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Quantum phase transition in coupled quantum dots
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We study two quantum dots in the limit of strong dot-lead coupling and weak dot-dot tunneling. The model
maps on Ising-coupled Kondo impurities. We argue that a new quantum critical fixed point exists at an
intermediate value of the mutual capacitance, supporting non-Fermi-liquid behavior. We construct the total
conductance across the double dot structure. It exhibits a strongly peaked behavior as a function of the mutual
capacitance, gate voltage, and temperature.@S0163-1829~99!50632-2#
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Electron tunneling through quantum dots is fundamenta
affected by intriguing many-body effects. The Coulomb
teraction imposes a prohibitive energy costEC on the trans-

fer of electrons, known as Coulomb blockade.1,2 Fine-tuning
of the gate voltageVG is required to reinstate charge flow
manifesting itself in sharp conductance peaks as a func
of VG.

Remarkably, the charge transfer is accompanied
an orthogonality catastrophe. Single level quantum d
form a well-controlled realization of the Kondo mode3

For metallic islands the analogy to the Kondo proble
was also recognized early,4 with an exact formulation due
to Matveev.5 The Kondo-type slow rearrangement
the electron states leads to a substantial downw
renormalization ofEC ,6 as well as a smoothing of th
conductance peaks.7,8 Additional processes, such as th
effect of higher order terms9 and inelastic cotunneling10 were
also analyzed.

New effects arise when two such systems are allowe
interact. We argue that a robust quantum phase trans
takes place in the coupled dot system when their mu
capacitance is varied. It is driven by a change of the deg
eracy of the ground state. The total conductance exhibits
inverse power-law temperature dependence at this cri
point.

We start by considering a structure of two metal
quantum dots, each coupled to its own lead. Single le
dots will be commented on at the end of the pap
The lead-dot barriers are assumed to be narrow such
the tunneling can be modeled as a point contact. Furtherm
we assume the presence of a strong enough magnetic
to achieve a fully spin-polarized electron gas. Thus
number of ‘‘flavors,’’ i.e., of additional quantum numbe
of transverse momenta and electron spin, is restricted t
Extensions to multiple flavors will be studied below. The d
is assumed to be large enough to support a degene
electron gas with small level spacing. This level spac
serves as a low energy cutoff,below which our scal
PRB 600163-1829/99/60~8!/5125~4!/$15.00
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arguments do not hold. The Hamiltonian of one lead-d
system can then be written

H5(
ka

ekcka
† cka1J (

kk8aÞb

cka
† ck8b1H.c.1He-e , ~1!

whereek is the energy of the electrons,J is the tunneling
amplitude, and the pseudospin indicesa andb take the val-
ues 1, when referring to the lead and 2 when describ
electrons in the dot, andHe-e is the electron-electron inter
action term that will be discussed below. Many particle tu
neling terms are irrelevant and are hence dropped. In
pseudospin notation the tunneling term is proportional
(sab

1 1sab
2 ).5

Next we discuss the electron-electron interaction. In
lead the interaction only induces a Fermi-liquid-type mod
cation of the parameters, but on the dot its effect is m
profound. When the interaction is treated on the Hart
level, it can be represented by a charging energy, the sca
which is EC5e2/2C, whereC is the capacitance of the do
Experimentally it is also possible to tune the overall poten
of the system by a gate voltageVG. The electrostatic energy
of the dot can then be expressed asEQ5(Q2QG)2/2C,
where~essentially! QG5CVG andQ is the charge on the dot
Tuning QG beyonde/2 makes it energetically favorable t
transfer an electron across the barrier, giving rise to the w
known set of parabolas as the ‘‘band structure’’ of the s
tem. Transport becomes possible when the energies of s
with different number of electrons are degenerate. Thus
conductance shows sharp peaks as a function ofQG, with
maxima atQG/e5n11/2. In the vicinity of these degen
eracy points the energies of the states withn andn11 elec-
trons are much closer to each other than to any other sta
is then reasonable to truncate the Hilbert space to two sta
A secondpseudospin ofS51/2 can be introduced to repre
sent this constraint on the allowed states. With this notat
H assumes the Kondo type form, as first derived in its
tirety by Matveev:5
R5125 ©1999 The American Physical Society
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HK5(
ka

