RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 60, NUMBER 14 1 OCTOBER 1999-I

Coexistence ofd,2_,2 superconductivity and antiferromagnetism in the two-dimensionalt-J
model and numerical estimation of Gutzwiller factors
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The coexisting phase of tliewave superconducting and the antiferromagnetic order in the two-dimensional
t-J model is reexamined using a variational Monte Carlo method in order to estimate the Gutzwiller factors. A
trial wave function is used which is consistent with the mean-field solution. The Gutzwiller factors are deter-
mined by comparing the numerically obtained expectation values with the mean-field values. We find the
component of the Gutzwiller factor of exchange interaction is enhanced compared witly ttenponents.

This effect does not appear in the conventional Gutzwiller approximation and is essential for the stabilization
of the antiferromagnetic order in the presencel-ofave superconductivity. We discuss several applications of
the present Gutzwiller factors to the problems with antiferromagnetisndamalve superconductivity.
[S0163-182009)51538-5

[. INTRODUCTION a coexisting wave function between the AF athivave SC
order. The coexisting state has a lower energy than pure
Since the discovery of higfi; superconductivit(SC), d-wave SC or AF state near half filling. However their wave
the ground states of these compounds are intensively inve§4nction is slightly different from the mean-field solution. In
tigated_ Many experiments suggest that the ground Sta@rder to determine the Gutzwiller factors in the GA, it is
changes from the antiferromagnetiF) state to the Necessary to use a wave function which is consistent with the
dy2_y2-wave (d-wave) SC as the carrier density increages. mean-field theory. It is shown that the coexistent state is
Furthermore, the interplay between the AF ahdiave SC  Stabilized up to the reasonable hole <1jloping ratelQ%),
has recently attracted much attention because of the strid’éh_'ﬁ? is similar tr? the\%?élous rlesu&%d _ At
phasé which is observed experimentally and a phenomeno- en, using these results and comparing with the
logical SQ5) theory® Thus it is urgent and important to mean-field expectation values, we determined the Gutzwiller
develop a microscopic theory in which both the AF andTaCt.orS @ factors?, which are coefficie.n'.[s used for the pro-
d-wave SC are treated reasonabl jection operator in the GA. By determinirggfactors numeri-
However. when we treat both t)r/{e AF and ithevave SC cally, we find that the anisotropy aj factors which was
order pararr;eters in simple mean-field theories for the tWOneglected before plays an essential role to stabilize the AF

X ; . X state. Our improved GA reproduces the variational energy
dimensional2D) t-J model, they lead to inconsistent results.. obtained by the VMC calculation for the uniform case. We

In the slave boson mean-field approximation, the AF order igjiscyss the useful applications of the improved GA for the
overestimated and extends to unphysical doping rét&s nonuniform states.

~20%).° In this scheme, we are unable to discuss the stripe

phase _vvhic_h is stabl_ized near 12.5%_hole doping: Another Il. FORMULATION
approximation on which we will focus is the Gutzwiller ap- _ _
proximation (GA).® It has been shown that the GA gives a A. Model and trial wave function

fairly reliable estimation for the variational energies for the  \ye yse the 20-J model on a square lattice,
pured-wave SC staté However if the AF order parameter is
taken into account in the GAjt can be shown that there is

L . - . _ T
no region in the phase diagram where the AF state is stabi- H= _t<i§>:U Ps(ci,Cjs+h.c) PG“LJ(% S-S, 271
lized. This is the opposite result compared with the slave J '
boson mean-field approximation. where(ij ) represents the sum over the nearest-neighbor sites

In this paper we solve this discrepancy by improving theangs=c/ (1 o) «Cig- The Gutzwiller's projection operator
GA for the coexistent state of theewave SC and the AF P is defined a®~=1I.(1—f..h:). For this Hamiltoni
order using variational Monte Carl/MC) method where 6 is defined aPe=1II;(1—n;;m;,). For this Hamiltonian,
the double occupancy prohibition is rigorously treated. our’® calculate Fhe varlatl(_)nal energy in the VMC meth(_)d, us-
improved GA enables us to study the interplay between AEN9 the following Gutzwiller projected trial wave function,
ﬂggrmg\f SC in the stripe phase or around vortex cores and ) =Pl do(Ag,Aars ) 2.2

Several works used the VMC method to discuss the phasehereAy, A, andu are the variational parameters relating
diagram of the 2x-J model’~® It has been shown that the to d-wave SC, AF, and chemical potential, respectively.
d-wave SC state is stabilized for finite doping range. As for |o(Ag,A4, 1)) is @ Hartree-FockHF) type wave func-
the AF, Cheret al!° and Giamarchi and Lhuilliéf proposed  tion with thed-wave SC and AF orders. It is expressed as
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where(Q), is its mean-field expectation value. In the usual
GA, g factors are estimated from the probabilities of the

