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Coexistence ofdx22y2 superconductivity and antiferromagnetism in the two-dimensionalt-J
model and numerical estimation of Gutzwiller factors

A. Himeda and M. Ogata
Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-890
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The coexisting phase of thed-wave superconducting and the antiferromagnetic order in the two-dimensional
t-J model is reexamined using a variational Monte Carlo method in order to estimate the Gutzwiller factors. A
trial wave function is used which is consistent with the mean-field solution. The Gutzwiller factors are deter-
mined by comparing the numerically obtained expectation values with the mean-field values. We find thez
component of the Gutzwiller factor of exchange interaction is enhanced compared with thexy components.
This effect does not appear in the conventional Gutzwiller approximation and is essential for the stabilization
of the antiferromagnetic order in the presence ofd-wave superconductivity. We discuss several applications of
the present Gutzwiller factors to the problems with antiferromagnetism andd-wave superconductivity.
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I. INTRODUCTION

Since the discovery of high-Tc superconductivity~SC!,1

the ground states of these compounds are intensively in
tigated. Many experiments suggest that the ground s
changes from the antiferromagnetic~AF! state to the
dx22y2-wave (d-wave! SC as the carrier density increase2

Furthermore, the interplay between the AF andd-wave SC
has recently attracted much attention because of the s
phase3 which is observed experimentally and a phenome
logical SO~5! theory.4 Thus it is urgent and important t
develop a microscopic theory in which both the AF a
d-wave SC are treated reasonably.

However, when we treat both the AF and thed-wave SC
order parameters in simple mean-field theories for the t
dimensional~2D! t-J model, they lead to inconsistent resul
In the slave boson mean-field approximation, the AF orde
overestimated and extends to unphysical doping rates~15
;20%!.5 In this scheme, we are unable to discuss the st
phase which is stablized near 12.5% hole doping. Anot
approximation on which we will focus is the Gutzwiller ap
proximation ~GA!.6 It has been shown that the GA gives
fairly reliable estimation for the variational energies for t
pured-wave SC state.7 However if the AF order parameter i
taken into account in the GA,6 it can be shown that there i
no region in the phase diagram where the AF state is st
lized. This is the opposite result compared with the sla
boson mean-field approximation.

In this paper we solve this discrepancy by improving t
GA for the coexistent state of thed-wave SC and the AF
order using variational Monte Carlo~VMC! method where
the double occupancy prohibition is rigorously treated. O
improved GA enables us to study the interplay between
andd-wave SC in the stripe phase or around vortex cores
impurities.

Several works used the VMC method to discuss the ph
diagram of the 2Dt-J model.7–9 It has been shown that th
d-wave SC state is stabilized for finite doping range. As
the AF, Chenet al.10 and Giamarchi and Lhuillier11 proposed
PRB 600163-1829/99/60~14!/9935~4!/$15.00
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a coexisting wave function between the AF andd-wave SC
order. The coexisting state has a lower energy than p
d-wave SC or AF state near half filling. However their wa
function is slightly different from the mean-field solution. I
order to determine the Gutzwiller factors in the GA, it
necessary to use a wave function which is consistent with
mean-field theory. It is shown that the coexistent state
stabilized up to the reasonable hole doping rate (;10%!,
which is similar to the previous results.10,11

Then, using these VMC results and comparing with t
mean-field expectation values, we determined the Gutzw
factors (g factors!, which are coefficients used for the pro
jection operator in the GA. By determiningg factors numeri-
cally, we find that the anisotropy ofg factors which was
neglected before plays an essential role to stabilize the
state. Our improved GA reproduces the variational ene
obtained by the VMC calculation for the uniform case. W
discuss the useful applications of the improved GA for t
nonuniform states.

II. FORMULATION

A. Model and trial wave function

We use the 2Dt-J model on a square lattice,

H52t (
^ i j &s

PG~cis
† cj s1h.c.!PG1J(̂

i j &
Si•Sj , ~2.1!

where^ i j & represents the sum over the nearest-neighbor s

andS5cia
† ( 1

2 s)abcib . The Gutzwiller’s projection operato

PG is defined asPG5P i(12n̂i↑n̂i↓). For this Hamiltonian,
we calculate the variational energy in the VMC method, u
ing the following Gutzwiller projected trial wave function,

uc&5PGuc0~Dd ,Daf ,m!&, ~2.2!

whereDd , Daf , andm are the variational parameters relatin
to d-wave SC, AF, and chemical potential, respectively.

uc0(Dd ,Daf ,m)& is a Hartree-Fock~HF! type wave func-
tion with thed-wave SC and AF orders. It is expressed a
R9935 ©1999 The American Physical Society
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uc0~Dd ,Daf ,m!&5 )
k,s(56)

~uk
(s)1vk

(s)dk↑
(s)†d2k↓

(s)† !u0&

~2.3!

