RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 60, NUMBER 8 15 AUGUST 1999-lI

Accurate mesh truncation for Schradinger equations by a perfectly matched layer absorber:
Application to the calculation of optical spectra
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Quasibound and continuum states are of particular importance for the numerical investigation of coherence
properties and are sensitive with respect to the boundary condition chosen at the edge of the computational
window. An open boundary condition will be derived which is particularly suitable for dynamical problems
described by Schdinger-type equations. With this approach, bound states as well as unbound states can be
described adequately. The boundary condition is derived from a perfectly matched P&y formalism
commonly used in the field of electrodynamics. Consequently, the calculation domain is reduced leading to a
calculation time reduction by orders of magnitude. From the physical point of view this formulation allows an
adequate analysis of transport phenomena or absorption spectra, e.g., the results obtained by the PML formal-
ism are compared with accurate numerical results calculated using a large mesh and show an excellent
performance. For example, the Coulomb enhanced Franz-Keldysh effect is investigated, which cannot be
analyzed adequately without using proper open boundary condifi80463-182609)51332-5

Numerical calculations are important for the design ofin time and of second order in space, compared to electrody-
semiconductor devices as well as in the investigation ohamic calculations using Maxwell’'s equations or the electro-
novel effects like coherence properties. If one is not interimagnetic wave equation, which are both second order in
ested in bound states only, care must be taken at the boundpace and time. In electromagnetic theory there is a long
ary of the calculation window. If the boundary conditions aretradition of developing open or analytically absorbing
not appropriate, strong reflections occur, which can signifiboundary condition$ABC) back to 1977:% They are based
cantly affect the results. The usual solution is to choose @n an analytical one-dimensional estimation of the exterior
large calculation domain. Then, intrinsic losses lead to a vanpoints resulting from a factorization of the one-dimensional
ishing wave amplitude at the mesh boundaries. Howevenyvave equation. Thus, for multidimensional problems, effec-
this results in very long computation times, and, especiallytive constants, depending on the incidence angle and material
for multidimensional problems, the needed computer reproperties, must be estimated. Another approach is to model
sources are not acceptable. Usually, all interactions taka physical absorber which attenuates the outgoing waxes.
place within a limited area. Thus, computational efficiencydrawback is that this kind of absorber is not reflection-free at
can be enhanced by using open boundary conditions artthe interface between the absorber and the calculation do-
more complex problems can be investigated. main. Berengé&rproposed the introduction of a nonphysical

In this paper we apply the perfectly matched lageiL) absorber which is matched to the calculation domain for all
technique to the calculation of optical spectra of semiconangles of incidence, called perfectly matched layer. It im-
ductor heterostructures. Generally, the semiconductor Blochroved the accuracy of the boundary conditions by orders of
equation is formulated in a six-dimensional hyperspace. Asmagnitude introducing additional anisotropic losses, which is
suming rotational symmetry, quantum wells and superlatticesquivalent to a complex coordinate stretching.
can be calculated within a three-dimensional computation For the Schrdinger equation, the most natural way to
domain. If one is interested in bound-state absorption onlyformulate open boundary conditions is to match the calcula-
an expansion into a few single particle wave functions is aion space to an analytic solution of the exterior region. This
fast computational approach.Using the full three- approach has been called the quantum transmitting boundary
dimensional semiconductor Bloch equation results in a widenethod (QTBM),” and works quite accurately for simple
range of possible applicatioAdut is numerically expensive structures and for stationary problems. It is related closely to
without appropriate boundary conditions. For example, aHadleys transparent boundary conditiéhBC).2 For dy-
mesh of up to 1 million discretization points has been usedchamical problems, this method has been applied %lsat,
with about 10 points in the quantum well direction oAly. then the parameters have to be estimated from time deriva-
This discretization is appropriate for demonstrating basidives. A more elegant method has been proposed by
properties but is much too coarse for practical investigatiorSchmidt® which results in a boundary condition similar to
purposes. We will show that using the PML boundary con-the ABC for electromagnetic problems. As the Sclinger
dition enhances the numerical efficiency, thus the range ofquation is of first order in time it results in a formulation
applications will be enhanced. This is demonstrated by calwhich is nonlocal in time. Again, this estimation has been
culating the Franz-Keldysh absorption from the three-done for one dimension only, thus again effective constants
dimensional semiconductor Bloch equation. must be estimated. In contrast, absorbers do not require a

