
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 15 AUGUST 1999-IIVOLUME 60, NUMBER 8
Accurate mesh truncation for Schrödinger equations by a perfectly matched layer absorber:
Application to the calculation of optical spectra
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Quasibound and continuum states are of particular importance for the numerical investigation of coherence
properties and are sensitive with respect to the boundary condition chosen at the edge of the computational
window. An open boundary condition will be derived which is particularly suitable for dynamical problems
described by Schro¨dinger-type equations. With this approach, bound states as well as unbound states can be
described adequately. The boundary condition is derived from a perfectly matched layer~PML! formalism
commonly used in the field of electrodynamics. Consequently, the calculation domain is reduced leading to a
calculation time reduction by orders of magnitude. From the physical point of view this formulation allows an
adequate analysis of transport phenomena or absorption spectra, e.g., the results obtained by the PML formal-
ism are compared with accurate numerical results calculated using a large mesh and show an excellent
performance. For example, the Coulomb enhanced Franz-Keldysh effect is investigated, which cannot be
analyzed adequately without using proper open boundary conditions.@S0163-1829~99!51332-5#
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Numerical calculations are important for the design
semiconductor devices as well as in the investigation
novel effects like coherence properties. If one is not int
ested in bound states only, care must be taken at the bo
ary of the calculation window. If the boundary conditions a
not appropriate, strong reflections occur, which can sign
cantly affect the results. The usual solution is to choos
large calculation domain. Then, intrinsic losses lead to a v
ishing wave amplitude at the mesh boundaries. Howe
this results in very long computation times, and, especi
for multidimensional problems, the needed computer
sources are not acceptable. Usually, all interactions t
place within a limited area. Thus, computational efficien
can be enhanced by using open boundary conditions
more complex problems can be investigated.

In this paper we apply the perfectly matched layer~PML!
technique to the calculation of optical spectra of semic
ductor heterostructures. Generally, the semiconductor B
equation is formulated in a six-dimensional hyperspace.
suming rotational symmetry, quantum wells and superlatti
can be calculated within a three-dimensional computa
domain. If one is interested in bound-state absorption o
an expansion into a few single particle wave functions i
fast computational approach.1 Using the full three-
dimensional semiconductor Bloch equation results in a w
range of possible applications,2 but is numerically expensive
without appropriate boundary conditions. For example
mesh of up to 1 million discretization points has been u
with about 10 points in the quantum well direction only2

This discretization is appropriate for demonstrating ba
properties but is much too coarse for practical investigat
purposes. We will show that using the PML boundary co
dition enhances the numerical efficiency, thus the range
applications will be enhanced. This is demonstrated by
culating the Franz-Keldysh absorption from the thre
dimensional semiconductor Bloch equation.

It is quite complicated to develop open boundary con
tions for the Schro¨dinger equation because it is of first ord
PRB 600163-1829/99/60~8!/5109~4!/$15.00
f
f
-
d-

-
a

n-
r,
y
-
e

nd

-
h

s-
s
n
y,
a

e

a
d

c
n
-
of
l-
-

-

in time and of second order in space, compared to electro
namic calculations using Maxwell’s equations or the elect
magnetic wave equation, which are both second orde
space and time. In electromagnetic theory there is a l
tradition of developing open or analytically absorbin
boundary conditions~ABC! back to 1977.3,4 They are based
on an analytical one-dimensional estimation of the exte
points resulting from a factorization of the one-dimension
wave equation. Thus, for multidimensional problems, effe
tive constants, depending on the incidence angle and mat
properties, must be estimated. Another approach is to m
a physical absorber which attenuates the outgoing waves5 A
drawback is that this kind of absorber is not reflection-free
the interface between the absorber and the calculation
main. Berenger6 proposed the introduction of a nonphysic
absorber which is matched to the calculation domain for
angles of incidence, called perfectly matched layer. It i
proved the accuracy of the boundary conditions by orders
magnitude introducing additional anisotropic losses, which
equivalent to a complex coordinate stretching.

For the Schro¨dinger equation, the most natural way
formulate open boundary conditions is to match the calcu
tion space to an analytic solution of the exterior region. T
approach has been called the quantum transmitting boun
method ~QTBM!,7 and works quite accurately for simpl
structures and for stationary problems. It is related closely
Hadleys transparent boundary condition~TBC!.8 For dy-
namical problems, this method has been applied also,9 but
then the parameters have to be estimated from time der
tives. A more elegant method has been proposed
Schmidt10 which results in a boundary condition similar t
the ABC for electromagnetic problems. As the Schro¨dinger
equation is of first order in time it results in a formulatio
which is nonlocal in time. Again, this estimation has be
done for one dimension only, thus again effective consta
must be estimated. In contrast, absorbers do not requi
parameter estimation and are easy to implement. Phys
absorbers have already been used for beam propag
R5109 ©1999 The American Physical Society



e

r
on
n

be
er

f
b
a
ill
e
a
t

p
o
a

re

la
-
da

n

rd

for
te-

nal
ec-
ill

en
ors

ter-
ted

the

nd

of

lly
ns
ly-

i-
h
are

lex

cal-
ry
ies
are
-
all
ith

RAPID COMMUNICATIONS

R5110 PRB 60A. AHLAND, D. SCHULZ, AND E. VOGES
methods,5,11 but had to be carefully adjusted to prevent r
flections, as these absorbers were not matched.

