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Second magnetization peak in flux lattices: The decoupling scenario
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The second peak phenomenon of flux lattices in layered superconductors is described in terms of a disorder
induced layer decoupling transition. For weak disorder the tilt modulus undergoes an apparent discontinuity
which leads to an enhanced critical current and reduced domain size in the decoupled phase. The Josephson
plasma frequency is reduced by decoupling and by Josephson glass pinning; in the liquid phase it varies as
1[BT(T+Ty)], whereT is temperatureB is field, andT, is the disorder dependent temperature of the
multicritical point.[S0163-182609)51738-4

Vortex matter in the presence of disorder has emerged dsr the peculiar second peak phenomenon, i.e., the enhanced
a fundamental problem of elastic manifolds in a randomj.. The Josephson plasma resonance is also considered as a
medial Impurity disorder does not allow long-range transla-probe of the Josephson couplitig}® being reduced by de-
tional order of the flux lattice and finite domains are coupling and by a Josephson glass parameter. Very recent
expected. At low temperatures and fields the system is adata on BSCCO have indeed shown a significant reduction in
Bragg glass:*i.e., the lattice is dislocation free, and at long the resonance frequency at the second peak trans#fdn.
scales the displacement correlations decay as a power law It has been recently shown that decoupling coalesces with
and Bragg peaks are expected. The impurity-induced doa defect unbinding transitidhwhich has analogs in isotropic
mains are essential for the description of both equilibriumsystemg? The resulting vacancies and interstitials lead to a
e.g., thermodynamic phase transitions and nonequilibriumreduction in the elastic tilt mudulds, consistent with the
e.g., critical current phenomena. decoupling scenario as described below. It is possible then

The critical currentj. measures the pinning force in the that a decoupling-defect transition accounts for the peak phe-
domains'? Increasing the magnetic field or temperature re-nomenon in all type Il superconductors. The analysis below
duces the pinning force angl. is decreased. However, in is, however, presented for layered anisotropic systems where
many type Il superconductors, a sharp enhancemeptisf  quantitative predictions can be made.
observed at a “second peak” fieBy. This peak phenomena In a layered superconductor each flux line is composed of
is most pronounced in layered superconductors such agne point singularity, or a pancake vortex, in each layer.
Bi,Sr,CaCyOg (BSSCO,°™’ YBa,CuO, (YBCO)? in  When the pancake vortices fluctuate they can generate a di-
NbSe>*°and in Pb/Ge multilayet$ for fields perpendicular vergence in the Josephson phase, leading to a renormalized
to the layers. The second peak phenomena signals that pidesephson coupling’ which vanishes in the decoupldi
ning becomes more effective, e.g., due to softening of the>B, phase®?*?*The three-dimensional flux lattice is still
flux lattice? The reason for softening could be the approachpresent in the decoupled phade the Bragg glass sense
to melting?? however, neutron-scattering data on BSG&O with interlayer coupling mediated by the magnetic field. Be-
show that Bragg spots of the flux lattice persist well abovefore presenting a microscopic model, | started with a rather
Bo. simple description of elasticity within domains, which shows

Disorder plays an essential role also in the equilibriumthe second peak transition, i.¢, enhancement at decou-
phase diagram of layered superconductors. This has begiing.
most extensively studied in BSSCO***5The second peak ~ The transverse tilt modulus of a flux lattice in a layered
corresponds to a phase transitian the range 500-900 G superconductor for fields perpendicular to the layers is given
(decreasing with disordeand is weakly temperature depen- by?®=28
dent up to a temperatuiBy~40 K. The pointBy, Ty is a

multicritical point where the second peak transition meets a r B2 1
first order transition as well as two depinning lines. Thus the Ca4(q,k) = — Y P S IR
second peak manifests both equilibrium and nonequilibrium 32m\3pd T 14+ NG+ Ak
phenomena of disorder in flux lattices and its understanding
fund | chall 2B¢o 2
presents a fundamental challenge. + In(a?/4m¢2) 1)
For a flux lattice with point impurities, by using renormal- (87\¢)

