBCO!,8 in
NbSe2

9,10 and in Pb/Ge multilayers11 for fields perpendicular
to the layers. The second peak phenomena signals that
ning becomes more effective, e.g., due to softening of
flux lattice.2 The reason for softening could be the approa
to melting;12 however, neutron-scattering data on BSCCO13

show that Bragg spots of the flux lattice persist well abo
B0.

Disorder plays an essential role also in the equilibriu
phase diagram of layered superconductors. This has b
most extensively studied in BSSCO.5–7,14,15The second peak
corresponds to a phase transition7 in the range 500–900 G
~decreasing with disorder! and is weakly temperature depe
dent up to a temperatureT0'40 K. The pointB0 , T0 is a
multicritical point where the second peak transition meet
first order transition as well as two depinning lines. Thus
second peak manifests both equilibrium and nonequilibri
phenomena of disorder in flux lattices and its understand
presents a fundamental challenge.

For a flux lattice with point impurities, by using renorma
ization group~RG! and replica symmetry breaking~RSB!
methods we have derived16 a phase diagram with fou
phases, which all meet at a multicritical pointB0 , T0, in
remarkable correspondence with data on BSCCO.
present work focuses on the layer decoupling transition
temperature independent fieldB0 for T,T0. As shown here,
the fusion of Bragg glass concepts with decoupling accou
PRB 600163-1829/99/60~14!/9939~4!/$15.00
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for the peculiar second peak phenomenon, i.e., the enha
j c . The Josephson plasma resonance is also considered
probe of the Josephson coupling,17,18 being reduced by de
coupling and by a Josephson glass parameter. Very re
data on BSCCO have indeed shown a significant reductio
the resonance frequency at the second peak transition.19,20

It has been recently shown that decoupling coalesces
a defect unbinding transition21 which has analogs in isotropi
systems.22 The resulting vacancies and interstitials lead to
reduction in the elastic tilt mudulus,23 consistent with the
decoupling scenario as described below. It is possible t
that a decoupling-defect transition accounts for the peak p
nomenon in all type II superconductors. The analysis be
is, however, presented for layered anisotropic systems w
quantitative predictions can be made.

In a layered superconductor each flux line is composed
one point singularity, or a pancake vortex, in each lay
When the pancake vortices fluctuate they can generate
vergence in the Josephson phase, leading to a renorma
Josephson couplingEJ

R which vanishes in the decoupledB
.B0 phase.16,24,25The three-dimensional flux lattice is sti
present in the decoupled phase~in the Bragg glass sense!,
with interlayer coupling mediated by the magnetic field. B
fore presenting a microscopic model, I started with a rat
simple description of elasticity within domains, which show
the second peak transition, i.e.,j c enhancement at decou
pling.

The transverse tilt modulus of a flux lattice in a layer
superconductor for fields perpendicular to the layers is gi
by26–28

c44~q,k!5
t

32plab
2 d

1
B2

4p

1

11lc
2q21lab

2 k2

1
2Bf0

~8plc!
2

ln~a2/4pj0
2!, ~1!

whereq andk are momenta parallel and perpendicular to t
layers, respectively,lab and lc are the London penetratio
lengths parallel and perpendicular to the layers, respectiv
f0 is the flux quantum,a25f0 /B is the unit-cell area,d is
the interlayer spacing,j0

2 is the in-layer coherence length
and t5f0

2d/(4p2lab
2 ) sets the energy scale. The first ter
R9939 ©1999 The American Physical Society
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of Eq. ~1! is due to the magnetic coupling, while the seco
and third terms originate from the Josephson coupling
ergy per unit areaEJ , i.e.,lc

25tlab
2 /(4pEJd

2). The second
term is peculiar: atqÞ0 it vanishes whenEJ vanishes and
lc→`, as it should. However, atq50 this term seems to
survive even iflc→`. The origin of this peculiarity is tha
the harmonic expansion of the Josephson cosine term w
identifiesc44 fails28 when bothq, 1/lc→0. In fact, the non-
linear cosine term generates a renormalizedlc

R which di-
verges at decoupling.

The Bragg glass domain sizeRBG ~parallel to the layers!
sets a scale for the relevantq values. WhenRBG.lc

R the tilt
mudulus is large, containing theB2/4p term of Eq. ~1!.
However, as decoupling at the fieldB0 is approachedlc

R

diverges, and whenRBG,lc
R Eq. ~1! fails to describec44 on

the scale ofq'1/RBG . This defines an anharmonic cros
over regime where usual elasticity cannot be used to de
Bragg glass properties. Finally, atB.B0 elasticity is re-
stored andc44 is reduced to the first term in Eq.~1!. The
main interest is in the regime of strong fields, i.e.,a&2lab
whereT0,t is below melting.16 Thus atB,B0 and for suf-
ficiently large domains the second term in Eq.~1! dominates
andc44 has an apparent discontinuity,

c445plab
2 t/da4 lc

R,RBG , ~2a!

c445t/~32plab
2 d! lc

R5` . ~2b!

