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Evidence for a trivial ground-state structure in the two-dimensional Ising spin glass
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We study how the ground state of the two-dimensional Ising spin glass with Gaussian interactions in zero
magnetic field changes on altering the boundary conditions. The probability that relative spin orientations
change in a region far from the boundary goes to zero with the~linear! size of the systemL like L2l, where
l520.7060.08. We argue thatl is equal tod2df whered (52) is the dimension of the system anddf is
the fractal dimension of a domain wall induced by changes in the boundary conditions. Our value fordf is
consistent with earlier estimates. These results show that, at zero temperature, there is only a single pure state
~plus the state with all spins flipped! in agreement with the predictions of the droplet model.
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The nature of the ordering in spin glasses below the tr
sition temperature,Tc , remains rather poorly understoo
For the infinite range model, the replica symmetry break
solution of Parisi1–3 is generally believed to be correct. A
important aspect of this solution is that the order paramete
a nontrivial distribution,P(q), whereq describes the overlap
of the spin configuration between two copies of the syst
with identical interactions. The distribution is nontrivial b
cause very different spin configurations occur with sign
cant statistical weight. One loosely says that the system
be in many ‘‘pure states.’’ Monte Carlo simulations o
~more realistic! short-range models on quite small lattices,4,5

find a nontrivialP(q) with a weight atq50 which is inde-
pendent of system size~for the range of sizes studied!, as
predicted by the Parisi theory.

An alternative approach, the ‘‘droplet model,’’ has be
proposed by Fisher and Huse6 ~see also Refs. 7 and 8!. Ther-
modynamic states and pure states are defined precisel
considering correlation functions of spins in a region sm
compared with the system size and far from the bound
and asking whether they change or not upon changing
boundary conditions as the~linear! system sizeL, tends to
infinity. Each different set of correlation functions corr
sponds to a different thermodynamic state. The drop
theory, the Parisi theory, and some other scenarios have
studied in detail by Newman and Stein.9,10

By making some plausible and self-consistent assu
tions, the droplet theory predicts that the structure of p
states is trivial in short-range spin glasses belowTc . In zero
field,11 trivial pure state structure means that any thermo
namic state is a combination of just two distinct pure sta
related by flipping all the spins, which have the same f
energy by symmetry. If one looks at the whole system, rat
than a relatively small region far from the boundary, o
might note that part of the system is in one pure state and
other part in the spin-flipped state, with a domain wall b
tween them. Hence a global quantity likeP(q) could have a
nontrivial form12 even though the structure of pure states
actually trivial.13

To unambiguously distinguish between the droplet a
Parisi pictures it is therefore better to study correlation fu
tions, such as the overlap distribution, in a finite region10 far
from the boundary, since the probability that the domain w
goes through this region vanishes asL→`. More precisely,
PRB 600163-1829/99/60~14!/9919~4!/$15.00
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one should investigate whether these correlation functi
change when the boundary conditions are changed. To
knowledge, however, this has not been done before.14

Here, we perform such calculations numerically for t
ground states of the Ising spin glass with Gaussian inte
tions in two dimensions. Although there is no spin-glass
der at finite temperature in this system, thereis ~complete!
spin-glass order in theground state, so one can investigate
the question of the number of pure statesat zero
temperature.15 Two dimensions has the additional advanta
that there are efficient algorithms for computing exa
ground states16,17and so quite large sizes can be investigat
We find that the probability for the spin configuration in th
center to change, when the boundary conditions are alte
goes to zero likeL2l asL increases, wherel can be related
to the fractal dimension of a domain wall which is induc
by the boundary-condition change. This result shows t
there is only a single pure state atT50 ~i.e., a single ground
state!, plus the state with all spins flipped, in agreement w
the droplet theory.

The Hamiltonian is given by

H52(
^ i , j &

Ji j SiSj , ~1!

where the sitesi lie on the sites of anL3L square lattice
with L<30, Si561, and theJi j are nearest-neighbor inter
actions chosen according to a Gaussian distribution with z
mean and standard deviation unity. Initially, we impose p
riodic boundary conditions, denoted by ‘‘P.’’ Since the di
tribution of the interactions,Ji j , is continuous, the ground
state is unique~apart from the equivalent state obtained
flipping all the spins!. We determine the energy and sp
configuration of the ground state for a given set of bon
Next we impose antiperiodic conditions~‘‘AP’’ ! along one
direction, which is completely equivalent to changing t
sign of the interactions along this boundary, and recomp
the ground state. Finally we change the sign of half
bonds at random along this boundary, which we denote
‘‘R.’’ Note that the different boundary conditions correspon
to different choices of the interactions which occur with t
same probability. Hence they are statistically equivalent.

