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High-temperature ferrons in magnetic semiconductors and colossal magnetoresistance materials
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A type of bound magnetic polardifierron) is proposed in which the electron energy lowering occurs due to
the electron interaction with the random magnetization fluctuations. These states can explain why some doped
magnetic semiconductors are highly conductivd at0 and insulating af — . [S0163-18209)50534-]

A specific property of magnetic semiconduct@swhich  with the total moment of the region adjusting to it, i.e., being
the colossal magnetoresistance materials belong, don-  always paralle(or antiparallel to it. For this reason the total
sists in the fact that the charge-carrier energy is minimal fos-d exchange energy remains nonzero and lowers the local-
the ferromagnetic ordering. For this reason, the mobile eledzed electron energy more the smaller the region size. Mean-
trons tend to establish the ferromagnetic ordering in nonferwhile, the fluctuations do not influence the conduction band
romagnetic materials or in ferromagnetic semiconductors ggottom.
finite temperatures when the ferromagnetic ordering is par- In the case of the double exchange, the conduction band-
tially destroyed. The manifestation of this tendency is thewidth diminishes, and its bottom is boosted with increasing
appearance of the ferromagnetic polar¢fesrons in anti-  temperature. Meanwhile, the donor level rises considerably
ferromagnetic semiconductors when a charge carrier prdess, being pinned by the impurity potential. Hence,Tat
duces a ferromagnetic microregion inside the antiferromag=—, the donor level depth is larger and the radius smaller
netic crystal and becomes self-trapped bytite magnetic than atT=0.
polaron, or ferron! In both cases, a reduced high-temperature value of the

A magnetized region can also arise in the vicinity of anorbital radius as compared with thatt 0 can explain the
unionized donor, being produced by its electftimee bound fact often observed in the ferromagnetic semiconductors, in-
ferron). Similar phenomena can take place in the ferromag<cluding the manganites: If the donor electrons are delocal-
netic semiconductors at elevated temperatises Refs. 2 ized at T=0 they can be localized aT—, ie., the
and 3. The electron localization region is overmagnetized intemperature-induced Mott transition takes plade.
this case, which means that inside it the binary spin correla- To analyze the magnetic properties of the unionized do-
tion functions are positive and enhanced as compared withors, it is advisable to begin with the construction of a non-
their values outside the localization region. Ruderman-Kittel-Kasuya-Yosida (non-RKKY) magnetic

At high temperatures, one believes that the ferrons shoultiamiltonian describing the indirect exchange via the only
disappear as the ferromagnetic ordering becomes destroyetectron of the donor. As usual, tised model is used with
even in the region of the electron localization. Mathemati-the Hamiltonian
cally, the disappearance of the correlations means that the
binary spin correlation functions become zero if the atoms A e
entering them do not coincide. The aim of this paper is to H=H{r)+Hso(N)+Hao, Hs=—5 -~ @
prove that the self-trapped states for the free charge carriers
disappear afT—« (this means temperatures considerably |
exceeding the Curie point but at which the donors remain - _ _ - _
unionized. But interaction with uncorrelated magnetic fluc- Haa Azg (S9)D(r=0). Haa 2 gZA (S3ra),
tuations lowers the energy of a bound electron and dimin-
ishes its radius considerably. Thus, one can talk about a typ&hereSy is thed spin of the atonm, s the conduction elec-
of bound magnetic polaron not related to the ferromagneti¢ron spin,D(r —g) is equal to 1 inside the unit ceff and O
ordering. outside it,mis the electron effective mass,is the dielectric

Physically, the scenarios for the fluctuation lowering ofconstant, and\ is the vector connecting the nearest neigh-
the donor(acceptor energy are different for the cases of a bors,i=1. Thes-d exchange integrah is assumed to be
relatively weaks-d exchange energgwide electron bands positive.
and the opposite case known as the double excharageow First, the inequalityA S<W is assumed to be met whege
electron bands In the former case the point is that the ab-is the d-spin magnitude, andV the conduction bandwidth.
solute value of a magnetic moment for any finite-size regiorAs usual in the theory of the indirect exchange, the adiabatic
is nonzero, being of order of the square-rooted number of th@pproximation is used when, in dealing with teelectron,
magnetic atoms inside it. The absence of the local ferromaghed spins are considered as the classical vectors. In the first
netic ordering is a consequence of the fact that the directioBpproximation inAS'W the wave function of the system can
of this moment fluctuates randomly. But these fluctuationde separated into the orbital and spin parts:
do not influence the exchange energy between the electron
and the magnetic atom as the electron spin fluctuates jointly W (r,{S*},0)=¢(r)n({S},0), (2
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7({S%,0)=({S}) 8(0,112) + x({S*}) 8(0, — 1/2),