Hencec44 is reduced within the anharmonic regime by t
small factore5a4/(32p2lab

4 ).
The apparent discontinuity inc44 affects also the domain

sizes which can be estimated by a dimensional argumen2,3

Consider the tiltc44 and shearc66 terms of the elasticity
Hamiltonian for the displacementu(r ) and its transverse
component uT(r ). Rescaling parallel and perpendicul
lengths yields an isotropic form1,4

H5E d3r H 1
2 c44

1/3c66
2/3@“uT~r !#2

2~j0
2/a2d!Upin~r !(

Q
cosQ•@r2u~r !#J , ~3!

whereUpin(r ) is a random potential in three-dimensionalr
5(r,z) which couples to the flux density modulations wi
wave vectorsQ; its disorder average iŝUpin(r )Upin(r 8)&
5 1

2 dŪd3(r2r 8). Disorder average over configurationsu(r )
andu8(r ) yields(Q cosQ•@u(r )2u8(r )#; the sum is cut off
by Q&^uT

2&21/2, where^u2&'^uT
2& are the fluctuations in a

domain of sizeR8. Thus averaging Eq.~3! yields

^H&/R835 1
2 c44

1/3c66
2/3^uT

2&R8222Ū1/2j0
2/@a2d^uT

2&R83#1/2 .
~4!

Minimizing with respect toR8 yields R8;^uT
2&3, i.e., the

Flory exponent.3 The domain size parallel to the layers is@up
to ln(a/d) and a numerical prefactor#

R'~lab /a!5^uT
2&3/~sj0

4d! lc
R,R,

R'~lab /a!3^uT
2&3/~4psj0

4d! lc
R5`, ~5!
-

ch

e
wherec665t/16da2,26–28 s54p p̄Ūlab

4 /@t2a2s ln2(a/d)# de-

fines the decoupling transition ats5 1
2 , and p̄'1 is defined

below.
The pinning lengthR5Rp is given by Eq.~5! with ^uT

2&
'j0

2 . To allow for large pinning domains one needs eith
a,lab or to allow for domains with a somewhat larger flu
tuations in^uT

2&; the latter increasesRp very rapidly since it
increases with the 6th power ofuT . The critical current can
now be estimated1,2 by balancing the Lorenz forcej cBR3/c
with the pinning forcê H&/j0 @evaluated at the minimum o
Eq. ~4!#, leading toj c;1/c44. Increasing the field within the
anharmonic regime decreasesc44 by the factore so thatj c is
significantly enhanced whena&lab . Note that the measure
magnetization changes~and inferredj c) at B0 decrease with
temperature due to the strongly temperature-dependent re
ation rates,29 approaching the much smaller equilibriu
magnetizations.

A second length scaleR5RBG is identified by Eq.~5!
with the fluctuationŝ uT

2&'a2. The proper definition ofRBG

is the scale for the onset of the lnr form for the displacemen
correlation function. While the derivation from Eq.~4! can-
not capture this lnr, it does give the right expression fo
RBG .3 Thus, RBG depends onc44 and is reduced bye1/2

through the anharmonic regime. The latter depends also
lc

R for which lnlc
R;(B2B0)

21 in the RSB or first-order RG
solutions,16 though lnlc

R;(B2B0)
21/2 in second-order RG;30

decoupling may also be of first order,25 leading to a narrower
anharmonic regime. Figure 1 illustrates the lengthsRBG and
lc

R , demonstrating the anharmonic regime within whichRBG

has a significant drop and correspondinglyj c has an apparen
jump. Note that even in the decoupled phase (B.B0) RBG is
large for typical type II superconductors,RBG

'lab
3 a3/(4psj0

4d)@a, consistent with a decoupling trans
tion within the Bragg glass phase, i.e., below a melting tr
sition.