For the smaller sizes,L<8, we compute the ground stat
by rapidly quenching from a randomly chosen spin config
R9919 ©1999 The American Physical Society
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ration, and repeating many times until we are confident t
the ground-state energy has been found. For the two lar
sizes,L516 and 30, this is impractical so instead we use
Cologne spin-glass ground-state server.18 We repeat the cal-
culation of the ground state for the three copies with diff
ent boundary conditions for a minimum of 2000 samples
each size.

Next we discuss how to study the dependence of the
configuration on boundary conditions. We consider a cen
block containingNB5LB

2 spins, and ask if the correlatio
functions between two spins,i andj say, in the block depend
on the boundary conditions, i.e., whether̂Si

aSj
a&T

2^Si
bSj

b&T is nonzero forL→`, wherea andb refer to two
distinct boundary conditions, P, AP, or R here,Si

a refers to a
spin in the copy with thea boundary condition, and
^•••&T denotes a thermal average. We consider even s
correlation functions because our boundary conditions do
distinguish between states which differ by flipping all t
spins. Since the difference can have either sign, it is con
nient to consider its square, (^Si

aSj
a&T2^Si

bSj
b&T)2. If we

sum over all the spins in the block, normalize, and aver
over disorder, it is easy to see that this becomes

D5^~qaa
B !21~qbb

B !222~qab
B !2&, ~2!

where

qab
B 5

1

NB
(
i 51

NB

Si
aSi

b ~3!

is the overlap between the block configurations witha andb
boundary conditions, and the brackets^•••& refer to both a
thermal average and an average over the disorder. Equ
~2! can be written as

D5E
21

1

q2@Paa
B ~q!1Pbb

B ~q!22Pab
B ~q!#dq, ~4!

where

Pab
B ~q!5^d~q2qab

B !& ~5!

is the probability distribution for the block overlaps. W
have written these expressions in a general form, valid
T.0 as well asT50. Similar arguments can be made f
correlations of a larger number of spins, which leads to
pressions such as Eq.~4! but with higher moments of the
overlap distributions. Hence the crucial quantity is the diff
ence in the block-spin overlap distributions with differe
boundary conditions which occurs in Eq.~4!, i.e.,

DPab
B ~q![Paa

B ~q!1Pbb
B ~q!22Pab

B ~q!. ~6!

If this difference tends to zero asL→` then the droplet
picture is valid. We emphasize that this test doesnot require
the size of the block to also become large.

Specializing now toT50, Paa
B (q) is just the sum of two

delta functions with equal weight atq561, since the
ground state is unique~apart from overall spin reversal!.
Hence, atT50, it is sufficient to investigate the block ove
lap distributionPab

B (q) with aÞb. We calculate this fora
5P, andb5AP and R.
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Now we discuss our results, for which we takeLB52.
First of all, Fig. 1 shows data for the root-mean-square d
ference in ground-state energy,

DEab[^~Ea
02Eb

0 !2&1/2 ~7!

with E0 the total ground-state energy~not the energy per
spin!, for a5P andb5AP and R. One sees thatDEP,AP
goes to zero likeL2u as L increases, whereu50.285
60.020. This is in agreement with earlier work.17,19 The
negative value means that large domains cost very little
ergy and so the order in the ground state will spontaneou
break up at any finite temperature, showing thatTc50.

The results forDEP,R are quite different, however,in-
creasingwith L, roughly asL1/2 for largeL, rather than de-
creasing. This difference is easily understood, since the
fect ~i.e., the region where the energy is locally different f
the two boundary conditions! can belocally removed in the
P-AP case, by changing the sign of the spins to one sid
the boundary. The defect will then be a single domain w
somewhere in the sample not necessarily near the bound
However, this cannot be done for the P-R case and a pa
the defect, with an energy which one could guess to
L (d21)/2 in d dimensions, will stay close to the boundary,
addition to a domain wall which could be arbitrarily fa
away.