It is quite complicated to develop open boundary condi-parameter estimation and are easy to implement. Physical
tions for the Schirdinger equation because it is of first order absorbers have already been used for beam propagation
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methods,*! but had to be carefully adjusted to prevent re-This results in a change of the Nabla operator. Clearly, for
flections, as these absorbers were not matched. s,=1, the original equations result and because of the inte-
In this paper we will derive a PML formalism for gral form[Eq. 4] the coordinates transform gradually.
Schralinger-type equations. This results in a boundary con- To show that these transformations lead to additional
dition which is local in time and space. Additionally, even damping, we will calculate the dispersion relation. In a sec-
for multi-dimensional calculations, the formalism can beond step it is shown that modifying the stretching factors will
implemented easily, providing a very high accuracy. Therenot result in reflections. We will consider the case0 due
are some differences compared to the formulation used faio simplicity. In this case the general solution can be written
electromagnetic calculation because the wave functions obegs a local superposition of plane waves with wave vectors
different boundary conditions than those used in electromagz= (k, k, k,)T:
netic computations. Without loss of generality, we will e h
present the development of the PML for the three-
dimensional exciton equation which describes the optical ab-
sorption in quantum well structures. It can be extended tavith amplitudesa;, a,, anda; of the incident, reflected, and
more dimensions or other Schiinger-type equations. transmitted wave, respectively. The two regions at the inter-
In this section we will show that it is possible to develop face are labeled 1 and 2. The dispersion relation calculated
an absorber which is ideally nonreflecting, independent ofrom Eq. (1) results in
the angle of incidence. We start with the linear density ma-

wlz a e kqar—j wt+ areklrfj wt1 1/12: at67 kzrfjwt, (6)

trix equation for excitorfs'? K2 kgh K2 o
e r .
Zm + Zm + Zm = ifl(—aﬂrveh—] IN:=Eqy. (7
me_l 0 0 rARNS z,'''h r !y
Z V4T V- fy. 0 mt 0 |Ve This is the equation of an ellipsoid and solutions are of the
ot 2 form
0 0 m!

kzez Sz,VMeEq sinf cos¢,

m-1

_ %WE (1) k, =S, Vm,Egsindsing,
k,=s,Vm,E, cosé. (8)

Mg is the optical dipole matrix elemenE is the electric

field, andT" is a dephasing rate due to scattering. The re- Inserting the plane wave solution into E®), the condi-
duced electron-hole mass i, =(1/me+1/m;)"%, the tion for a vanishing reflected wave for identical materials and
electron-hole potential V, includes the dielectrically arbitrary stretching factors is

screened Coulomb potential

k k
) xd_ L’ZI 9
€9 Sx1  Sxz2
Ven=©€0(Ve(Ze) = Vh(Z4))— : . . .
Admege(Ze— zh)2+ r2 For physical absorbers the stretching factors in €&Xj.are

(2)  equal to 1. Thus every change in the wave numi&rsvill
. . _ . lead to reflections. They can be minimized by the shape of
Equation(1) is valid for parabolic bands and for the Nabla the absorbef.With stretched coordinates, E€p) is always

operat_orV in cylindrical coordinate_s. At an arbitrarily 10- \,4id for arbitrary angles and arbitrary stretching factsys
cated interface between two materials 1 and 2, the boundary \ynile the absorber constructed above is theoretically

conditions reflection-free, numerical errors result from strong variations
1 1 of the scaling parameters. A good choice would be a poly-
1=, My Vi =my Vi, () nomial space dependence according to
13 Thi oy T _ _
hold.* This form conserves hermiticity of the Hamiltonian s,=a+jB=(ant]Bm)X", (10)

even in a discretized form.

To develop the PML-absorber, complex stretched coordiwith «,, and 8,,, as maximum values for the real and imagi-
nates are defined by stretching factsgawith x standing for  nary stretchingx is the normalized absorber length with
the coordinateg,, z,, orr: |x|<1. nis the shape parameter, values between 1 and 4 are

reasonable. Figure 1 visualizes the introduction of complex
- x stretching factors.
X= JO Sx(x")dx’, 4 The most interesting interface is between the physical cal-
culation domain and the absorber. We will show with very
resulting in simple approximations how the propagation properties
change across this interface. The vectorial properties are
dropped for simplicity. Within the calculation domain, la-
=, (5)  beled with the index 1 in all subsequent equations, all
dx  Sx X stretching factors are 1. The absorber region is labeled with
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FIG. 1. Principal coordinate stretching.
FIG. 2. Absorption of an ideal quantum well, exact and with

the index 2. For a purely propagating wave with a dominant@nishing wave functiongno boundary condition
imaginary propagation constaki~ —j kg, the propagation

constant then is =2.8 meV. Assuming a Dirichlet boundary conditfoim-

plies vanishing wave functions at the boundaries, which re-
ko~ BKj— ] aky. (11) sults in strong reflections due to the additional quantization.