In this paper we will derive a PML formalism fo
Schrödinger-type equations. This results in a boundary c
dition which is local in time and space. Additionally, eve
for multi-dimensional calculations, the formalism can
implemented easily, providing a very high accuracy. Th
are some differences compared to the formulation used
electromagnetic calculation because the wave functions o
different boundary conditions than those used in electrom
netic computations. Without loss of generality, we w
present the development of the PML for the thre
dimensional exciton equation which describes the optical
sorption in quantum well structures. It can be extended
more dimensions or other Schro¨dinger-type equations.

In this section we will show that it is possible to develo
an absorber which is ideally nonreflecting, independent
the angle of incidence. We start with the linear density m
trix equation for excitons2,12

~1!

M0 is the optical dipole matrix element,E is the electric
field, andG is a dephasing rate due to scattering. The
duced electron-hole mass ismr5(1/me11/mh)21, the
electron-hole potentialVeh includes the dielectrically
screened Coulomb potential

Veh5e0„Ve~ze!2Vh~zh!…2
e0

2

4pe0e rA~ze2zh!21r 2
.

~2!

Equation~1! is valid for parabolic bands and for the Nab
operator¹ in cylindrical coordinates. At an arbitrarily lo
cated interface between two materials 1 and 2, the boun
conditions

c15c2 , m1
21¹c15m2

21¹c2 , ~3!

hold.13 This form conserves hermiticity of the Hamiltonia
even in a discretized form.

To develop the PML-absorber, complex stretched coo
nates are defined by stretching factorssx with x standing for
the coordinatesze , zh , or r:

x̃5E
0

x

sx~x8!dx8, ~4!

resulting in

]

] x̃
5

1

sx

]

]x
. ~5!
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This results in a change of the Nabla operator. Clearly,
sx51, the original equations result and because of the in
gral form @Eq. 4# the coordinates transform gradually.

To show that these transformations lead to additio
damping, we will calculate the dispersion relation. In a s
ond step it is shown that modifying the stretching factors w
not result in reflections. We will consider the caser @0 due
to simplicity. In this case the general solution can be writt
as a local superposition of plane waves with wave vect
kW5(kze

kzh
kr)

T:

c15aie
2kW1rW2 j vt1are

kW1rW2 j vt, c25ate
2kW2rW2 jvt, ~6!

with amplitudesai , ar , andat of the incident, reflected, and
transmitted wave, respectively. The two regions at the in
face are labeled 1 and 2. The dispersion relation calcula
from Eq. ~1! results in

kze

2

sze

2 me

1
kzh

2

szh

2 mh

1
kr

2

sr
2mr

5
2

\
~2v1Veh2 j G!ªE0 . ~7!

This is the equation of an ellipsoid and solutions are of
form

kze
5sze

AmeE0 sinu cosf,

kzr
5szh

AmhE0 sinu sinf,

kr5srAmrE0 cosu. ~8!

Inserting the plane wave solution into Eq.~3!, the condi-
tion for a vanishing reflected wave for identical materials a
arbitrary stretching factors is

kx,1

sx,1
5

kx,2

sx,2
. ~9!

For physical absorbers the stretching factors in Eq.~9! are
equal to 1. Thus every change in the wave numbers~8! will
lead to reflections. They can be minimized by the shape
the absorber.5 With stretched coordinates, Eq.~9! is always
valid for arbitrary angles and arbitrary stretching factorssx .

While the absorber constructed above is theoretica
reflection-free, numerical errors result from strong variatio
of the scaling parameters. A good choice would be a po
nomial space dependence according to

sx5a1 j b5~am1 j bm!xn, ~10!

with am andbm as maximum values for the real and imag
nary stretching,x is the normalized absorber length wit
uxu<1. n is the shape parameter, values between 1 and 4
reasonable. Figure 1 visualizes the introduction of comp
stretching factors.

The most interesting interface is between the physical
culation domain and the absorber. We will show with ve
simple approximations how the propagation propert
change across this interface. The vectorial properties
dropped for simplicity. Within the calculation domain, la
beled with the index 1 in all subsequent equations,
stretching factors are 1. The absorber region is labeled w
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the index 2. For a purely propagating wave with a domin
imaginary propagation constantk1'2 j k09 , the propagation
constant then is

k2'bk092 j ak09 . ~11!