We show some of our data for the block overlaps in F
2. The results for the P-AP and P-R overlaps are qualitativ
similar to each other, with the weight away from the peaks
q561 dropping asL increases.

We characterize this trend by the weight atq50 and
show the results in Fig. 3. For both antiperiodic and rand
boundary-condition changes, the weight atq50 vanishes
like L2l, wherel520.7060.08. This value is easy to un
derstand sincePaÞb

B (0) is just the probability that the do
main wall bisects the block. If the fractal dimension of th
domain wall isdf then, generalizing tod dimensions, the
probability that it goes through any small region is propo
tional to L2(d2df ). This immediately givesdf51.3060.08,
which is consistent with other estimates fordf : 1.2660.03
by Bray and Moore,21 1.3460.10 by Riegeret al.,17 and
1.3160.1 ~for a related model! by Gingras.20

FIG. 1. A plot of the root-mean-square ground-state energy
ferencesDEP,AP andDEP,R for different sizes up toL530.
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Earlier calculations have investigated some effects
changing the boundary conditions from periodic to antipe
odic, usually just the change in the ground-state ene
though Bray and Moore21 and Riegeret al.17 have also cal-
culated the fractal dimension of the domain wall. They o
tain a value less thand ~as noted above!, which implies that
PP,AP

B (0) vanishes for largeL, as we find explicitly here.
However, as noted in our discussion of Fig. 1, antiperio
boundary conditions are special since the defect can be
cally removed by flipping the spins to one side of it. This
why we also investigate random boundary-conditi
changes, for which the defect cannot be locally eliminat
An important result of our work is that the fractal dimensi
of the domain wall is the same in both cases.

For each configuration of the bonds in the bulk we ha
only studied a single random change in the boundary co
tions. It would be interesting to get statistics on a large nu
ber of boundary-condition changes to see if the probab
for the domain wall to go through the central block obtain
by averaging over boundary conditions for a single la
sample is the same as we find here by averaging o
samples. It would also be interesting to investigate bound
conditions which are optimized to minimize the ground-st
energy, i.e., which are correlated with the bonds in the bu

Recently, we have been able to perform calculations si
lar to those presented here for the three-dimensional
glass,22 which has a finiteTc . There too we find evidence fo
a unique ground state.

FIG. 2. A plot of the block overlaps,PP,AP
B (q) andPP,R

B (q), for
L54 and 16, with block sizeLB52. Note that the allowed value
of q are 0, 60.5 and61. The left-hand column is for the P-AP
overlap and the right hand column for the P-R overlap. The top
is for L54 and the bottom row forL516. The data are normalize
so that the area under the histograms is unity.
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After this work was virtually complete, we became awa
of related work by Middleton.23 Whereas we start withperi-
odic boundary conditions Middleton takesfree boundary
conditions which allows him to find a ground state~for the
models studied! in polynomial time, permitting the study o
very large sizes, up toL5512. In this approach one can on
perturb the system far away from the central region by m
ing it grow bigger. Hence there arethree relevant lengths:
the block size, which we callLB, the size inside which the
bonds are not changed~which we will call Lmid), and the
overall sizeL. One needsLmid@LB and at least some dat
which also satisfyL@Lmid . Hence the largest sizesL that
Middleton studies need to bevery large. In our work, we
only have one inequality to satisfy,L@LB, rather than two,
so the sizes do not need to be as large. Overall, the
approaches are complementary and, in our view, have s
lar validity for the two-dimensional spin glass. However w
believe that our approach is preferable for the thr
dimensional spin glass, for which there are no polynom
algorithms, since it requires smaller sizes.

This work was supported by the National Science Fo
dation under Grant No. DMR 9713977. M.P. was suppor
by University of California, EAP Program, and by Fondaz
one Angelo Della Riccia. We would like to thank D. L. Ste
and G. Parisi for their comments on an earlier version of
manuscript. We would also like to thank Professor M. Ju¨nger
and his group at the University of Cologne for putting the
spin-glass ground-state server in the public domain.
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FIG. 3. A plot of the block overlaps atq50, PP,AP
B (0), and

PP,R
B (0), for different sizes up toL530 with block sizeLB equal
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