ization group(RG) and replica symmetry breakin@RSB)

methods we have derivEda phase diagram with four Whereq andk are momenta parallel and perpendicular to the
phases, which all meet at a multicritical poiBf, To, in  layers, respectively),, and A, are the London penetration
remarkable correspondence with data on BSCCO. Théengths parallel and perpendlcular to the layers, respectively,
present work focuses on the layer decoupling transition at &g is the flux quantuma ¢o/B is the unit-cell aread is
temperature independent fieBy for T<T,. As shown here, the interlayer spacingé3 is the in-layer coherence length,
the fusion of Bragg glass concepts with decoupling accountand 7= ¢>0d/(47-r2)\2b) sets the energy scale. The first term
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of Eqg. (1) is due to the magnetic coupling, while the second ! '

and third terms originate from the Josephson coupling en- Reo ,’
ergy per unit are&;, i.e.,\2=7\2,/(47E d?). The second !
term is peculiar: ag#0 it vanishes wherk; vanishes and /
A¢—, as it should. However, aj=0 this term seems to N /
survive even ifA.—. The origin of this peculiarity is that Ao 7

the harmonic expansion of the Josephson cosine term which PPt ’ W

identifiesc,, fails?® when bothqg, 1/\.—0. In fact, the non- Ry
linear cosine term generates a renormaliaédwhich di- Ao T ]
verges at decoupling. ]'3 B
The Bragg glass domain sif; ¢ (parallel to the layens 0
sets a scale for the relevagvalues. WherRgg>\¢ the tilt FIG. 1. Bragg glass domain sify¢ parallel to the layers and

mudulus is large, containing thB*4s term of Eq.(1).  the renormalized London length perpendicular to the lay&rsthe
However, as decoupling at the fieBl, is approached\CR latter diverges at the decoupling fieR}). The Rgg can be found
diverges, and wheRgs< )\5 Eqg. (1) fails to describec,, on from elasticity forB<B, only if Rgc>\R; otherwise, as in the
the scale ofg~1/Rgg. This defines an anharmonic cross- hatched region, the elastic tilt modulus is ill defined.
over regime where usual elasticity cannot be used to derive B 226-28. 4 =4 1t 2.2 1.2
Bragg glass properties. Finally, &>B, elasticity is re- Wheréces=7/16da”, ™ “s=4mpUhy,/[7°a’sIn*(a/d)] de-
stored andcy, is reduced to the first term in Eql). The fines the decoupling transition at=3, andp~1 is defined
main interest is in the regime of strong fields, i@s2\,, below.
whereT,< 7 is below melting:® Thus atB<B, and for suf- The pinning lengtlR=R, is given by Eq.(5) with (u%)
ficiently large domains the second term in Ef). dominates ~§§. To allow for large pinning domains one needs either
andcy, has an apparent discontinuity, a<\,p or to allow for domains with a somewhat larger fluc-
tuations in(u%}; the latter increaseR,, very rapidly since it

Cas= W)‘gbﬂd a’ }\5< Rea. (2a) increases with the 6th power af-. The critical current can
5 " now be estimatelf by balancing the Lorenz forceBR®/c
Cag= 7/ (327N 5pd)  Ng=. (2b)  with the pinning force/H)/ &, [evaluated at the minimum of

Hencec,, is reduced within the anharmonic regime by the E9: (9)); 16ading t0j¢~1/C4,. Increasing the field within the
small fagoreza4/(32ﬂ,2)\4 anharmonic regime decreaseg by the factore so thatj is

- i
N Japls . significantly enhanced whem<\ ,,,. Note that the measured
The apparent discontinuity 6, affects also the domain magnetization changdand inferredj ) at B, decrease with