(2.3  configurations that contribute to the expectation values.
However, in this paper, we evaluate them using correct ex-
V(S) pectation values obtained numerically in the VMC calcula-
T uPexp > — d(s”d(S |0y, tion.
ks ks U In the next section, we calculate thefactors for the
2.4 following operators: Emgc CJJ, 2<,J>(S|" +5'S), and
where Z<,J>SiS corresponding tay,, gy, and gs, respectlvely
The values ofj factors depend on the trial wave function via
v(ki) Ay 25 the variational parameters. To compare with previous works
. ' : on the GA® it is convenient to treat thg factors as functions
U (2B )+ (FE— )2+ (Agnd? . eniemt fo Teat e .
of expectation valued, m, andn in the wave function ),
E,= ’—ek+A ) (2.6) which are defined as,
afr .
€= —2(cosk,+cos ¥) and y, =2 (cosk,—cosk,). The anni- — 1 +
hilation operatorsd(®) are related to the electron operators AT:m <CITCI+51 clicli 510
through the following unitary transformation,
(d(k:')) _(aka' _:Bka Cako (2 7) AE( X_Ay)/z
d(k(_r) Bko’ Ao Ceke , . 1 Ad’yi
: = 2N : (211
with 8N &= (= E— )+ (Agy0)?
1 O'Aaf . 1
Ape= Vz(l_ ) ENEI 1) <C|TC|T C|lcll>0
(2.9
1 oAy 1 A FE— )
Bxo=\ 5 =—> . (212
21 B N & +E(ZE— w7+ (Agm)?
Hereca,(Cgk,) are annihilation operators of an electron on
the A(B) sublattice andr represent](+1) and | (—1). The _=£ <cT c)
wave vectork is limited to half of the Brillouin zone where TN £ \Tiorie/0
Ek<o.
We can confirm thalty,) is a vacuum of the annihilation _i-ts (XEx—n) (2.13

operators which diagonalize

; > {e(ChioCokoth.c)

T T
—(+ oA ) CaeCako— (4~ TA41) CpyyCriol

+Ad7k(CA*kLCBkT+CB*kLCAkT+h'C') . (29)

Thus, this wave function is a natural extension of dheave

SC and of the AF order.

Chenet all®

and Giamarchi and Lhuilliét proposed a
similar wave function with coexisting thi¢wave SC and the
AF orders. However, in their wave function, tdg’) opera-

tor is neglected and, in Eq. (2.5) is substituted fore,] .
Therefore, in order to determine the Gutzwiller factors usingj/t=0.3. All data are calculated with more than*1donte

the mean-field values, we have to use the e with Eq.

(2.5 which is consistent with the mean-field theory.

B. Gutzwiller factors

The Gutzwiller factor of an operatd is defined as

9o=

(ol PcOPG| o) _

()

(ol Ol o)

(O)o’

(2.10

N&E J(£E— )2+ (Agy)?’

whereN is the number of sites. Note that the val@sﬁ,

andn are uniquely determined from the variational param-
etersAy, Ay, andu.

I1l. NUMERICAL RESULTS
A. Variational Monte Carlo

We use the VMC method by fixing the electron number
N, (Refs. 7 and Pon a square lattice, whose sikkis from
8X8 up to 14X 14. The distribution of the wave vectokss
determined by a periodic-antiperiodic boundary condition as
to avoid the degeneracy of the Fermi surface and the gap
node ofd-wave SC. We set the parameter of thkmodel as

Carlo samples. Though we should calculate in the whole
three-dimensional parameter spadg; (A ,u), the param-
eteru is replaced by the value without Gutzwiller projection.
This implies thatN./N=n (i.e., {n;)=(n;)o).

Figure 1 shows tha 4, A, dependence of the expectation
value 2S-S;) per site at half filling. In the following, we
uset as an energy unit. The number of the sites i 10.
When A 4~0, there are two degenerated minima at
log;oA 4~ +0.6 as found by Yokoyama and Shib@n the
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FIG. 1. Variational parameter dependence of the energy at half "
filling. The number of sites is 2010 and the number of the Monte FIG. 3. m dependence iy andg? with fixing A=0.02, 0.18.
Carlo samples is & 10". Sizes are &8 (open circley 10x10 (filled circles,
12X 12 (open squargs and 14<14 (filled squares (The broken

other hand, in the case dfy~0, the minimum energy exists |ine is g% .)