ekcka
† cka

1J (
kk8ab

cka
† ~sab

1 S21sab
2 S1!ck8b2DSz. ~2!

HereD is the gap between then andn11 electron states on
the dot. The introduction of the two types of pseudos
operators allows a complete mapping of a single dot to
Kondo problem in a magnetic fieldD. Note that the Kondo
term is not spin-rotationally invariant, it contains only th
spin-flip terms. Furthermore, the density of states in gen
can be different on the lead and the dot. However, in a p
turbative analysis only the product of these density of sta
enters, since every tunneling process connects the lead
the dot. Thus this asymmetry is irrelevant.

We now include the interaction between the two d
caused by their mutual capacitanceCm .11,12 The generated
dot-dot coupling is proportional tonLnR, where we intro-
duced the L, R notation for the left and right dot, respe
tively. HerenL,R denotes the charge of the left or right dot.
pseudospin notationSL,R

z 5nL,R21/2. The mutual capaci
tance leads to an antiferromagnetic Ising type coupli
HLR

AF5I zSL
zSR

z , where I z;ECm
. The total Hamiltonian then

takes the formH5HL
K1HR

K1HLR
AF , describing two aniso-

tropic Kondo impurities, coupled by an antiferromagne
Ising term.

We proceed to analyze the physical content of the mo
At I z50 we have two decoupled Kondo models. AtT50 in
the magnetic language two independentisotropicKondo sin-
glets are formed with a ‘‘binding energy’’;TK , as the an-
isotropy of the Kondo coupling is known to be irreleva
around this fixed point. In the charge language, the electr
form strongly hybridized states between the lead and the
This hybridization manifests itself by the strong-coupli
Kondo phase shift,d5p/2. The key observation is that th
ground state is asinglet. At finite but smallI z we generalize
arguments originally used by Nozieres in the study of
stability of the Kondo fixed points.16 In our case the dot-do
interaction involves virtual hopping operators to fourth ord
in the lead-dot hybridization amplitude. The correspond
diagrams contain a large number of fermionic operators,
thus are irrelevant. Alternatively the large number of fermi
operators strongly confine the relevant phase space, lea
to a positive exponent for theT dependence, again yielding
vanishing effect atT50.

In the opposite limit,I z5`, the dot pseudospins ar
aligned antiferromagnetically. The~↑,↓! and ~↓,↑! states are
degenerate and form adoublet, which is independent of the
conduction electrons. In the charge language these s
consist of one extra electron being either on the left or on
right dot: ~1,0! and~0,1!. The energy of forcing on or taking
away a dot electron is;I z , and is thus prohibited in this
limit. Let us recall that the interaction term between the le
electrons and the pseudospin contains only spin raising
lowering terms. Therefore in the allowed Hilbert space
matrix elements of this coupling are zero, and thus the ph
shift of the conduction electrons vanishes. The degenerac
the ground state extends to large but finiteI z couplings as
well because dot electrons hybridize only with their cor
n
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sponding leads. Since the dot-dot coupling does not allow
charge transfer, these fluctuations remain confined to the
and lead on the same side. Therefore the energies of
doublet’s two states renormalize symmetrically for finiteI z ,
and thus the degeneracy is preserved. To sum up, the gr
state is a singlet for small values ofI z , but changes its sym
metry to a doublet at large values ofI z . This change canno
be continuous: the two regions are necessarily separated
phase transition, describing an Ising type breaking of
symmetry.

The number of minima of the action is one for smallI z
and two for largeI z . At the transition pointall three minima
are degenerate, and separated by barriers: this raises the
sibility of the transition being first order. However, the o
erator~s! c1(2),↑

† c1(2),↓ , connecting the central minimum
with one of the two side minima, have a dimensionone.
Therefore the interminima tunneling, represented by the
scalesup, destroying the barrier between these two sta
This makes the phase transitionsecond order. The scaling of
this operator away from criticality was cut off by the ener
difference of the minima, and hence was ineffective.

