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High-temperature ferrons in magnetic semiconductors and colossal magnetoresistance material
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A type of bound magnetic polaron~ferron! is proposed in which the electron energy lowering occurs due to
the electron interaction with the random magnetization fluctuations. These states can explain why some doped
magnetic semiconductors are highly conductive atT50 and insulating atT→`. @S0163-1829~99!50534-1#
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A specific property of magnetic semiconductors~to which
the colossal magnetoresistance materials belong, too! con-
sists in the fact that the charge-carrier energy is minimal
the ferromagnetic ordering. For this reason, the mobile e
trons tend to establish the ferromagnetic ordering in non
romagnetic materials or in ferromagnetic semiconductor
finite temperatures when the ferromagnetic ordering is p
tially destroyed. The manifestation of this tendency is
appearance of the ferromagnetic polarons~ferrons! in anti-
ferromagnetic semiconductors when a charge carrier
duces a ferromagnetic microregion inside the antiferrom
netic crystal and becomes self-trapped by it~the magnetic
polaron, or ferron!.1

A magnetized region can also arise in the vicinity of
unionized donor, being produced by its electron~the bound
ferron!. Similar phenomena can take place in the ferrom
netic semiconductors at elevated temperatures~see Refs. 2
and 3!. The electron localization region is overmagnetized
this case, which means that inside it the binary spin corr
tion functions are positive and enhanced as compared
their values outside the localization region.

At high temperatures, one believes that the ferrons sho
disappear as the ferromagnetic ordering becomes destr
even in the region of the electron localization. Mathema
cally, the disappearance of the correlations means that
binary spin correlation functions become zero if the ato
entering them do not coincide. The aim of this paper is
prove that the self-trapped states for the free charge car
disappear atT→` ~this means temperatures considera
exceeding the Curie point but at which the donors rem
unionized!. But interaction with uncorrelated magnetic flu
tuations lowers the energy of a bound electron and dim
ishes its radius considerably. Thus, one can talk about a
of bound magnetic polaron not related to the ferromagn
ordering.

Physically, the scenarios for the fluctuation lowering
the donor~acceptor! energy are different for the cases of
relatively weaks-d exchange energy~wide electron bands!
and the opposite case known as the double exchange~narrow
electron bands!. In the former case the point is that the a
solute value of a magnetic moment for any finite-size reg
is nonzero, being of order of the square-rooted number of
magnetic atoms inside it. The absence of the local ferrom
netic ordering is a consequence of the fact that the direc
of this moment fluctuates randomly. But these fluctuatio
do not influence the exchange energy between the elec
and the magnetic atom as the electron spin fluctuates jo
PRB 600163-1829/99/60~10!/6984~3!/$15.00
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with the total moment of the region adjusting to it, i.e., bei
always parallel~or antiparallel to it!. For this reason the tota
s-d exchange energy remains nonzero and lowers the lo
ized electron energy more the smaller the region size. Me
while, the fluctuations do not influence the conduction ba
bottom.

In the case of the double exchange, the conduction ba
width diminishes, and its bottom is boosted with increas
temperature. Meanwhile, the donor level rises considera
less, being pinned by the impurity potential. Hence, atT
→`, the donor level depth is larger and the radius sma
than atT50.

In both cases, a reduced high-temperature value of
orbital radius as compared with that atT50 can explain the
fact often observed in the ferromagnetic semiconductors,
cluding the manganites: If the donor electrons are delo
ized at T50 they can be localized atT→`, i.e., the
temperature-induced Mott transition takes place.2,3

To analyze the magnetic properties of the unionized
nors, it is advisable to begin with the construction of a no
Ruderman-Kittel-Kasuya-Yosida ~non-RKKY! magnetic
Hamiltonian describing the indirect exchange via the o
electron of the donor. As usual, thes-d model is used with
the Hamiltonian

H5Hs~r !1Hsd~r !1Hdd , Hs52
D

2m
2

e2

er
, ~1!

Hsd52A(
g

~Sgs!D~r2g!, Hdd52
I

2 (
g,D

~SgSg1D!,

whereSg is thed spin of the atomg, s the conduction elec-
tron spin,D(r2g) is equal to 1 inside the unit cellg and 0
outside it,m is the electron effective mass,e is the dielectric
constant, andD is the vector connecting the nearest neig
bors, \51. The s-d exchange integralA is assumed to be
positive.

