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Fluctuation broadening of the plasma resonance line in the vortex liquid state
of layered superconductors
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The Josephson plasma resonance~JPR! provides a sensitive probe of vortex states in layered superconduct-
ors. We demonstrate that in the case of weak damping in the liquid phase, broadening of the JPR line is caused
mainly by random Josephson coupling arising from the density fluctuations of pancake vortices. In this case the
JPR line has the universal shape, which is determined only by parameters of the superconductors and tem-
perature. This mechanism gives a natural explanation for the experimentally observed asymmetric lineshape.
The tail at high frequencies arises due to mixing of the propagating plasma modes by random Josephson
coupling, while the tail at small frequencies is caused by the localized plasma modes originating from a rare
fluctuation suppression of the Josephson coupling in large areas.@S0163-1829~99!51130-2#
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Observation of the Josephson plasma resonance~JPR! in
the mixed state of layered high temperature and orga
superconductors1–4 allows the study of Josephson couplin
of layers over a wide range of fields and temperatures.
Josephson coupling in the mixed state is mainly determi
by correlations between arrangements of pancake vortice
neighboring layers and therefore it can serve as a prob
vortex state. The resonance absorption is determined by
spatial and temporal behavior of the ‘‘local coherence
rameter’’ Cn(r ,t)[coswn,n11(r ,t), with wn,n115wn112wn
2(2ps/F0)Az being the gauge-invariant phase differen
between the layersn andn11. Herer5(x,y) andz are the
coordinates in theab plane and along thec axis, ands is the
interlayer spacing. Nonzerown,n11 arises due to the mis
alignment of pancake vortices in neighboring layers. Ti
variations ofwn,n11 caused by pancake motion are usua
much slower than the plasma oscillations. In this case
plasma mode probes a snapshot of the instantaneous p
distribution. In the liquid phase at high fields,B@BJ , corre-
lations between pancake positions in neighboring layers
almost absent. HereBJ5F0 /lJ

2 , lJ5gs is the Josephson
length, andg is the anisotropy factor. In this stateCn(r )
rapidly oscillates in space so that its variations are m
larger than average. The resonance in such a situation oc
because small phase oscillations induced by the exte
electric field change slowly in space and average out th
rapid variations. We will estimate that the resonance
formed at the typical scalelJ

2/a, with a being the intervortex
spacing. This large scale averaging leads to a fairly sh
resonance, with the resonance frequency squaredvp

2 being
roughly proportional to the averaged cosine factorC
[C(B,T) ~see, e.g., Refs. 5 and 6!

vp
2~B,T!'v0

2~T!C, C[^coswn,n11~r !&, ~1!

where v0
2(T)5c2/eclc

2(T), lc is the c component of the
London penetration depth,ec is the dielectric constant, an
^•••& denotes the thermodynamic average. However, the
PRB 600163-1829/99/60~6!/3743~4!/$15.00
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eraging by the smooth oscillating phase is not comple
Large scale fluctuations ofCn(r ), induced by pancake den
sity fluctuations, lead to inhomogeneous broadening of
JPR line. This mechanism was proposed in Ref. 5 to exp
line broadening in the vortex glass state. In this paper
analyze broadening of the JPR line in the vortex liquid due
the random Josephson coupling. An attractive feature of
line broadening in the liquid phase is that it is an intrins
property of the material caused by thermal fluctuations. T
plasma resonance line has a very peculiar asymmetric s
with the long tail in the high-field part.1–3 This shape can be
naturally explained by the proposed mechanism. The hi
frequency/high-field tail of the line probes mixing of th
propagating plasma modes by the random Josephson
pling, while the low-frequency/low-field tail probes the lo
calized plasma modes originating due to rare fluctuation s
pression of the coupling. We will analytically calculate th
resonant absorption in both regions.