I proceed now to derive the lattice displacement corre
tion allowing for a renormalized Josephson coupling and
a Josephson glass order parameter. This derivation avoid
harmonic expansion for the elastic modulii and shows h
the Bragg glass domain sizes are directly affected by
renormalizedlc

R . The Josephson phase between the layen
and n11 at positionr in the layer involves contributions
from a nonsingular componentun(r ) and from singular vor-

FIG. 1. Bragg glass domain sizeRBG parallel to the layers and
the renormalized London length perpendicular to the layerslc

R ; the
latter diverges at the decoupling fieldB0 . The RBG can be found
from elasticity for B,B0 only if RBG.lc

R ; otherwise, as in the
hatched region, the elastic tilt modulus is ill defined.
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tex terms.30 Consider a flux lattice with an equilibrium pos
tion of the lth flux line at Rl . The singular phase around
pancake vortex at positionRl1ul

n is a(r2Rl2ul
n), where

a(r )5arctan(y/x) with r5(x,y). Expansion of the interlaye
phase differencea(r2Rl2ul

n)2a(r2Rl2ul
n11) yields for

the singular part of the Josephson phasebn(r )5( l(ul
n11

2ul
n)¹a(r2Rl). The Hamiltonian for the transverse di

placements involves also the magnetic contributions to
shear modulusc665t/(16da2) and the tilt mudulus

c44
0 ~k!5@t/~8da2lab

2 kz
2!# ln~11a2kz

2/4p!,

wherekz5(2/d)sin(kd/2); its k→0 form is the first term in
Eq. ~1!. This leads to the Hamiltonian of the pure system

Hpure /T5 1
2 (

q,k
Gf

21~q,k!uu~q,k!u2

1 1
2 (

q,k
c~q,k!q2ub~q,k!u2

2
EJ

T (
n
E d2r cos@un~r !1bn~r !#. ~6!

Here c(q,k)5(a2/2pd)2@kz
2c44

0 (k)1q2c66#/Tkz
2 , EJ is the

Josephson coupling, and the coefficient of the nonsing
phase is30 Gf(q,k)54pd3T(lab

221kz
2)/(tq2). The conven-

tional c44 is obtained by expanding the cosine term in Eq.~6!
and shiftingu(q,k) to eliminate the cross term. The latte
shift leads to an expansion parameter28 with terms
;q2kz

2uuT(q,k)u2/@q21lc
22(11lab

2 kz
2)#2, i.e., these diverge

when bothq,1/lc→0 and the expansion becomes invalid
Consider now a pinning potentialUpin

n (r ) which couples
to the vortex shape functionp(r ) leading to a pinning energy
*d2r (n,lUpin

n (r )p(r2Rl2ul
n). The aim is to identify

domain sizesRp ~and infer RBG), hence the pinning
energy is expanded inul

n and a replica average with th

weight exp$2*d2r(n@Upin
n (r )#2/Ū% then leads to

exp@(Ūp̄/4T2)(n,l(a,bul
n,a

•ul
n,b#, where *] i p(r )] j p(r )d2r

5 p̄d i , j anda,b51,2, . . . ,n are replica indices.
The ba(q,k) variables can be decoupled from the to

Josephson phaseb̃n(r )5bn(r )1un(r ) by shifting to
da(q,k)5ba(q,k)2Bg,a(q,k)Gf

21(q,k)b̃a(q,k), where

Ba,b
21 ~q,k!5Gf

21~q,k!a~q,k!da,b2s0q2/kz
2 ,

a(q,k)511Gf(q,k)c(q,k)q2 and s05Ū p̄a2d/(4pd2T)2.
The resulting replicated Hamiltonian is

Hr5
1
2 (

q,k;a,b
Ba,b

21 da~q,k!db* ~q,k!

1 1
2 @c~q,k!a21~q,k!q2da,b

2s0a22~q,k!q2/kz
2#b̃a~q,k!b̃b* ~q,k!

2
EJ

T (
n;a

E d2r cosb̃n
a~r !

2
Ev

T (
n;aÞb

E d2r cos@ b̃n
a~r !2b̃n

b~r !#. ~7!
e

ar

l

The inter-replicaEv term is generated from the Josephs
coupling in second order RG. It is essential to keep it fro
the start since it generates a Josephson glass paramete
affects the value of the decoupling field.16

The a(q,k) factor, which results from the nonsingula
phase, is fore!1 very close to 1 for allq,k values except
when bothk,1/lab and q.ka/lab . The phase transitions
are dominated byk.1/a modes so that our previous pha
diagram is recovered~Ref. 16 and Fig. 1!. In particular there
is a multicritical point at a fieldB0 wheres5 1

2 and tempera-
ture T05ta2 ln(a/d)/8plab

2 . At B5B0 andT,T0 there is a
decoupling transition at which the renormalized Joseph
coupling z ~with bare valuezbare5EJ /Td) vanishes. Note
that the higherB0 of YBCO as compared to BSCCO is con
sistent with a shorterlab and a somewhat weaker disorde

The fluctuations inuT(q,k) in terms of the shifted vari-
ables, using the RSB solution16 are given by

^uuT~q,k!u2&5~2pd2!22
q2

kz
4 F s0q2Gf~q,k!a21~q,k!