First, the inequalityAS!W is assumed to be met whereS
is the d-spin magnitude, andW the conduction bandwidth
As usual in the theory of the indirect exchange, the adiab
approximation is used when, in dealing with thes electron,
thed spins are considered as the classical vectors. In the
approximation inAS/W the wave function of the system ca
be separated into the orbital and spin parts:

C~r ,$Sz%,s!5c~r !h~$Sz%,s!, ~2!
R6984 ©1999 The American Physical Society
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h~$Sz%,s!5f~$Sz%!d~s,1/2!1x~$Sz%!d~s,21/2!,

whereh is a function of the set of thed-spin variables$Sz%
and thes-electron spin variables@d(x,y)51 for x5y and 0
otherwise#. It should be an eigenfunction of the Hamiltonia
~1!, averaged over the orbital wave functionr :

Havh5~E2EI !h, EI5E d3rcHsc, ~3!

Hav52A( w~g!~Sgs!, w~g!5c2~g!a3,

whereEI is the energy of thes electron bound to the impu
rity, anda the lattice constant.

Making use of Eqs.~1!–~3!, one can represent the wav
equation in the form (EI is omitted!:

AL1

2
f1S E2

ALz

2 Dx50,

AL2

2
x1S E1

ALz

2 Df50, ~4!

L5( w~g!Sg , L65Lx6 iL y.

The following relations are used which are valid for a
function f (Sz) of Sz:

S2 f ~Sz!5 f ~Sz11!S2, L2L15L22Lz~Lz11!.

For an arbitraryw(g), the set of Eq.~4! can be solved with
accuracy of 1/2SNl , whereNl is the number of magnetic
atoms over which the localized electron is spread. This s
tion makes it possible to introduce an effective indirect e
change HamiltonianHml whose eigenvalues represent t
s-d exchange energy of the bound electron:

Hml56
A

2A(
g,f

w~g!w~ f!~SgSf!. ~5!

Two signs in Eq.~5! correspond to twos electron spin pro-
jections. Below, under assumption ofA.0, only the lower
sign will be used.

As is seen from Eq.~5!, in the limit T→`, though the
correlations between thed spins are absent, thes-d exchange
energy remains nonzero in the first order inAS/W, being of
orderAS/ANl . Hence, the interaction with random magne
zation fluctuations tends to diminish the orbital radius.

The problem of the localized electron state atT→` will
be solved using a variational procedure for the free energ
the system:

FPl5El2
A

2
AP2NT ln~2S11!, ~6!

P5S~S11!( w2~g!.

The second term in Eq.~6! is obtained from Eq.~5! using the
condition of the weak correlations between spins:
u-
-

of

A(
g,f

w~g!w~ f!~SgSf!

5AS~S11!(
g

w2~2!1(
gÞf

w~g!w~ f!~SgSf!

'APF 11

(
gÞf

w~g!w~ f!~SgSf!

2P
G . ~6a!

The last term in Eq.~6a! with the Heisenberg-like structur
omitted here will be taken into account in a special public
tion.

The electron energyEl is calculated with the aid of the
HamiltonianHs ~1! and the trial wave function

c~r !5S x3

paB
3 D 1/2

expS 2
xr

aB
D , aB5

e

me2
, ~7!

wherex is the variational parameter.
In the leading approximation in 1/T one can write down

the x-dependent portion of the free energy~7! in the form

FPl~x!5~x222x!EB2Lx3/2, EB5
e2

2eaB
. ~8!

Minimizing the free energy~8! with respect tox, one
obtains its optimal value and inverse orbital radius forT
→` ~in the EB and 1/aB , units, respectively!:

F`52 8
3 l 3@ l 1A11 l 2#2 8

3 lA11 l 224l 221, ~9!

x`5@ l 1A11 l 2#2; l 5
3L

8EB
;

AS

~We2/ea!1/2
. ~10!

With aB5a, for AS/EB varying from 1 to 5,F` varies from
21.104 to21.659 andx` from 1.077 to 1.1445, wherea
both these quantities were equal to 1 atT50 ~in correspond-
ing units!. Hence, the electron interaction with random~un-
correlated! magnetization fluctuations leads to a marked d
crease in the bound electron energy and in the orbital rad
and this is true for any type of magnetic ordering atT50.
The corresponding electron state can be called the bo
paramagnetic fluctuation polaron~ferron!.

Formally, based on Eqs.~9! and ~10! one might arrive at
the conclusion that random fluctuations could cause the t
ping of a charge carrier in the absence of the impurity p
tential ~the free paramagnetic ferron!. But its energy turns
out to be of order (AS)4/W3, which is far beyond the accu
racy of the present calculation and, hence, can be put e
to zero.