The external alternating electric field applied along thec
axisDz5Dz0 exp(ivt) induces small oscillations of the inter
layer phase differencewn,n118 . In general, charging of
layers7 and deviations of the quasiparticle distribution fun
tion from equilibrium8 should be accounted for in the time
dependent equation for the phase difference. To illustrate
physics of the inhomogeneous line broadening, we will co
sider a simplified equation, in which we do not account
these effects9,5

S v2

v0
2

1lJ
2L̂¹22Cn~r !D wn,n118 52

ivDz

4pJ0
, ~2!

whereJ05cF0/8p2lc
2s is the Josephson current. The se

ond term in the brackets accounts for the inductive inter
tion between the junctions. The operatorL̂ acts on the layer
index n and is defined asL̂An5(mLnmAm with Lnm

5*0
2p(dq/2p)L(q)cos(n2m)q, and L(q)5@2(12cosq)

1s2/lab
2 #21, with lab being theab components of the Lon-
R3743 ©1999 The American Physical Society
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don penetration depth. We neglect in Eq.~2! time variations
of Cn(r ,t) assuming them to be small during the time 1/v. If
we neglect the charging effects,7 then the oscillating interna
electric field is connected with the solution of Eq.~2! by the
Josephson relationEz'( ivF0 /2pcs)wn,n118 . The resonant
absorption is given by the imaginary part of the inverse
electric constant 1/«c(v)5Ez /Dz . We split Cn(r ) into the
average and fluctuating parts,Cn(r )5C1un(r ). The correla-
tion function ofun(r ) is given by

^un~r !un8~r 8!&5^coswn,n11~r !coswn8,n811~r 8!&2C 2.

This correlation function depends weakly onEJ . Taking the
limit EJ˜0, we obtain

^un~r !un8~r 8!&'
1

2
S~r2r 8!dnn8 ,

whereS(r )5^cos@wn,n11(r )2wn,n11(0)#& is the static phase
correlation function at EJ50. Static configurations
wn,n11(r ) are mainly determined by the thermal fluctuatio
of pancake vortices, andS(r ) drops at distances of the orde
of the intervortex spacinga.

An important observation is that in spite of the rap
variations ofCn(r ) in Eq. ~2!, the solutionw8[wn,n118 (r )
varies smoothly in space. Atv'vp the typical length scale
Lw of phase variations can be estimated by balancing
typical kinetic energy of supercurrents,E0(w8)2/Lw

2 , with
the typical fluctuation of the random Josephson ener
EJ(w8)2a/Lw . HereE05sF0

2/16p3lab
2 is the in-plane phase

stiffness andEJ5E0 /lJ
2 is the Josephson energy per un

area. This givesLw5lJ
2/a@a. Smoothly varyingw8 effec-

tively averages the rapid variation ofCn(r ) and the plasma
frequency is simply determined byC(B,T). Fluctuations of
Cn(r ) smoothed over the areaLw

2 , CLw
5Lw

22* r ,Lw
drCn(r ),

produce inhomogeneous broadening of the JPR line. Ca
lating the mean squared fluctuation ofCLw

, ^(CLf
2C)2&

'a2/Lf
2 5a4/lJ

4 , we obtain the estimate for the inhomog
neous linewidth

vb
2'v0

2~T!BJ /B. ~3!

Inhomogeneous line broadening is determined by the
plitude of fluctuations ofun(r ), S05*drS(r )'a2, i.e., vb

2

}S0. On the other hand, according to the high-temperat
expansion,6,10 the average cosine is also determined byS0:

C~B,T!'~EJ/2T!S0 . ~4!

This relation allows us to connect the linewidth with th
resonance frequency. In Ref. 10,S0 andC(B,T) were calcu-
lated taking into account both the vortex and regular ph
fluctuations. At low temperatures,T!2pE0, the result can
be written as

C~B,T!'
f sE0BJ

2TB F11
T

2pE0
lnS B

BJ
D G , ~5!

where f s(T) is the universal function ofT/E0. The logarith-
mic correction appears due to the regular phase fluctuati
Comparing Eqs.~1! and ~5! with Eq. ~3!, we obtain an esti-
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mate for the relative linewidth in the liquid state due to t
inhomogeneous broadening,vb /vp'T/E0!1.