5)
k,s

uk
(s) expF(

k,s

vk
(s)

uk
(s)

dk↑
(s)†d2k↓

(s)† G u0&,

~2.4!

where

vk
(6)

uk
(6)

5
6Ddgk

~6Ek2m!1A~6Ek2m!21~Ddgk!
2

, ~2.5!

Ek5Aek
21Daf

2 , ~2.6!

ek522(coskx1cosky) andgk52(coskx2cosky). The anni-
hilation operatorsdks

(s) are related to the electron operato
through the following unitary transformation,

S dks
(1)

dks
(2)D 5S aks 2bks

bks aks
D S cAks

cBks
D , ~2.7!

with

aks5A1

2 S 12
sDaf

Ek
D

~2.8!

bks5A1

2 S 11
sDaf

Ek
D .

HerecAks(cBks) are annihilation operators of an electron
the A~B! sublattice ands represent↑~11! and↓~21!. The
wave vectork is limited to half of the Brillouin zone where
ek,0.

We can confirm thatuc0& is a vacuum of the annihilation
operators which diagonalize

(
k

F(
s

$ek~cAks
† cBks1h.c.!

2~m1sDaf!cAks
† cAks2~m2sDaf!cBks

† cBks%

1Ddgk~cA2k↓cBk↑1cB2k↓cAk↑1h.c.!G . ~2.9!

Thus, this wave function is a natural extension of thed-wave
SC and of the AF order.

Chen et al.10 and Giamarchi and Lhuillier11 proposed a
similar wave function with coexisting thed-wave SC and the
AF orders. However, in their wave function, thedks

(1) opera-
tor is neglected andEk in Eq. ~2.5! is substituted forueku .
Therefore, in order to determine the Gutzwiller factors us
the mean-field values, we have to use the stateuc0& with Eq.
~2.5! which is consistent with the mean-field theory.

B. Gutzwiller factors

The Gutzwiller factor of an operatorÔ is defined as

gÔ5
^c0uPGÔPGuc0&

^c0uÔuc0&
5

^Ô&

^Ô&0

, ~2.10!
g

where^Ô&0 is its mean-field expectation value. In the usu
GA, g factors are estimated from the probabilities of t
configurations that contribute to the expectation valu
However, in this paper, we evaluate them using correct
pectation values obtained numerically in the VMC calcu
tion.

In the next section, we calculate theg factors for the
following operators:(^ i j &scis

† cj s , (^ i j &(Si
xSj

x1Si
ySj

y), and
(^ i j &Si

zSj
z , corresponding togt , gs

xy , and gs
z , respectively.

The values ofg factors depend on the trial wave function v
the variational parameters. To compare with previous wo
on the GA,6 it is convenient to treat theg factors as functions
of expectation valuesD̄, m̄, andn̄ in the wave functionuc0&,
which are defined as,

D̄t[
1

4N (
i ,d56t

^ci↑
† ci 1d,↓

† 2ci↓
† ci 1d,↑

† &0

D̄[~D̄x2D̄y!/2

5
1

8N (
k,6

Ddgk
2

A~6Ek2m!21~Ddgk!
2

, ~2.11!

m̄[
1

N (
i

~21! i^ci↑
† ci↑2ci↓

† ci↓&0

5
1

N (
k,6

Daf~6Ek2m!

6EkA~6Ek2m!21~Ddgk!
2

, ~2.12!

n̄[
1

N (
is

^cis
† cis&0

512
1

N (
k,6

~6Ek2m!

A~6Ek2m!21~Ddgk!
2

, ~2.13!

whereN is the number of sites. Note that the valuesD̄, m̄,
and n̄ are uniquely determined from the variational para
etersDd , Daf , andm.

III. NUMERICAL RESULTS

A. Variational Monte Carlo

We use the VMC method by fixing the electron numb
Ne ~Refs. 7 and 9! on a square lattice, whose sizeN is from
838 up to 14314. The distribution of the wave vectorsk is
determined by a periodic-antiperiodic boundary condition
to avoid the degeneracy of the Fermi surface and the
node ofd-wave SC. We set the parameter of thet-J model as
J/t50.3. All data are calculated with more than 104 Monte
Carlo samples. Though we should calculate in the wh
three-dimensional parameter space (Dd ,Daf ,m), the param-
eterm is replaced by the value without Gutzwiller projectio
This implies thatNe /N5n̄ ~i.e., ^ni&5^ni&0).

Figure 1 shows theDd , Daf dependence of the expectatio
value 2̂ Si•Sj& per site at half filling. In the following, we
use t as an energy unit. The number of the sites is 10310.
When Daf;0, there are two degenerated minima
log10Dd;60.6 as found by Yokoyama and Shiba.8 On the
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other hand, in the case ofDd;0, the minimum energy exist
at log10Daf;20.6. However, we can see that the lowest e
ergy states locate at (log10Dd , log10Daf)5(20.6,20.6) and
(0.6,20.1) and these states almost degenerate at the v
2^Si•Sj&50.664560.0005.