) ) . The results of an 18-point PML absorber with),=3 and
This shows that the propagation speed is scaled Byd the 1, — 3 cannot be distinguished from the exact numerical solu-
wave is damped bg. If on the other hand the wave is of an top in the scale of Fig. 2, as the relative error of the calcu-
evanescent type with a dominant real propagation constamition using the PML shown in Fig. 3 is less than 3%, which
ki~kp, the natural damping is enhanced by the scaling pajs appropriate for most applications. Additionally, the use of

rametere: whereass does not contribute to damping: the analytic ABC(Ref. 10 is shown in Fig. 3. Independent
Lo of the boundary condition the bound excitons are properly
ko~ ako+] BKo. (12 modeled. The ABC has an overall error which is about twice

The casex=1 yields the original PML formulation due to that of the PML. Additionally, the error is independent (.)f'
Berengef The PML absorber can be implemented using theENergy- The. PML error decreases_for higher energies. This is
finite difference(FD) or the finite elementFE) method. Itis ~ due to the simplificatiom>0. For higher energies the wave-
applicable to stationary boundary-value problems and eiger€ngth reduces and the approximation improves. Thus a fur-
value problems as well as to time-dependent problems witfer improvement would be the extension of the PML for-
the same amount of programming and calculation effortmalism o true radial coordinates. For eIectromagneUc
This results from the fact that the Schioger equation is of ~calculations this has already been déﬁ‘?“t for the Schre

first order in time. Because electromagnetic computations ardinger equation this may result in additional terms.

second order in time, the coordinate stretching must be for- The use of the PML boundary condition results in reduced
mulated energy dependent. This results in an increase @Mmputation time by two orders of magnitude compared to a

computational effort for time-dependent problems by a factofiumerically exact solution. It is even more efficient for low
of 2. damping rates since the computational domain must be en-

All numerical examples are calculated using a finite elelarged to compensate for the small damping in this case. This
ment (FE) method with linear or trilinear base functions. Will be especially interesting for modeling low-temperature
Heavy hole—electron transitions are considered in our calcUfXPerments.
lations, only. We will present some examples which demon- .,

strate the effectiveness of the PML. ideal 2D QW
—PML

Ideal two-dimensional excitonghe first example is in- 0.03

tended to show the influence of the proposed boundary con
dition in comparison to exact calculations. The absorption of
an ideal quantum well consisting of gy ¢ASy.oPg 1 IS cal-
culated using a mesh size of 60 points with a constant mes
size of 1 nm. The resulting equation is obtained from @g.

by letting z.=2z,=0 and neglecting derivatives in tteedi-
rection. To distinguish between discretization errors and er-
rors due to mesh truncation the results are compared with ¢
numerically exact calculation using a very large mesh of
1500 points’ In Fig. 2 the absorption spectrum of an ideal .05 ‘ ‘
two-dimensional quantum well is shown for a damping rate 20 0 20 E4((I)R) 60 80 100
Al'=2 meV. The reduced mass s, =0.04 and the dielec-

tric constant ise, = 14. This results in an exciton Bohr radius  FIG. 3. Relative error of the solution including PML or ABC to
of a,=14 nm and an exciton Rydberg energy &  exact solution.

e -

relative Error
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Franz-Keldysh absorptionUsing the PML, the optical 25000 -
absorptiona of an arbitrary semiconductor structure can be o
calculated. It has been shofvthat Eq.(1) can be used to 20000 S
calculate the optical properties of coupled quantum wells and’g
superlattices. It is possible to calculate both type | and type I %
structures. Due to a great reduction in computation time us-g %000 [
ing the PML boundary condition it is even possible to calcu- 3
late the continuum absorption and to describe the absorptior
of very flat quantum wells whose absorption is close to a <«
continuum. For example, the free particle absorption of
Ga& 504N 798ASp. 44670 554 IS calculated for room temperature
which is modeled by a dephasing rate/df =10 meV. In
Fig. 4 the Coulomb enhanced Franz-Keldysh absorption is o 1.02 1.04 1.06 1.08 11 112
shown for different applied voltages. The Coulomb effect Energy E (eV)
results in an enhanced absorption and a red shift. Due to the
lack of a field dependent shift, all graphs pass through a
single point. This typical feature of the Franz-Keldysh effect
can be seen from measurements of practical devices used imance and is local both in time and space. It can easily be
optical communication systems. Because this model deimplemented within FE and FD methods. Due to the substan-
scribes both the quantum confined stark eff€@CSB and  tial saving of computer resources, the direct calculation of
the Franz-Keldysh absorption, it will be of great practicalthe optical absorption is now possible for realistic structures
interest, especially for the calculation of the modulator chirpand effects like the Coulomb enhanced Franz-Keldysh effect
which depends on transitions above the band gap. can be investigated for semiconductor heterostructures. The

We have presented an absorbing boundary condition foPML concept should also result in substantial computational
the Schrainger equation which shows a very good perfor-savings for nonlinear problents.
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FIG. 4. Franz-Keldysh absorption.
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