Consider now the problem quantitatively. Equation~2! is
similar to the Schro¨dinger equation for a particle in a rando
potential and the problem is mapped onto the problem of
density of states in such a system. Then one can use the
techniques. The problem of density of states does not h
an analytical solution over the whole energy range. O
asymptotics for positive and negative energies can be ca
lated.

At frequencies well above the resonance frequency
can treat the random couplingun(r ) as a perturbation. A
perturbative analysis of Eq.~2! can be conveniently per
formed using the Green’s function formalism. We define t
Green’s functionGnn8(r ,r 8;E) as a solution of the equation

@E1lJ
2L̂¹22un~r !#G nn8~r ,r 8;E!5dnn8d~r2r 8!.

Here we introduced the dimensionless ‘‘energy’’E5v2/v0
2

2C. Knowledge ofG nn8(r ,r 8;E) allows one to calculate the
phase responses to arbitrary external perturbations. In
ticular, the response to the homogeneous external fiel
given by the averaged Fourier transform ofGnn8(r ,r 8;E),

G~k,q;E!5(
n
E dr ^Gn0~r ,0;E!&exp~2 ikr 2 iqn!,

at k,q50. The dielectric constant«c(v) is connected with
G(k,q;E) as «c /«c(v)5(v2/v0

2)G(0;v2/v0
22C). The JPR

line, given by the imaginary part of 1/«c(v), can be con-
nected with the spectral densityA0(E), A0(E)5Im@^G(0;E
2 id)&#/p

p~v![ImF «c

«c~v!G5
pv2

v0
2

A0S v2

v0
2

2CD . ~6!

The perturbative expansion ofG(k,q;E) with respect to
un(r ) can be performed using the diagrammatic techniq
andG(k,q;E) is represented as

G~k,q;E!5
1

E2L~q!lJ
2k22S~k,q;E!

, ~7!

whereS(k,q;E) is the self-energy function. It, in turn, ca
be represented as the perturbation series with respec
un(r ). In the lowest order with respect toun(r ), which is
equivalent to the Born approximation for scatterin
S(k,q;E), is given by

S~k,q;E!5
1

2E dk8dq8

~2p!3
G~k8,q8;E!S~k2k8!. ~8!

The imaginary part ofS(k,q;E), which we denote byS2,
determines the line broadening, while the real part,S1, de-
termines the shift of the resonance frequency due to inho
geneities. The high-frequency asymptotics ofS(k,q;E) can
be obtained by replacingG(k,q;E) with its bare value
G0(k,q;E)5@E2L(q)lJ

2k22 id#21. The main contribution
to S2 comes from the regionk;AE/lJ!1/a. In this region
one can neglect thek dependence ofS(k) and replace it by
S0. The same replacement is possible for almost all term
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the perturbation series. The only exception is the Born in
gral for S1 logarithmically diverging atk@AE/lJ . This di-
vergency is cut by thek dependence ofS(k) at k'1/a. Us-
ing the replacementS(k)˜S0'(2T/EJ)C and performing
integrations with respect tok andq we obtain the following
expressions for the imaginary and real parts of the s
energy function at large ‘‘energies’’

S2 U
E˜`

[S`5
TC
2E0

, S1U
E˜`

'2
S`

p
ln

lJ
2

a2E
. ~9!