Sélziziglvgrlctueciﬂt?e antém:rtéirgy ?e?mqseg??gsl ;;%L':ii%m. temperature due to the strongly temperature-dependent relax-
Hamiltonian for tr‘:?a dis Iacemg?u(r) and its transversye ation rates; approaching the much smaller equilibrium
P magnetizations.

component u(r). Rescaling parallel and perpendicular A second length scal®=Rgg is identified by Eq.(5)

lengths yields an isotropic fo

H= J d3r[%cia3c§§wuﬂr>]2

with the fluctuationgu2)~a?. The proper definition oRgg
is the scale for the onset of therlfiorm for the displacement
correlation function. While the derivation from E@) can-
not capture this Im, it does give the right expression for

Rgs.> Thus, Rgg depends orcy, and is reduced by
—(§§/azd)Upin(r)2 cosQ-[p—u(r)]{, (3)  through the anharmonic regime. The latter depends also on
Q AR for which In\?~(B—B) ! in the RSB or first-order RG
whereU (1) is a random potential in three-dimensiomal ~ solutions!® though IM\&~(B—Bg) 2 in second-order R&
=(p,z) which couples to the flux density modulations with decoupling may also be of first ord&rleading to a narrower
wave vectorsQ; its disorder average i6U ,in(r)U,in(r')) anharmonic regime. Figure 1 illustrates the leng®g and
= %dUﬁ?’(r— r’)_ Disorder average over Conﬁguratigﬂﬂ) )\5, demonstrating the anharmonic regime within WHR‘é}_;
andu’(r) yields = cosQ-[u(r) —u’(r)]; the sum is cut off has a significant drop and correspondinglyhas an apparent
by Q=<(u3)~2, where(u?)~(u?) are the fluctuations in a jump. Note that even in the decoupled phaBe-Bo) Rgg is

domain of sizeR’. Thus averaging Eq3) yields largse for typical type Il superconductors,Rgg
~)\aba3/(47-rs§3d)>a, consistent with a decoupling transi-
(H)/R'3= %c},fcé?(u%)R’ *2—Ul’zgél[a2d<u$)R’3]l’2. tion within the Bragg glass phase, i.e., below a melting tran-
(4) sition.

o _ o ) n3 | proceed now to derive the lattice displacement correla-
Minimizing with respect toR’ yields R'~(ur)", i.e., the  ton allowing for a renormalized Josephson coupling and for
Flory exponent. The domain size parallel to the layerdi® 3 josephson glass order parameter. This derivation avoids the
to In(a/d) and a numerical prefactpr harmonic expansion for the elastic modulii and shows how
the Bragg glass domain sizes are directly affected by the
renormalizeck?. The Josephson phase between the lagers
3, 203 4 R andn+1 at positionr in the layer involves contributions
R~(Nap/@)X(u7)/(4mséod)  Ac=c0, () from a nonsingular componew(r) and from singular vor-

R~(\ap/a)%(u?)3/(s&dd) NR<R,
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tex terms>° Consider a flux lattice with an equilibrium posi- The inter-replicaE, term is generated from the Josephson
tion of thelth flux line atR,. The singular phase around a coupling in second order RG. It is essential to keep it from
pancake vortex at positioR,+u;' is a(r—R,—u}'), where the start since it generates a Josephson glass parameter and
a(r)=arctang/x) with r = (x,y). Expansion of the interlayer affects the value of the decoupling fiefd.
phase differencez(r—R|—u|”)—a(r—R|—u,”“) yields for The «(q,k) factor, which results from the nonsingular
the singular part of the Josephson phémér)=3,(ul**  phase, is fore<1 very close to 1 for alf,k values except
—uM)Va(r—R,). The Hamiltonian for the transverse dis- When bothk<1/A,, andq>ka/\,,. The phase transitions
placements involves also the magnetic contributions to th&r® dominated bx>1/a modes so that our previous phase
shear moduluge= 7/(16da2) and the tilt mudulus Q|agram is _rgcover_e(Ref. 1§ and Fig. L In ?artlcular there
is a multicritical point at a field, wheres= 5 and tempera-
co (k) =[7/(8da®\2,k?)]In(1+ a?k2/4r), ture To=7a® In(a/d)/8m\ 2, . At B=B, andT<T, there is a
. . . ) . decoupling transition at which the renormalized Josephson
wherekz—(Z/d)sm(kdIZ), Its k—_>0 fprm IS the first term in coupling z (with bare valuez,,,.=E;/Td) vanishes. Note
Eq. (1). This leads to the Hamiltonian of the pure system that the higheB, of YBCO as compared to BSCCO is con-
sistent with a shortex ,, and a somewhat weaker disorder.
Hpu,e/T=%2 Gf’l(q,k)|¢9(q,k)|2 The fluctuations inut(qg,k) in terms of the shifted vari-
ak ables, using the RSB solutithare given by

