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Evidence for a trivial ground-state structure in the two-dimensional Ising spin glass
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We study how the ground state of the two-dimensional Ising spin glass with Gaussian interactions in zero
magnetic field changes on altering the boundary conditions. The probability that relative spin orientations
change in a region far from the boundary goes to zero with(lthean size of the systenh like L™*, where
A=-—0.70+0.08. We argue that is equal tod—d; whered (=2) is the dimension of the system adgdis
the fractal dimension of a domain wall induced by changes in the boundary conditions. Our vatljedor
consistent with earlier estimates. These results show that, at zero temperature, there is only a single pure state
(plus the state with all spins flippgth agreement with the predictions of the droplet model.
[S0163-182699)50238-3

The nature of the ordering in spin glasses below the tranene should investigate whether these correlation functions
sition temperatureT., remains rather poorly understood. change when the boundary conditions are changed. To our
For the infinite range model, the replica symmetry breakingknowledge, however, this has not been done before.
solution of Parisi—® is generally believed to be correct. An  Here, we perform such calculations numerically for the
important aspect of this solution is that the order parameter iground states of the Ising spin glass with Gaussian interac-
a nontrivial distributionP(q), whereq describes the overlap tions in two dimensions. Although there is no spin-glass or-
of the spin configuration between two copies of the systenfler at finite temperature in this system, thegécomplete
with identical interactions. The distribution is nontrivial be- Spin-glass order in thground state so one can investigate
cause very different spin configurations occur with signifi-the question of the number of pure states zero
cant statistical weight. One loosely says that the system ca@mperaturé® Two dimensions has the additional advantage
be in many “pure states.” Monte Carlo simulations on that there are efficient algorithms for computing exact
(more realisti¢ short-range models on quite small lattiéds, ground stateé§’and so quite large sizes can be investigated.
find a nontrivialP(q) with a weight atq=0 which is inde- We find that the probability for the spin configuration in the

pendent of system sizéor the range of sizes studipdas  center to change, when the boundary conditions are altered,
predicted by the Parisi theory. goes to zero like. ~* asL increases, wherk can be related

An alternative approach, the “drop|et modeL” has beento the fractal dimension of a domain wall which is induced

proposed by Fisher and HL?QBEe also Refs. 7 and_srher_ by the bOUndary-Condition Change. This result shows that
modynamic states and pure states are defined precisely Bjere is only a single pure stateTat0 (i.e., a single ground
considering correlation functions of spins in a region smalistatg, plus the state with all spins flipped, in agreement with
compared with the system size and far from the boundanyjthe droplet theory.
and asking whether they change or not upon changing the The Hamiltonian is given by
boundary conditions as th¢inear system sizd., tends to
infinity. Each different set of correlation functions corre-
sponds to a different thermodynamic state. The droplet
theory, the Parisi theory, and some other scenarios have been
studied in detail by Newman and Stéif? where the sites lie on the sites of arL XL square lattice

By making some plausible and self-consistent assumpwith L<30, S;=*+1, and theJ;; are nearest-neighbor inter-
tions, the droplet theory predicts that the structure of pureactions chosen according to a Gaussian distribution with zero
states is trivial in short-range spin glasses below In zero  mean and standard deviation unity. Initially, we impose pe-
field,!! trivial pure state structure means that any thermody+iodic boundary conditions, denoted by “P.” Since the dis-
namic state is a combination of just two distinct pure statestribution of the interactions);;, is continuous, the ground
related by flipping all the spins, which have the same freestate is uniquéapart from the equivalent state obtained by
energy by symmetry. If one looks at the whole system, ratheflipping all the sping We determine the energy and spin
than a relatively small region far from the boundary, oneconfiguration of the ground state for a given set of bonds.
might note that part of the system is in one pure state and thidext we impose antiperiodic conditiofS8AP” ) along one
other part in the spin-flipped state, with a domain wall be-direction, which is completely equivalent to changing the
tween them. Hence a global quantity liR€q) could have a  sign of the interactions along this boundary, and recompute
nontrivial form? even though the structure of pure states isthe ground state. Finally we change the sign of half the
actually trivial*3 bonds at random along this boundary, which we denote by