S`'a2/lJ
2 provides the typical ‘‘energy’’ scale for the

broadening. InS1 we separate the logarithmic contributio
2(2S` /p)ln(lJ

2/a2), coming from largek, and the remain-
ing part which is determined byS0. Further analysis of the
perturbation expansion shows that the expansion param
at large E is S` /@E1(2S` /p)ln(lJ

2/a2)#. Therefore the
components of the self energy can be represented in the
lowing scaling form:

S2

S`
5s2~z!,

S1

S`
52

2

p
ln

lJ
2

a2
2s1~z! ~10!

with z5E/S`1(2/p)ln(lJ
2/a2). s1(z) and s2(z) are the di-

mensionless functions with the asymptotics,s2˜1 and s1
˜(1/p)ln(1/z) at z˜`. Using these expressions we ca
represent the JPR absorption~6! in scaling form

p~v!vb
2/v25 f ~z!, z5~v22ṽp

2!/vb
2 , ~11!

f ~z!5
s2~z!

@z1s1~z!#21s2
2~z!

, ~12!

wherevb is the resonance width,vb
25(T/2E0)vp

2 , in agree-
ment with the estimate~3!. We assume this width to b
larger than the linewidth due to the quasiparticle dissipati
ṽp is the resonance frequency shifted by the random Jos
son coupling,ṽp

25vp
2@12(T/pE0)ln(B/BJ)#. This negative

shift is due to the second-order perturbative correction to
ground-state ‘‘energy,’’ similar to the well-known result o
quantum mechanical perturbation theory. Note that the in
mogeneous correction is two times larger than the correc
due to the regular phase fluctuations@see Eq.~5!# and has the
opposite sign. The high-frequency tail of the resonant
sorption, v22vp

2@vb
2 , is given by p(v)'v2vb

2/(v2

2ṽp
2)2. The whole shape of the line is determined by t

single dimensionless parameterm5T/E0. In particular, the
width of the line ismvp , the maximum absorption scales
1/m, and the absorption atv22vp

2'vp
2 scales asm. Using

the field dependence of the plasma frequency given by E
~1! and ~5! we can also present the scaling parameterz as a
function of the magnetic field

z5~B2Br !/Bb1~1/p!ln~B/BJ!, ~13!

with Br5 f sv0
2EJF0 /(2Tv2) and Bb'( f sv0

2/4v2)BJ

'(T/2E0)Br . This allows us to obtain from Eqs.~11! and
~12! the field dependence of the resonant absorption, wh
is usually probed in the JPR experiments.
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The problem is now reduced to a calculation of the
mensionless functionss1 ands2. These functions can be ca
culated approximately if we keep only the first term in t
expansion ofS given by Eq.~8! @self-consistent Born ap
proximation~SCBA!#. This leads to the following equations

s25
1

2
1

1

p
arctan

z1s1

s2
,

s152
1

2p
ln@~z1s1!21s2

2#, ~14!

which we solve numerically. Figure 1 shows the depende
of the reduced JPR absorptionp(v)vb

2/v2 on the reduced
frequencyz. Note that the SCBA actually breaks down
z&1, i.e., it describes quantitatively only the right-hand si
of the line. For comparison we took the experimental J
line for optimally doped Bi2Sr2CaCu2O8 ~BSCCO! crystal
with Tc589.5 K ~Ref. 11! at v/2p545 GHz andT551.4 K.
We replotted this line as the function of the scaling para
eter z from Eq. ~13!, where the parametersBr and Bb are
chosen to make the experimental and theoretical lines m
at largez giving Br50.053 T andBb50.016 T. The ob-
tained ratioBb /Br'0.3 is somewhat larger then the theore
ical estimateT/2E0'0.17, which we obtain takinglab

5200 nm/A12(T/Tc)
2.