where 7 is a function of the set of thd-spin variablegS*}
and thes-electron spin variable| 5(x,y)=1 for x=y and 0

otherwisg. It should be an eigenfunction of the Hamiltonian = \/3(5+ 1) w3(2)+ >, w(g)w(f)(SyS)
(1), averaged over the orbital wave function g g7 f

\/ 2, w(@W(H(SS)

H.7=(E—E)7, E,=J d3ryHgy, 3 g; w(g)w(f)(SS)
~+P| 1+ . (6a)
2P
Hao=—A2 w(9)(Ss), w(g)=y*(g)a’, The last term in Eq(6a with the Heisenberg-like structure

omitted here will be taken into account in a special publica-
whereE, is the energy of the electron bound to the impu- tion.
rity, and a the lattice constant. The electron energ¥, is calculated with the aid of the
Making use of Eqs(1)—(3), one can represent the wave HamiltonianH, (1) and the trial wave function
equation in the formE, is omitted:

AL AL? () S p( Xt € )
rN=|\—| exp——|, ag=—-7,

> ¢+(E_T)X:0, Wag ag B me2

- wherex is the variational parameter.
AL lEs AL* ~0 7 In the leading approximation in T/one can write down
2 X 2 $=0, the x-dependent portion of the free ener in the form
eZ
+ . Pl — (y2 3/2 —
L=2> w(g)S;, L==L =iLY. FRO)=0C=20Bg =L, Bg=5— . (8

The following relations are used which are valid for any  Minimizing the free energy(8) with respect tox, one
function f(S?) of S* obtains its optimal value and inverse orbital radius Tor

—oo (in the Eg and 1&g, units, respectively
S f(SH=f(S$+1)S, L L =L2—L%L*+1).

_ _ 813 27_8 2_12_
For an arbitraryw(g), the set of Eq(4) can be solved with Fo= = SIFI+ VIHIT] - SN+ 4121, ©)

accuracy of 1/3N, whereN, is the number of magnetic

atoms over which the localized electron is spread. This solu- o =[1+I+12)2 |= £~ AS (10)
tion makes it possible to introduce an effective indirect ex- * ' 8Eg (Weea)l?
change HamiltoniarH,,; whose eigenvalues represent the

s-d exchange energy of the bound electron: With ag=a, for ASEg varying from 1 to 5F., varies from
—1.104 to—1.659 andx,, from 1.077 to 1.1445, whereas

A both these quantities were equal to ITat0 (in correspond-
ig\/Ef w(@w(f)(SgS). (5 ing unit. Hence, the electron interaction with randdom-
¢ correlated magnetization fluctuations leads to a marked de-
Two signs in Eq(5) correspond to twe electron spin pro- crease in the bound electron energy and in the orbital radius,
jections. Below, under assumption Af>0, only the lower and this is true for any type of magnetic orderingTat 0.

Hml

sign will be used. The corresponding electron state can be called the bound
As is seen from Eq(5), in the limit T—, though the paramagnetic fluctuation polardferron).
correlations between thiespins are absent, tteed exchange Formally, based on Eq$9) and(10) one might arrive at

energy remains nonzero in the first ordetd&'W, being of  the conclusion that random fluctuations could cause the trap-
orderAS VN,. Hence, the interaction with random magneti- Ping of a charge carrier in the absence of the impurity po-

zation fluctuations tends to diminish the orbital radius. tential (the free paramagnetic ferrprBut its energy turns
The problem of the localized electron stateTat- will  out to be of order AS)*/W?, which is far beyond the accu-

be solved using a variational procedure for the free energy ofacy of the present calculation and, hence, can be put equal

the system: to zero.