To unambiguously distinguish between the droplet and'R.” Note that the different boundary conditions correspond
Parisi pictures it is therefore better to study correlation functo different choices of the interactions which occur with the
tions, such as the overlap distribution, in a finite redfdar ~ same probability. Hence they are statistically equivalent.
from the boundary, since the probability that the domain wall  For the smaller size4,<8, we compute the ground state
goes through this region vanisheslas>o. More precisely, by rapidly quenching from a randomly chosen spin configu-

Hz—%:) Ji;SS;, (6h)
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ration, and repeating many times until we are confident that 3 ' T T | T
the ground-state energy has been found. For the two largest

sizes,L =16 and 30, this is impractical so instead we use the

Cologne spin-glass ground-state serfawe repeat the cal- 5
culation of the ground state for the three copies with differ-

ent boundary conditions for a minimum of 2000 samples for

each size.

Next we discuss how to study the dependence of the spin
configuration on boundary conditions. We consider a central
block containingNBzLé spins, and ask if the correlation 1 ) 0288
functions between two spinsandj say, in the block depend 0.9 F sope —5

AE

on the boundary conditions, ie., whethefS'S")s 0.8 & = P-AP

—(SP'Sf)+ is nonzero folL — o, wherea andg refer to two 0.7 ©P-R

distinct boundary conditions, P, AP, or R he®,refers to a 08F | | 1 1.1 L, | E
spin in the copy with thea boundary condition, and 2 4 8 BI10O 20 40
(---)7 denotes a thermal average. We consider even spin- L

correlation functions because our boundary conditions do not g 1. A plot of the root-mean-square ground-state energy dif-

distinguish between states which differ by flipping all the ferencesAEp ap and AEp g for different sizes up td = 30.
spins. Since the difference can have either sign, it is conve-

nient to consider its Square(?qasf‘)T—(SﬂSf)T)z- If we Now we discuss our results, for which we takg=2.
sum over all the spins in the block, normalize, and averaggirst of all, Fig. 1 shows data for the root-mean-square dif-
over disorder, it is easy to see that this becomes ference in ground-state energy,
A=((a2.)*+(agp)?—2(a5p)?), 2) AE,z=((ES—Ep)?)*? (7)
where with E° the total ground-state enerdyot the energy per

spin), for a=P andB=AP and R. One sees th&tEp sp
g 1 wcB goes to zero likeL™? as L increases, whered=0.285
an_N_B 21 S'S 3 +0.020. This is in agreement with earlier wdrk'® The
negative value means that large domains cost very little en-
is the overlap between the block configurations witand3  ergy and so the order in the ground state will spontaneously
boundary conditions, and the brackéts -) refer to both a break up at any finite temperature, showing that0.
thermal average and an average over the disorder. Equation The results forAEp r are quite different, howevein-
(2) can be written as creasingwith L, roughly asL'? for largeL, rather than de-
. creasing. This difference is easily understood, since the de-
_ 2rpB B B fect (i.e., the region where the energy is locally different for
A= f,lq [Paa(d)+Pgp(a)—2P4(q)]da, @ the two boundary conditioncan belocally removed in the
P-AP case, by changing the sign of the spins to one side of
where the boundary. The defect will then be a single domain wall
B B somewhere in the sample not necessarily near the boundary.
Pos(d)=(3(d—0,p)) (5 However, this cannot be done for the P-R case and a part of
the defect, with an energy which one could guess to be
|“~Y%in d dimensions, will stay close to the boundary, in
addition to a domain wall which could be arbitrarily far

Ng

is the probability distribution for the block overlaps. We
have written these expressions in a general form, valid fo
T>0 as well asT=0. Similar arguments can be made for
correlations of a larger number of spins, which leads to exdWay.

: - . We show some of our data for the block overlaps in Fig.
pressions such as E¢4) but with higher moments of the -
overlap distributions. Hence the crucial quantity is the differ-2‘ The resullts for the P-AP and P-R overlaps are qualitatively

ence in the block-spin overlap distributions with different Similar to each other, with the weight away from the peaks at

bound diti hich . ). ie. g==1 dropping.asl_ in.creases. _
oundary conditions which occurs in B, i.e We characterize this trend by the weight @0 and