+32, c(a.k)e’|b(a.k)f? , L@, .,
&k (lur(a.k)[%)=(2md*) "% 7] s0a°Gr(q.k)a " (a.k)
_5 > fdzr co§ 0,(r)+by(r)].  (6) Z -1
TS n me G; Y(q,k)z
x| e(q,K) 0 ————
Here c(q,k) = (a?/2md) [ k2c3,(K) + q%cesl/ TKZ, E; is the Gt (g,k)+z
Josephson coupling, and the coefficient of the nonsingular 1
phase i& G;(q,k)=47d*T(A;2+k2)/(79?). The conven- n So (c(q,k) @iz |+
tional ¢4, is obtained by expanding the cosine term in ). c(q.k)e?(q,k) | a(d,k) '

and shifting 6(q,k) to eliminate the cross term. The latter
shift leads to an expansion paraméterwith terms ®)
~q2KZ|ur(a, k)| 2/[9?+ N g 2(1+N5pkD) 12, i.e., these diverge where:-- stands for terms which converge ig,k) integra-
when bothq,1/A.—0 and the expansion becomes invalid. tion. Note the ternt‘l(q,k)z/[Gf‘l(q,k)+z], which de-
Consider now a pinning potenti&l;,(r) which couples  pends on the order aj—0 andz—0 limits; this limit de-
to the vortex shape functigo(r) leading to a pinning energy pendence leads to the apparent discontinuitycipy as
Jdr=, Uni(np(r=R—ul). The aim is to identify discussed above. Far0 and smal, i.e.,G; *(q,k)<z the
domain sizesR, (and infer Rgg), hence the pinning first term in Eq.(8) dominates, leading to
energy is expanded in' and a replica average with the
weight ex;{—fdern[Ugm(r)]ZIU} then leads to ) 47725, T?
exp[(U_p/4T2)2n,|2a,5u|”*“-u,”*B], where [,p(r)d;p(r)d?r (lur(a. k1%~
=E§i,j anda,8=1,2,...n are replica indices. _ I )
The b*(q,k) variables can be decoupled from the total Wherecs is from Eq.(28) and the conditiorG *(q,k) <z s
Josephson phasdBn(r)=bn(r)+ 6,(r) by shifting to wrlttgn in terrrgls ?/fz a renormall_zed Lon_don Iengﬂf
d“(q,k):b“(q,k)—Bw(q,k)Gf’l(q,k)B”‘(q,k), Where =[Ngpr/ (47 Td>z)]~“ The correlations at distanceparal-

lel to the layers are then
B;,};(q,k)=Gf—1(q,k)a(q,k)5aﬁ_Soqzlkg'

R
a®[Cak®+Cos0”]? =i, ©

40d°s,T?
a(q,k)=1+G¢(q,k)c(q,k)q? and sy=Upa2d/(4md?T)2. <[uT(r)—uT(0)]2>~T§er§§R—- (10
The resulting replicated Hamiltonian is a'C44Ces P
The last equality defines the pinning lendg® where the
H=% > B, 5d“(q,k)d?* (q,k) fluctuations become of orde§. This result forR,, (up to a
akiap numerical prefactoris the same as the one obtained from
+%[c(q,k)a‘1(q,k)q25a5 Eq. (5) with (u%)~a2. The Bragg glass domain size is en-
’ hanced byRgc~R,(a/&;)°, as discussed above.
—spa~2(q,k)g?/k2Tb*(q,k)bP* (q,k) In the decoupled phase with=0 the second term in Eq.