Now the case of the double exchange in the ferromagnetic
bl A semiconductors will be discussed. In this limit in the zero
Fr=E - 5\/5_ NTIn(2S+1), (6) approximation inW/AS, the s electron spin is parallel to the
spin of the atom at which it is located at the moment. The
opposites electron spin projection is prohibited, so that the
P=S(S+ 1)2 w?(g). electrons can be considered as spinless fermions, their opera-
tors beingcg ,Cg. In the classical limitS— e, introducing
The second term in Eq6) is obtained from Eq(5) using the  the polar angleg, and ¢, for the S spins, one arrives at the
condition of the weak correlations between spins: classical Hamiltoniaf:
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AS g+ A . t?
Her=— 2 c§Cq—t2 COS=5—exXp—iYgq:a)ChCoia Mo=28;, =5 1+<S§1> . (13)
|
5 > (SSyea) (11 An explicit expression foM, is presented in Refs. 4 and 2.

For our aims it is sufficient to present thevalues for a
where 64 4 a is the angle between the spins of h@ndg  simple cubic lattice found therer(0)=1.25, andr(x)
+A atoms, and the expressions for the phases are =1.23. (At T— all the binary correlation functions are

presumed zeroes.

Yoona=tan L COSnggra o ¢ As is seen from these figures, the ratichanges very
ggta COSEg g+ a ggrA little with temperature, which suggests that the shape of the
density of states remains close to that for the simple cosine
_ g™ dgia gt bgia dispersion law wheiw=12t at T=0. Hence, the density of
{ggra= 2 ' Vogta™ 2 ’ states becomes essentially nonzero only for energies exceed-
ing the effective band bottom-6t.¢(T). As follows from
Og— bgra Eq. (13), for the classical spins, the bandwidth Bt>o is
Sgg+a=" 5 - 29% less than af=0.

) It remains to demonstrate that the band narrowing en-
The phasesy appear when one takes into account the fachances the depth of the donor or acceptor level. To make one

that the spin of thes electron is parallel to the spin of the gsyre of this, it is sufficient to consider a system with a point
atom at which it is located at the moment. When #felec-  defect of the strengthy described by the Hamiltonian

tron goes over to another atom, it changes its spin direction.

Hence, when one calculates the effective hopping integral N

between two atoms, one should take thelectron spin ro- Hi=—UcpCot Her, (14
tation accompanying the electron transition. This means us-

ing the transformation rules for the spinors. As is wellwith H¢¢ given by Eq.(11). For U sufficiently large, thes
known, the coefficients of the corresponding linear relation-€lectron is distributed between the impurity atom 0 and its
ships are complex numbers. This leads to the appearance bgarest neighbord. According to Egqs(13) and (14), the
the phases in the expressions for the effective hopping intéemperature-dependent depth of the impurity level is

gral. The results of Refs. 2 and 4 were reproduced by many

authors(e.g., Ref. %, and it is customary to term the U U
phases as the Berry phases. D(T)=—zt(T)+ > + \/T +z824(T). (15
For the aim of the present paper it is sufficient to point out

that bothy, g1 4 @and 6y 4, o Vanish atT=0 and are random ) )

at T—co. One sees from Ed15) that atT=0 the discrete level exists
We shall analyze the temperature dependence of thfr U/t>5, and the differenc®(0)—D(=) is always nega-

charge-carrier spectrum in the paramagnetic region, when ftve, tending tow(0)/2—W(«)/2 with U— . Respectively,

is generally impossible to diagonalize the Hamiltonjan)  the radiusR of the localized state diminishes with increasing

even approximately. For this reason, a very useful approaciemperature:

to the problem is the method of moments, which does not

require the prior diagonalization of these Hamiltonians. The

. : za U
moments are determined by expressions

R=— y=——.
z+(v+ W2+ 72 t2(T)

As was already said above, an increase in the donor level
depth and a decrease in the donor orbit radius stabilizes the

where trace is calculated for a fixed set of the spin projec: . . L .
tions, and(---) denotes the temperature averaging ovephsulating state and hinders the transition into the highly con-

spins*2 The constant term- AS2 is omitted. ductive state.

Only even central moments are nonzero for the Hamil- This investigation was supported in part by Grant No.
tonian (11). One may infer from the ratio(T)=M34M3}?  98-02-16148 of the Russian Foundation for Basic Research,
whether the conduction band form is strongly temperaturdy Grant No. 97-1076072) of the Russian Ministry of Sci-
dependent. One obtains ence, and by Grant No. NTECH LG 972942 of NATO.
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1
Mn=N<Tr Heoo), (12
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