3S c~q,k!q21
Gf

21~q,k!z

Gf
21~q,k!1z

D 21

1
s0

c~q,k!a2~q,k!
S c~q,k!

a~q,k!
q21zD 21G1••• ,

~8!

where••• stands for terms which converge in (q,k) integra-
tion. Note the termGf

21(q,k)z/@Gf
21(q,k)1z#, which de-

pends on the order ofq→0 andz→0 limits; this limit de-
pendence leads to the apparent discontinuity inc44 as
discussed above. ForzÞ0 and smallq, i.e.,Gf

21(q,k)!z the
first term in Eq.~8! dominates, leading to

^uuT~q,k!u2&'
4p2s0T2

a8@c44k
21c66q

2#2
q,1/lc

R , ~9!

wherec44 is from Eq.~2a! and the conditionGf
21(q,k)!z is

written in terms of a renormalized London lengthlc
R

5@lab
2 t/(4pTd3z)#1/2. The correlations at distancer paral-

lel to the layers are then

^@uT~r !2uT~0!#2&'
4d2s0T2

a4c44
1/2c66

3/2
r[j0

2 r

Rp
. ~10!

The last equality defines the pinning lengthRp where the
fluctuations become of orderj0

2. This result forRp ~up to a
numerical prefactor! is the same as the one obtained fro
Eq. ~5! with ^uT

2&'a2. The Bragg glass domain size is e
hanced byRBG'Rp(a/j0)6, as discussed above.

In the decoupled phase withz50 the second term in Eq
~8! dominates. To leading order ine the result is identical to
Eq. ~10! except thatc44 is replaced by itsz50 value Eq.
~2b!, i.e., the pinning and Bragg glass lengths are reduc
The main result is then that the fluctuations inuT(r ) behave
with an effectivec44 which is large whenq,1/lc

R @Eq. ~2a!#,
i.e., for domain sizesRBG.lc

R , while for z50 c44 is re-
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duced@Eq. ~2b!#. In the anharmonic region below decouplin
~see Fig. 1!, where RBG,lc

R , the full form of Eq. ~8! is
required to interpolate between these limits; this form avo
the ill-defined harmonic expansion in this regime.

Consider next the Josephson plasma frequency, give
vpl

2 5(c2/e0lc
2)^cosb̃n(r)&, where e0 is the dielectric

constant.17,18 The average in̂ cosb̃n(r)& is on both thermal
fluctuations and disorder and can yield significant inform
tion on the phase diagram. As shown by Koshelev18 the local

^cosb̃n(r)& is finite even at high temperatures, e.g., above
decoupling transition. A high-temperature expansion yield18

^cosb̃n(r)&5(EJ/2T)*d2r exp@2A(r)#, where A(r )5(q,k(1
2cosq•r )^ub̃a(q,k)u2&. The solution with disorder16 yields
~up to a lnB dependence! A(r )5B(T1T0)qu

2r 2/(2B0T0)
for r ,1/qu , where qu52 ln1/2(a/d)/lab while A(r )
; ln qur or ;r for largerr. Ther integration is dominated by
the shortr correlation which yields

^cosb̃n~r !&'
pEJlab

2

2ln~a/d!
3

B0T0

BT~T1T0!
. ~11!

A 1/BT dependence has been obtained by Koshelev18 with a
weakly temperature-dependent prefactor for anXY model,
i.e., infinite lab . Data on BSCCO17 have shown that

^cosb̃n(r)&;B20.8T21 is in reasonable agreement with th
1/BT form. The present result shows that in fact the 1/BT
form is valid in the disorder dominated regime, i.e.,T,T0,
ev
s

by

-

e

though in general the fluctuation term yieldsvpl
2 ;1/@BT(T

1T0)#.
Using the RSB solution, it can be shown that the Jose

son glass parameter contributes a negative term to^cosb̃n(r)&
so thatvpl is reduced, while the Josephson coupling contr
utes a positive'z/zbare term which vanishes at decoupling
These are mean-field results to which fluctuation terms
Eq. ~11!, should be added. The recent data on BSCCO19,20

are consistent with these results, i.e., a drop at the sec
peak transition followed by a field dependent fluctuati
term at higher fields.

In conclusion, it is shown that a decoupling transitio
leads to an apparent reduction inc44 within an anharmonic
region where the harmonic expansion fails. The proper in
polation across the anharmonic region is achieved by Eq.~8!.
The reduction inc44, the resulting reduction in domain size
and the enhancedj c account for the hallmark feature of th
second peak transition. Furthermore,B0 being weaklyT de-
pendent and decreasing with disorder,6 as well as the Joseph
son plasma resonance data,19,20 lend substantial support fo
the identification of the second peak transition as a disor
induced decoupling.
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