In the related system of twoisotropically coupled Kondo
impurities, a quantum phase transition as function of the
teraction was predicted long ago. The results of numer
RG studies13 were confirmed by conformal field theoretic
methods,14 and rationalized by phase-shift arguments15

However, in the isotropic case the ground state on both s
of the transition is a singlet, i.e., the symmetries of t
ground states are the same. Thus the fixed point needs
protected by additional particle-hole and spin rotation
symmetries.17 In the present case, since an actual symme
breaking occurs at criticality, the transition is robust.

We pause to make connection to previous work by
viewing the band structure. The parabolas now have
indices, representing the charge states of the two dots.
I z50 the ~0,0! and ~1,1! curves are touchingEQ50, the
latter displaced along the gate charge (QG) axis by e. The
~0,1! and ~1,0! curves are centered atQG5e/2, and are also
shifted upward such that they go through the intersection
the ~0,0! and ~1,1! curves. Exactly this degeneracy of stat
with different number of charges allows for transport acro
the dots and gives rise to the conductance peak. If we n
introduce the mutual capacitanceI z , the upper parabolas ar
customarily shifted down by an amount;I z . This creates
two degeneracy points atQG;e/2(16I z /EC). Thus the
original degeneracy of the~0,0! and ~1,0! states, which al-
lowed for the Kondo effect, seems to have been destroy

In contrast we predict that this new quantum critical po
is observable. The reason for this is that for smallI z the
Kondo energy scaleTK is bigger thanI z . Therefore one has
to start by accounting for the formation of the Kondo single
a deeply nonperturbative effect. The subsequent inclusio
I z means only a small perturbation, similar to a fluctuati
magnetic field. According to the above reasoning such a fi
has a vanishing polarizing effect on the Kondo singlet
I z,TK . Thus the~0,1! and ~1,0! parabolas should not b
viewed as shifted from theirI z50 location, and their degen
eracy is preserved. An analogous situation occurs in sin
dots:4 the effect of the Kondo processes is to stronglycol-
lapse the band structure, sustaining their degeneracy up
some finiteI z . On the other hand, forI z.TK it is reasonable
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to account forI z first and then treat the Kondo coupling as
perturbation. The two regimes are separated by the quan
critical point atI z

c;TK .
Next we determine the total conductance. We add an

terdot tunneling term

Htun5I 6(
kk8

ckL2
† ck8R2SL

1SR
21H.c. ~3!

The pseudospin index 2 appears explicitly, as we are con
ering dot-dot tunneling. This term breaks the conservation
electrons on each side, and is a relevant perturbation a
quantum critical point. One then expects that the lo
temperature behavior of the renormalized tunnelingat criti-
cality exhibits a singularity:I 6(T);T2g. In the I 6!J limit
the bottleneck for the total conductanceG is the dot-dot
tunneling:

G~ I z5I z
c ,T!;„I 6~T!…2;T22g. ~4!

This is only a crossover behavior. As T is further lowered,
I 6 grows large and flows to an attractive fixed point, co
trolling its asymptotic behavior. The structure of theI 6 term
is the same as that of the particle-hole symmetry break
operator, thus it is plausible that its dimension is the sam
well. However, the actual value ofg still needs to be
determined.18

What happens away from criticality? ForI z,I z
c the

Kondo singlets inhibit the transport. AtT50 the binding is
complete, thusG(T50)50. Concentrating once again o
the bottleneck dot-dot tunneling we compute the scaling
mensions of the involved operators. The fermion opera
carry dimension 1/2, the spin raising operator has dimens
1. The current operator is constructed from the@N,H# com-
mutator. Collecting the terms the current-current correla
decays with the sixth power of time. Substituting this into t
Kubo formula finally yieldsG(T);T4. The lead-dot proces
occurs via the Kondo coupling, which scaled to its unitar
limit, thus it does not give rise to additional powers ofT.