B —pB B _opB show the results in Fig. 3. For both antiperiodic and random
APap(A=Pual Q)+ Papl@) = 2P apla). © boundary-condition changes, the weight gt 0 vanishes
If this difference tends to zero ds—« then the droplet like L™, wherex=—0.70+0.08. This value is easy to un-
picture is valid. We emphasize that this test doesrequire  derstand Si“C@E;&B(O) is just the probability that the do-
the size of the block to also become large. main wall bisects the block. If the fractal dimension of the
Specializing now tar=0, P2 _(q) is just the sum of two domain wall isd; then, generalizing tal dimensions, the
delta functions with equal weight aj=+*1, since the probability that it goes through any small region is propor-
ground state is uniquéapart from overall spin reversal tional to L~ (479, This immediately gives;=1.30+0.08,
Hence, aff =0, it is sufficient to investigate the block over- which is consistent with other estimates fiy: 1.26+0.03
lap distributionP? ;(q) with a-# 8. We calculate this forw by Bray and Mooré 1.34+0.10 by Riegeret al,*’” and
=P, andB=AP and R. 1.31+0.1 (for a related modglby Gingras?®
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FIG. 2. A plot of the block overlaps?E'Ap(q) and PE'R(q), for L

L=4 and 16, with block sizé z=2. Note that the allowed values _ B
of q are 0, 0.5 and=+1. The left-hand column is for the P-AP BF|G' 3. A plot of the block overlaps &=0, Pp 4p(0), and
overlap and the right hand column for the P-R overlap. The top rOV\FP'R(O)’ for different sizes up td. =30 with block sizel. equal
is for L=4 and the bottom row fok = 16. The data are normalized

so that the area under the histograms is unity.

) ) ) . After this work was virtually complete, we became aware
Earlier calculations have investigated some effects o

hanging the bound itions £ e to anti Ob related work by Middletor® Whereas we start witheri-
changing the bounaary condiions from periodic 1o antipert-, ;. boundary conditions Middleton takefsee boundary

odic, usually just the change in the ground-state energy o . . :

. 17 ~¥’¢onditions which allows him to find a ground stdfer the
though Bray and Mqo?é a’?d Riegeret al. have also cal models studiedin polynomial time, permitting the study of
culated the fractal dimension of the domain wall. They ob- . a ;

very large sizes, up tb=512. In this approach one can only

tain a value less thad (as noted aboyewhich implies that :
PB (0 ishes for larad. find licitly h perturb the system far away from the central region by mak-
p.ap(0) vanishes for large., as we find explicitly here. ing it grow bigger. Hence there atbree relevant lengths:

However, as noted in our discussion of Fig. 1, antiperiodic:the block size. which we call®. the size inside which the

boundary conditions are special since the defect can be lcb'onds are not change@vhich we will call L, ), and the
. mi ]

Sv"’;‘”y rsvrgovsgoby if*'\?gé?ig;?: SPAEZS%On&igS&? _'ZOEZ'ifi;ioverall sizeL. One needs ,;>LB and at least some data
chgn es, for which the gc]iefect cannot be locall yeliminatedWhiCh also satisiy.>Lpig. Hence the largest sizdsthat
Nges, ; ye .~ “Middleton studies need to beery large. In our work, we
An important result of our work is that the fractal dimension . : . B
only have one inequality to satisfiz,>L", rather than two,

of the domain wall is the same in both cases. so the sizes do not need to be as large. Overall, the two
For each configuration of the bonds in the bulk we have ge. ’

only studied a single random change in the boundary Cond@pproaches are complementary and, in our view, have simi-

tions. It would be interesting to get statistics on a large num!ar validity for the two-dimensional spin glass. However we

e . .. believe that our approach is preferable for the three-
ber of boundary-condition changes to see if the prObab'“tydimensional spin gle?sps for Whicrﬁ) there are no polynomial

for the domain wall to go through the central block obtained . ; . . ;

. . . algorithms, since it requires smaller sizes.
by averaging over boundary conditions for a single large
sample is the same as we find here by averaging over This work was supported by the National Science Foun-
samples. It would also be interesting to investigate boundargdation under Grant No. DMR 9713977. M.P. was supported
conditions which are optimized to minimize the ground-stateby University of California, EAP Program, and by Fondazi-
energy, i.e., which are correlated with the bonds in the bulkone Angelo Della Riccia. We would like to thank D. L. Stein

Recently, we have been able to perform calculations simiand G. Parisi for their comments on an earlier version of the
lar to those presented here for the three-dimensional spimanuscript. We would also like to thank Professor Mhger
glass?® which has a finitél .. There too we find evidence for and his group at the University of Cologne for putting their
a unique ground state. spin-glass ground-state server in the public domain.
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