at log;0A ;~ —0.6. However, we can see that the lowest en-
ergy states locate at (lgghq,l00;04,)=(—0.6,-0.6) and +99 and S*S%, respectively. The most important feature is
(0.6,-0.1) and these states almost degenerate at the valglat thez component of the enhancement factdr has a

2(S- §)=0.6645-0.0005. maxima atm~0.15. On the other hand, they component

For the various hole dopings, we determine the groundaoes not have this feature and decreases monotonicatty as

(Fig. 2. The AF andd-wave SC coexisting state has a lower increases. The size dependences of the maxima are found in

energy than the puré-wave SC state up to about 10% dop- the region of 6<A<0.12, bL£ we think that the qualitative
ing. At half filling, the energy is—0.1994, which is close to features do not change. Fa&r>0.12 the small system al-
the best estimated value 0.20076 in the Green’s function ready gives a fairly good result. For comparison, gtfactor
Monte Carlo method” The staggered magnetization at half obtained in the simple GAgS*=4/(1+m?)?2, is shown by
filling is 0.75, which is also close to reliable studies on they proken line in Fig. 3. It is readily seen trg(m=0)~4 is
Heisenberg modef. If we use the pure AF state, the stag- fairly consistent with the GA. Furthermore it is shown that

gered magnetization is 0®Ref. 14, which is too large. As  y° GA —
the doping increases, the staggered magnetization reducs 'S V€Y close togs™ except for the smalb dependence.

and disappears around the reasonable hole dogingd(1).  On the contrary, the enhancementgifnearm~0.15 was
not expected in the simple GA. This enhancement is the

main reason for the stabilization of the AF order.
el her f . . o th The doping rate §=1—n) dependence af? is shown in
We calculate the factors defined in Eq2.10 using the Fig. 4. A is fixed at 0.18 to avoid the size dependence. The

vMC results.f\t first, we discuss the factors for th.e\-JS maximum exists for every doping rate, but the enhancement
-S term. Them dependence of thg factors at half filling  pecomes weaker as we increase the number of holes. Actu-

with bieing fixed at 0.02 and 0.18 is shown in Fig.gﬁi’ ally, the ratio of the values betweem=0.15 andm=0,
and g correspond to the enhancement factors &6 g%(m=0.15)lgm=0), decreases from 1.28¢0) to 1.13

state energy and the staggered magnetizatiod/&t0.3

B. Gutzwiller factors
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FIG. 2. Doping dependence of the ground-state energy and stag- FIG. 4. m dependence af? for various hole doping with fixing
gered magnetization dft=0.3. The lines are guide to eyes. A=0.18.
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(6=0.18. This effect results in the disappearance of the AFconventional GA. On the other hangl’ andg, show quali-

order around the 10% doping rate. — tatively the similar behavior to the GA in terms of.

Next let us briefly discuss the dependencefomith m These results offer important information to improve the
and ¢ fixed. Even if we changd, g3* andg? do not change GA and can be used in studies of the spatial variation of the
so much. Only for the low doping case8<5%),there isa order parameters as far as the variation is slow. For example,
small minima (less than 10% reductiorat A~0.17 com- Wwe can apply oug factors to the problem of vortex cores in
pared withA=0. the t-J model. It has been argued that an AF correlation can
be induced around vortex cores or impurities. In such cases,
the conventional mean-field approximation or GA will give
wrong answers because the coexistence between the AF and
d-wave SC is not treated reasonably. The modified GA ob-

The g factor for the hopping terngt(ﬁ), is also obtained
numerically. We find that, on the contrary &3, g; is very

close to the GAgSA=25/{(1+ 8)(1+ m?/(1— 6))}. At m

=0, the obtained), is independent oA\. tained in this paper can be applied to these cases assuming
that theg factors depend on the local values of order param-
IV. SUMMARY eters. The stripe state which is experimentally observed is
We use the VMC method to investigate the coexisting2°ther important application.
state of the AF and thé-wave SC order in the 2BJ model. The authors wish to thank T. M. Rice, H. Fukuyama, N.
The ground-state energy is slightly lower than the purep ong, T. Giamarchi, Ch. Renner, Y. Tanaka, H. Tsuchiura,
d-wave SC state up to 10% hole doping. and M. Sigrist for useful discussions. This work is supported

We also study the factors taking into account the full jn part by a Grant-in-Aid of of the Ministry of Education,
effect of the double occupancy prohibition. We find that thescience, Sports and Culture. Numerical computation in this
gz has a peak arounch~0.15. This property results in the work was carried out at the Supercomputer Center, Institute
stablization of the AF order and is not deduced from thefor Solid State Physics, University of Tokyo.
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