In the regimeI z.I z
c electrons have to break an Isin

bond. Thus at zero temperature againG(T50)50, and at
finite T the temperature dependence takes an activated f
G(T);exp(2W/T), whereW;I z . To sum it up, the conduc
tance as a function ofI z at zero temperature is zero near
everywhere, and exhibits a resolution and size limited p
at Iz5I z

c . At finite temperatures the peak ofG(T,I z) devel-
ops asymmetric,T dependent wings. The different regime
are shown qualitatively in Fig. 1. Finally we examine t
effect of tuning the gate charge away from its special va
QG5e/2, considered so far. In the Kondo language t
gives a finite value to the magnetic fieldD. For I z,I z

c the
Kondo singlet is protected by the largest energy scale,TK at
T50. For 0,D,TK the singlet is somewhat polarized, an
weak transport is possible. This manifests itself in two sm
amplitude ‘‘shadow bands’’ in a V shape determined b
uDu5I z . This is the locus of the crossing points of th
‘‘shifted parabolas.’’ An important transport channel in th
region is cotunneling, which only virtually breaks the Kond
singlet. ForI z5I z

c the pronounced conductance peak of t
quantum critical point is presentat D50. This peak contin-
ues out to finiteD, forming a parabolalike ridge, which
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smoothly connects to the usual split conductance peak
uDu5I z for I z.I z

c . In this regionI z.TK is the largest energy
scale and constructing the band structure first is appropr

Constructing the picture from the largeI z side, the mag-
netic field D is trying to induce a spin-flip transition in th
antiferromagnetic singlet. It is competing with the sing
binding energy, so the spin flip can only occur when t
binding energy equals the Zeeman energy:uDu;I z , forming
the usual V locus for the split peaks. Approaching the qu
tum critical point, however, the binding energycollapses to
zero, hence the V becomes rounded, and closes atI z

c , as
shown qualitatively in Fig. 2.

To summarize, the key predictions of our work are
follows. ~i! For a gate voltage fixed atQG5e/2 and tuning
I z , a pronounced conductance peak has to be observed
critical value I z5I z

c;TK . ~ii ! Staying atQG5e/2, I z5I z
c ,

the conductanceG(T) should exhibit a power-law singular
ity in its temperature dependence.~iii ! The amplitude of the
split conductance peaks atQÞe/2 should exhibit a marked
collapse asI z˜I z

c from above. Experimentally these predi
tions can be observed by tuningI z while keepingI 6 fixed,

FIG. 1. The qualitative behavior of the conductanceG as a
function of T and I z .

FIG. 2. The conductance peak as a function ofI z and the gate
voltage atT50.
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whereas previous experiments19 typically held I z fixed, and
described the evolution of the peak structure with the tun
of I 6 . Also, asI z /TK is the controlling dimensionless ratio
experimentally it might be easier to keepI z fixed and tune
TK instead by varying the lead-dot tunneling.

The above results apply to two coupled metallic islan
each with a large density of states. In the case of two coup
semiconductor quantum dotsa single level is active on eac
of them. As the Coulomb repulsion allows only for the
single occupancy, a true ‘‘impurity spin’’ is formed on eac
dot, making the mapping to the Kondo problem exact. Th
the Varma-Jones analysis establishes the existence o
analogous quantum critical point.13 The main difference is
that this transition has to be protected by more delicate
ing, such as maintaining the particle-hole symmetry. Wh
the tuning is incomplete, we expect the same peak feature
be present, but somewhat smeared.

The above theory strictly applies only for the case o
single channel. This requires a narrow, long constriction
tween the leads and the dot, similar to the case consid
in.20 We expect important changes when the number of
vors of the electrons is increased. Switching off the magn
field doubles the number of channels. It can be shown18 that
the Ising term is marginal around the ‘‘decoupled’’ fixe
point, leading to a line of fixed points which terminates
some intermediate value. In the related two Kondo impurit
s
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model the one channel critical fixed point expands into
very unusualarea of fixed points.21 If such a structure
emerges in our case, then a broadened conductance pea
form as a function ofI z at T50, and the finite temperatur
conductance should exhibit singular temperature depend
with I z dependent exponents. The case of even larger num
of channels has been investigated for single scatterers in
lation to the physics of two level systems.22 It has been
shown that a two-dimensional subspace of the flavor indi
emerges to dominate exponentially over the others in
course of scaling. Therefore we expect the basic picture
two distinct phases and a well defined quantum phase t
sition in between to carry over, but obviously further calc
lations are called for.

In sum we studied the system of two coupled quant
dots. We established the existence of an intriguing quan
critical point. The experimental predictions include a co
ductance peak atQG5e/2, an inverse power lawT depen-
dence of the conductivity at this same point, and a mar
collapse of the split conductance peaks, when the experim
tal parameters are in the suitable range.
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