(8) dominates. To leading order inthe result is identical to
Eqg. (10) except thatc,, is replaced by itz=0 value Eq.
(2b), i.e., the pinning and Bragg glass lengths are reduced.
e The main result is then that the fluctuationsuif(r) behave
-2y f d?r cogbe(r)—BE(N)]. @) ywth an effect|\_/ec4f1wh|ch is I%rge vv_hertq<1/_)\C [Eq._(Za)],

T niazp i.e., for domain sizefRgg>\;, while for z=0 cy4 is re-

E -
— =23 | d? cosb(r)
T fa
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duced[Eq. (2b)]. In the anharmonic region below decoupling though in general the fluctuation term yield§,~1/[ BT(T
(see Fig. 1, whereRgg<AE, the full form of Eq.(8) is  +Tp)].
required to interpolate between these limits; this form avoids Using the RSB solution, it can be shown that the Joseph-

the ill-defined harmonic expansion in this regime. son glass parameter contributes a negative terfudsb,(r))
2Consz|der r21ext th~e Josephson plasma frequen_cy, gl\{en by thatwy, is reduced, while the Josephson coupling contrib-

wp = (C eghg)(cosby(r)), where €, is the dielectric tes a positive~z/z,,, term which vanishes at decoupling.

constant”!® The average incosb,(r)) is on both thermal These are mean-field results to which fluctuation terms, as

fluctuations and disorder and can yield significant informa-Eq. (11), should be added. The recent data on BS&®

tion on the phase diagram. As shown by Kosh¥l¢he local  are consistent with these results, i.e., a drop at the second

<C035n(r)> is finite even at h|gh temperatures, e.g., above thé)eak transition . followed by a field dependent fluctuation
decoupling transition. A high-temperature expansion yi#lds term at higher fields. . N
(cosby(r))=(E//2T) [ d2r exf—A(r)], where A(r)=S (1 In conclusion, it is shown that a decoupling transition
n o ’ a, o e .
~cosq- 1){[B%(q,K)|2). The solution with disordd? yields leads to an apparent reductiondgy, within an anharmonic

- > o region where the harmonic expansion fails. The proper inter-
(up to a InB dependendeA(r) =B(T+To)aur/(2BoTo)  pojation across the anharmonic region is achieved by

for r<1/q,, where q,=2 I”%lz(a/d)/,)‘ab_ while “A(r)  The reduction irc,,, the resulting reduction in domain sizes,
~Inq,r or ~r for largerr. Ther integration is dominated by 4nq the enhancefd. account for the hallmark feature of the
the shortr correlation which yields second peak transition. FurthermoBg, being weaklyT de-

pendent and decreasing with disorfas well as the Joseph-

2
(cosh(r))~ TENap BoTo (11)  son plasma resonance dat&;’ lend substantial support for
2In(a/d) = BT(T+To) the identification of the second peak transition as a disorder
A 1/BT dependence has been obtained by KosHBleith a  induced decoupling.
weakly temperature-dependent prefactor for X model, | thank P. Le Doussal, T. Giamarchi, T. Natterman, G.

ie., infinite \,,. Data on BSCCO have shown that Bjatter, and V. B. Geshkenbein for most valuable discus-

<coan(r)>~B*°-9T*1 is in reasonable agreement with the sions. This research was supported by The Israel Science
1/BT form. The present result shows that in fact thBT/ Foundation founded by the Israel Academy of Sciences and
form is valid in the disorder dominated regime, i.€ T, Humanities.
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