Now the case of the double exchange in the ferromagn
semiconductors will be discussed. In this limit in the ze
approximation inW/AS, thes electron spin is parallel to the
spin of the atom at which it is located at the moment. T
opposites electron spin projection is prohibited, so that thes
electrons can be considered as spinless fermions, their op
tors beingcg* ,cg . In the classical limitS→`, introducing
the polar anglesug andfg for theSg spins, one arrives at the
classical Hamiltonian:4,2
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He f5
AS

2 ( cg* cg2t( cos
ug,g1D

2
exp~2 igg,g1D!cg* cg1D

2
I

2 ( ~SgSg1D!, ~11!

whereug,g1D is the angle between the spins of theg andg
1D atoms, and the expressions for the phases are

gg,g1D5tan21Fcoshg,g1D

cosjg,g1D
tanzg,g1DG ,

zg,g1D5
fg2fg1D

2
, ng,g1D5

ug1fg1D

2
,

jg,g1D5
ug2fg1D

2
.

The phasesg appear when one takes into account the f
that the spin of thes electron is parallel to the spin of th
atom at which it is located at the moment. When thes elec-
tron goes over to another atom, it changes its spin direct
Hence, when one calculates the effective hopping inte
between two atoms, one should take thes electron spin ro-
tation accompanying the electron transition. This means
ing the transformation rules for the spinors. As is w
known, the coefficients of the corresponding linear relatio
ships are complex numbers. This leads to the appearanc
the phases in the expressions for the effective hopping i
gral. The results of Refs. 2 and 4 were reproduced by m
authors ~e.g., Ref. 5!, and it is customary to term theg
phases as the Berry phases.

For the aim of the present paper it is sufficient to point o
that bothgg,g1D andug,g1D vanish atT50 and are random
at T→`.

We shall analyze the temperature dependence of
charge-carrier spectrum in the paramagnetic region, whe
is generally impossible to diagonalize the Hamiltonian~11!
even approximately. For this reason, a very useful appro
to the problem is the method of moments, which does
require the prior diagonalization of these Hamiltonians. T
moments are determined by expressions

Mn5
1

N
^Tr He f

n &, ~12!

where trace is calculated for a fixed set of the spin proj
tions, and ^•••& denotes the temperature averaging o
spins.4,2 The constant term2AS/2 is omitted.

Only even central moments are nonzero for the Ham
tonian ~11!. One may infer from the ratior (T)5M4

1/4/M2
1/2

whether the conduction band form is strongly temperat
dependent. One obtains
t

n.
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t

e
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e

-
r

l-

e

M25zte f
2 , te f

2 5
t2

2 F11
^S0S1&

S2 G . ~13!

An explicit expression forM4 is presented in Refs. 4 and 2
For our aims it is sufficient to present ther values for a
simple cubic lattice found there:r (0)51.25, and r (`)
51.23. ~At T→` all the binary correlation functions ar
presumed zeroes.!

As is seen from these figures, the ratior changes very
little with temperature, which suggests that the shape of
density of states remains close to that for the simple cos
dispersion law whenW512t at T50. Hence, the density o
states becomes essentially nonzero only for energies exc
ing the effective band bottom26te f(T). As follows from
Eq. ~13!, for the classical spins, the bandwidth atT→` is
29% less than atT50.

It remains to demonstrate that the band narrowing
hances the depth of the donor or acceptor level. To make
sure of this, it is sufficient to consider a system with a po
defect of the strengthU described by the Hamiltonian

Hi52Uc0* c01He f , ~14!

with He f given by Eq.~11!. For U sufficiently large, thes
electron is distributed between the impurity atom 0 and
nearest neighborsD. According to Eqs.~13! and ~14!, the
temperature-dependent depth of the impurity level is

D~T!52zte f~T!1
U

2
1AU2

4
1zte f

2 ~T!. ~15!

One sees from Eq.~15! that atT50 the discrete level exists
for U/t.5, and the differenceD(0)2D(`) is always nega-
tive, tending toW(0)/22W(`)/2 with U→`. Respectively,
the radiusR of the localized state diminishes with increasin
temperature:

R5
za

z1~v1Av21z2!
, v5

U

te f
2 ~T!

. ~16!

As was already said above, an increase in the donor le
depth and a decrease in the donor orbit radius stabilizes
insulating state and hinders the transition into the highly c
ductive state.
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