For the various hole dopings, we determine the grou
state energy and the staggered magnetization atJ/t50.3
~Fig. 2!. The AF andd-wave SC coexisting state has a low
energy than the pured-wave SC state up to about 10% do
ing. At half filling, the energy is20.1994, which is close to
the best estimated value20.20076 in the Green’s function
Monte Carlo method.12 The staggered magnetization at ha
filling is 0.75, which is also close to reliable studies on t
Heisenberg model.13 If we use the pure AF state, the sta
gered magnetization is 0.9~Ref. 14!, which is too large. As
the doping increases, the staggered magnetization red
and disappears around the reasonable hole doping (d;0.1).

B. Gutzwiller factors

We calculate theg factors defined in Eq.~2.10! using the
VMC results. At first, we discuss theg factors for theJS
•S term. Them̄ dependence of theg factors at half filling
with D̄ being fixed at 0.02 and 0.18 is shown in Fig. 3.gs

xy

and gs
z correspond to the enhancement factors forSxSx

FIG. 1. Variational parameter dependence of the energy at
filling. The number of sites is 10310 and the number of the Mont
Carlo samples is 13104.

FIG. 2. Doping dependence of the ground-state energy and s
gered magnetization atJ/t50.3. The lines are guide to eyes.
-

lue

-

ces

1SySy andSzSz, respectively. The most important feature
that thez component of the enhancement factorgs

z has a

maxima atm̄;0.15. On the other hand, thexy component
does not have this feature and decreases monotonicallym̄
increases. The size dependences of the maxima are fou
the region of 0,D̄,0.12, but we think that the qualitativ
features do not change. ForD̄.0.12 the small system al
ready gives a fairly good result. For comparison, theg factor
obtained in the simple GA,6 gs

GA54/(11m̄2)2, is shown by

a broken line in Fig. 3. It is readily seen thatgs(m̄50);4 is
fairly consistent with the GA. Furthermore it is shown th
gs

xy is very close togs
GA except for the smallD̄ dependence.

On the contrary, the enhancement ofgs
z nearm̄;0.15 was

not expected in the simple GA. This enhancement is
main reason for the stabilization of the AF order.

The doping rate (d512n̄) dependence ofgs
z is shown in

Fig. 4. D̄ is fixed at 0.18 to avoid the size dependence. T
maximum exists for every doping rate, but the enhancem
becomes weaker as we increase the number of holes. A
ally, the ratio of the values betweenm̄50.15 andm̄50,
gs

z(m̄50.15)/gs
z(m̄50), decreases from 1.28 (d50! to 1.13

lf

g-

FIG. 3. m̄ dependence ofgs
xy andgs

z with fixing D̄50.02, 0.18.
Sizes are 838 ~open circles!, 10310 ~filled circles!,
12312 ~open squares!, and 14314 ~filled squares!. ~The broken
line is gs

GA .)

FIG. 4. m̄ dependence ofgs
z for various hole doping with fixing

D̄50.18.
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(d50.18!. This effect results in the disappearance of the
order around the 10% doping rate.

Next let us briefly discuss the dependence onD̄ with m

andd fixed. Even if we changeD̄, gs
xx andgs

z do not change
so much. Only for the low doping cases (d,5%), there is a
small minima ~less than 10% reduction! at D̄;0.17 com-
pared withD̄50.

Theg factor for the hopping term,gt(m̄), is also obtained
numerically. We find that, on the contrary togs

z , gt is very

close to the GA,gt
GA52d/$(11d)„11 m̄2/(12d2)…%. At m̄

50, the obtainedgt is independent ofD̄.

IV. SUMMARY

We use the VMC method to investigate the coexist
state of the AF and thed-wave SC order in the 2Dt-J model.
The ground-state energy is slightly lower than the p
d-wave SC state up to 10% hole doping.

We also study theg factors taking into account the fu
effect of the double occupancy prohibition. We find that t
gs

z has a peak aroundm̄;0.15. This property results in th
stablization of the AF order and is not deduced from
ic

Sc
e

e

conventional GA. On the other hand,gs
xy andgt show quali-

tatively the similar behavior to the GA in terms ofm̄.
These results offer important information to improve t

GA and can be used in studies of the spatial variation of
order parameters as far as the variation is slow. For exam
we can apply ourg factors to the problem of vortex cores i
the t-J model. It has been argued that an AF correlation c
be induced around vortex cores or impurities. In such ca
the conventional mean-field approximation or GA will giv
wrong answers because the coexistence between the AF
d-wave SC is not treated reasonably. The modified GA
tained in this paper can be applied to these cases assu
that theg factors depend on the local values of order para
eters. The stripe state which is experimentally observed
another important application.
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