This shows that the propagation speed is scaled bya and the
wave is damped byb. If on the other hand the wave is of a
evanescent type with a dominant real propagation cons
k1'k08 , the natural damping is enhanced by the scaling
rametera whereasb does not contribute to damping:

k2'ak081 j bk08 . ~12!

The casea51 yields the original PML formulation due to
Berenger.6 The PML absorber can be implemented using
finite difference~FD! or the finite element~FE! method. It is
applicable to stationary boundary-value problems and eig
value problems as well as to time-dependent problems w
the same amount of programming and calculation eff
This results from the fact that the Schro¨dinger equation is of
first order in time. Because electromagnetic computations
second order in time, the coordinate stretching must be
mulated energy dependent. This results in an increas
computational effort for time-dependent problems by a fac
of 2.

All numerical examples are calculated using a finite e
ment ~FE! method with linear or trilinear base function
Heavy hole–electron transitions are considered in our ca
lations, only. We will present some examples which dem
strate the effectiveness of the PML.

Ideal two-dimensional excitons.The first example is in-
tended to show the influence of the proposed boundary c
dition in comparison to exact calculations. The absorption
an ideal quantum well consisting of Ga0.4In0.6As0.9P0.1 is cal-
culated using a mesh size of 60 points with a constant m
size of 1 nm. The resulting equation is obtained from Eq.~1!
by letting ze5zh50 and neglecting derivatives in thez di-
rection. To distinguish between discretization errors and
rors due to mesh truncation the results are compared w
numerically exact calculation using a very large mesh
1500 points.2 In Fig. 2 the absorption spectrum of an ide
two-dimensional quantum well is shown for a damping r
\G52 meV. The reduced mass ismr50.04 and the dielec-
tric constant ise r514. This results in an exciton Bohr radiu
of ab514 nm and an exciton Rydberg energy ofR

FIG. 1. Principal coordinate stretching.
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52.8 meV. Assuming a Dirichlet boundary condition2 im-
plies vanishing wave functions at the boundaries, which
sults in strong reflections due to the additional quantizati
The results of an 18-point PML absorber withbm53 and
n53 cannot be distinguished from the exact numerical so
tion in the scale of Fig. 2, as the relative error of the calc
lation using the PML shown in Fig. 3 is less than 3%, whi
is appropriate for most applications. Additionally, the use
the analytic ABC~Ref. 10! is shown in Fig. 3. Independen
of the boundary condition the bound excitons are prope
modeled. The ABC has an overall error which is about tw
that of the PML. Additionally, the error is independent
energy. The PML error decreases for higher energies. Th
due to the simplificationr @0. For higher energies the wave
length reduces and the approximation improves. Thus a
ther improvement would be the extension of the PML fo
malism to true radial coordinates. For electromagne
calculations this has already been done,14 but for the Schro¨-
dinger equation this may result in additional terms.

The use of the PML boundary condition results in reduc
computation time by two orders of magnitude compared t
numerically exact solution. It is even more efficient for lo
damping rates since the computational domain must be
larged to compensate for the small damping in this case. T
will be especially interesting for modeling low-temperatu
experiments.

FIG. 2. Absorption of an ideal quantum well, exact and w
vanishing wave functions~no boundary condition!.

FIG. 3. Relative error of the solution including PML or ABC t
exact solution.
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Franz-Keldysh absorption.Using the PML, the optical
absorptiona of an arbitrary semiconductor structure can
calculated. It has been shown2 that Eq. ~1! can be used to
calculate the optical properties of coupled quantum wells
superlattices. It is possible to calculate both type I and typ
structures. Due to a great reduction in computation time
ing the PML boundary condition it is even possible to calc
late the continuum absorption and to describe the absorp
of very flat quantum wells whose absorption is close to
continuum. For example, the free particle absorption
Ga0.202In0.798As0.446P0.554 is calculated for room temperatur
which is modeled by a dephasing rate of\G510 meV. In
Fig. 4 the Coulomb enhanced Franz-Keldysh absorptio
shown for different applied voltages. The Coulomb effe
results in an enhanced absorption and a red shift. Due to
lack of a field dependent shift, all graphs pass throug
single point. This typical feature of the Franz-Keldysh effe
can be seen from measurements of practical devices us
optical communication systems. Because this model
scribes both the quantum confined stark effect~QCSE! and
the Franz-Keldysh absorption, it will be of great practic
interest, especially for the calculation of the modulator ch
which depends on transitions above the band gap.

We have presented an absorbing boundary condition
the Schro¨dinger equation which shows a very good perfo
d
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mance and is local both in time and space. It can easily
implemented within FE and FD methods. Due to the subst
tial saving of computer resources, the direct calculation
the optical absorption is now possible for realistic structu
and effects like the Coulomb enhanced Franz-Keldysh ef
can be investigated for semiconductor heterostructures.
PML concept should also result in substantial computatio
savings for nonlinear problems.15

FIG. 4. Franz-Keldysh absorption.
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