The SCBA approach gives the JPR line terminating
some finite frequency. In reality a long absorption tail exi
on the low-frequency side of the line due to the rare fluct
tion configurations corresponding to suppression ofCn(r )
over large areas. This is very similar to the localization t
below the bottom of the conduction band in disordered se
conductors~Lifshitz tail, see, e.g., Ref. 12!. An important
simplification is that due to the large scale of spatial chan
of wn,n118 (r ), the random ‘‘potential’’un(r ) can be treated
as a short ranged Gaussian random variable with the p
ability distribution

FIG. 1. Plot of the reduced JPR lineshapep(v)vb
2/v2 vs re-

duced frequencyz obtained within SCBA@Eqs.~11! and~ 14!#. For
comparison we also show the experimental JPR line for BSC
plotted as the function ofz from Eq.~13! ~courtesy of M. Gaifullin
and Y. Matsuda, the inset shows raw data!. The parametersBr and
Bb in Eq. ~13! are chosen to make the experimental and theoret
lines match at largez giving Br50.053 T andBb50.016 T. The
left-hand side of the line is fitted to exponent for comparison w
Eq. ~21!
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P@un~r !#}exp@2H$un%#, H$un%5(
n
E dr

@un~r !#2

S0
.

Following a standard line of reasoning,12 we estimate the
spectral densityA0(E) with exponential accuracy asA0(E)
}exp@2F(E)# with

F~E!5min
u
H$un~r !%uE0$u%5E , ~15!

whereE0$u% is the ground-state energy for a given potent
fluctuationun(r ),

E0$u%5min
C

FH0$C%1(
n
E drun~r !Cn

2~r !G , ~16!

with H0$C%5lJ
2(n,m*drLnm¹Cn¹Cm and normalization

(n*drCn
251. A conditional minimization in Eq.~15! can be

performed using the Lagrange technique

F~E!52bE1min
C,u

FbH0$C%1H$un~r !%

1b(
n
E drun~r !Cn

2~r !G , ~17!

whereb is the Lagrange factor, which has to be found fro
the relationE0$u%5E. Optimization with respect toun(r )
gives un(r )52S0bCn

2(r )/2. Substituting this expressio
into Eq. ~17! and variating it with respect toCn , we obtain
the nonlinear eigenvalue problem

2lJ
2L̂¹2Cn~r !2~bS0/2!Cn

3~r !5ECn~r !, ~18!

which determines the optimumCn andb. To simplify this
equation, we~i! apply the operatorL̂215s2/lab

2 1¹n
2 on

both sides and neglect small terms2/lab
2 in the resulting

equation ~here ¹n
2 is defined as ¹n

2an[an111an21

22an), and ~ii ! introduce dimensionless variablescn(r )
5Cn(r )/C0(0), r̃5rAbS0C0

2(0)/2/lJ , and eo

52E/@bS0C0
2(0)#. These transformations lead to the d

mensionless nonlinear eigenvalue problem
l

2¹̃2cn1¹n
2cn

352eo¹n
2cn~ r̃ !, ~19!

which has to be solved with the conditionc0(0)51 and
with the dipolelike asymptotics at large distances

cn~ r̃ !52a¹n
2~ ueou r̃ 21n2!21/2, r̃ ,n@1.

The spectral densityA0(E) can be expressed througheo and
cn( r̃ ) as

A0~E!}expS 2
c4lJ

2E

ueouS0
D , c45(

n
E dr̃cn

4 . ~20!

A numerical solution of Eq.~19! gives eo520.164, c4
52.418, anda50.224. From Eq.~20! we now obtain
A0(E)}exp(214.72lJ

2E/S0), which corresponds to the ex
ponential tail of the JPR absorption

p~v!}exp~3.18z!5expF2
7.36E0~ṽp

22v2!

Tvp
2 G . ~21!

An exponential fit of the left-hand side of the experimen
line in Fig. 1 givesp}exp(3.63z), consistent with above
result.

In conclusion, we studied the universal shape of the J
line due to thermal fluctuations of pancakes in the vor
liquid. We showed that the line broadening is strongly asy
metric, in agreement with experimental observations.
found that the relative linewidth is given by the parame
T/E0, which also determines the strength of thermal fluctu
tions atB50 and is directly related to the temperature d
pendentlab .
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