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Oscillation of the tunnel splitting induced by temperature in the biaxial nanospin system
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Employing an instanton approach, we study the temperature dependence of the tunnel splitting in the biaxial
spin system with a magnetic field along the hard axis. We show that for a given magnetic field the tunnel
splitting oscillates and becomes topologically quenched with increasing temperature. We find that the topo-
logical oscillation becomes more prevalent in nanospin systems with larger basal anisotropy. This feature is
expected to be observable in nanomagnets includiggrfedecular magnet$S0163-18209)50830-9

A quest to understand the macroscopic quantum tunneling

of single domain ferromagnetic particles has been a topical Z(ph)= fﬁ D[M(7)]exp(—Se /), 1)
issue of intensive theoretical and experimental studies over ) o
the past few years.Magnetic molecular clusters of Mp ~ Where 8=1/kgT, the path sum is over all periodic paths
acetate and Fehave been such good candidates because alf (1) =M(7+ %), and S¢ is the Euclidean action which
the clusters are identical with no dispersion on the size of thécludes the Euclidean version of the magnetic Lagrangian
clusters and the number of interacting spins, and the spike @S
ground state and the magnetic anisotropy are known with P M
great accuracy® Even thou_gh strong expenm_entgl e\_/ldence SE:f [i—[l—cose( 7]
exists for quantum tunneling of the magnetization in,Mn Y
acetaté several basic issues including the existence of the . . .

. : . : in the spherical coordinates of the magnetizatidn Intro-
nondiagonal interactions remain unclear. Howeveg, dhes- . . . . o

. L ducing the biaxial anisotropy with a magnetic field along the
ters possess the strong transverse anisotropy which inducgs . = p) 2
the tunnel splittingA between the two degenerate levels of ard axis whose form i&=k;M; +k,M;=MH;, we have,
eacg molecule and shows a pure quantum regime below 36¢P to an additive constant,
mK. _ 2 . .
The tunnel splitting of the ground state for the biaxial spin E=Ky(cos6—cosbo)* + K sin fsir' ¢, ®

system has been studied by several gréupsiong them, where cosp=H/H., H.=2K{/M, K. (=kM?)
the topologically quenched tunnel splitting in the biaxial spin>K,(=k,M?)>0 are the anisotropy constants, ang, and
system with a magnetic field was studied by Gatdsing the ~ z are taken as the easy, medium, and hard axis, respectively.
qguantum phase interference suggested by Loss, DiVincenzdhe first term in Eq(2) which is called the Wess-Zumino-
and Grinsteirf, and by von Delft and Henle{he showed Berry phase term has a geometrical mearingnd is of
that A oscillates with increasing external magnetic field ap-crucial importance in the ensuing discussion.
plied along the hard anisotropy axis, and the topological Performing the Gaussian integration over 6ds Eq. (1),
freezing or unfreezing of tunneling have nothing to do withwe have the effective action given by
Kramer degeneracy. Such oscillations have been reported by
Wernsdorfer and Sessoli in Feluster$ Very recently, . o h d¢
Chudnovsky and Mamez Hidalgd have found that the St :'hsfo dr 1_m dr
switching from oscillations to the monotonic growth Af
exists beyond the field range studied in Ref. 5, due to the — 11 d¢
cancellation between the real-time motion of the instanton +ﬁS\/Ef Pdr Em(¢) —
and the contribution of the topological phase. Also, the 0 dr
meaning of the previously discussed oscillation of the split- _ _ — _
ting has been clarified by Gat§.Theoretical studies have v_vhereéS—M/h 7. K=Ka/Ky, m=wor, h=H/Hc, g
been focused on the tunnel splitting of the ground states in_zy K1iK/M, and
the presence of the magnetic field along the hard axis at zero

deé(7)
dr

+E[M(7)]id7 (2

2

tU(d) |, 4

temperature. In this paper we consider the tunnel splitting of m( )= , (5)

the biaxial spin system in the presence of temperature and 1—Ksir? ¢

magnetic field. We show that for a given magnetic field

along the hard axis, the tunnel splitting oscillates with in- 1. h2

creasing temperature and it is topologically quenched quasi- U(¢)= Esmz ¢( 1- m) (6)

periodically. This feature can be tested in experiments on

nanomagnets including ge As is shown in Fig. 1, there are three different ranges of the
Consider the spin coherent state path-integral representfield, in which the positiong= /2 is the maximum forh

tion of the partition function given by <1-k, becomes the local minimum for-1k<h</1-—Kk,

0163-1829/99/6@®)/37284)/$15.00 PRB 60 R3728 ©1999 The American Physical Society



RAPID COMMUNICATIONS

PRB 60 OSCILLATION OF THE TUNNEL SPLITTING INDUCED ... R3729

1-k 7
0 X| ¢pg— h arctari\/1—k tanes) (8)
1k 1)
s (c) - . . . . .
/ (d) — where¢z=arcsinyx_ andx_ is defined in Eq(10). Adding
; (e) -— these two contributions, we have the factoos®| for the

tunnel splitingDexp(—SE™ F/4)|cos®|, whereD is related
with the fluctuation determinant anﬂ(H,E(T))=S§ﬁ' 1.

- Thus, the tunnel splitting is expected to be quenched at the
condition satisfyingP = (n+ 1/2), which is determined by
changing the temperature as well as the magnetic field. The

] 1:;2 1It

second integral of Eq(4) for either ¢p3— b, Or po— 1
¢ becomes
FIG. 1. The potentialJ(¢), where(a) h<1-k, (b) h=1-k,
(0 1-k<h<y1-k, (d) h=+y1-k, (e) Vy1—k<h<1, and (f) 1

h=1. 7

\X+_X

2X_
sgR= S{L[H(aZ,Q)—H(C@,Q)

and the global minimum for/1—k<h<1. The maximum ) To

starts to change fromr/2 to either, [ =arcsin/(1—h)/k] +kx (I ag,q) = K(a) ]+ \/E( ?) Er, ©
or m— ¢, at h=1—k and vanishes at=1 which defines
the critical field,H;. In this paper, we will focus on the
behavior of the tunnel splitting in the field regibr< 1—k at
finite temperaturé? In this situation the particle of mass

M(<b) MOVeS fromdb; 10 dhy(= 7~ bs) OF by 10 hy(=—m 1-h? \/( 1-h* )2_ 2

whereTy=%wy/kg and the parameters are

— ¢,) in an inverted potentiat- U (¢), as is shown in Fig. 2. Xe= 2k 2k (10

Using the energy conservation

Also, K andIl are complete elliptic integrals of the first and
5 third kind with a?=1-x_, g%=(1—x_)X,/(X,—X_),
_U($)=—E @) andad=(1-x_)/(1—kx_).2®
' Since the tunnel splitting depends on the temperaiure
via the energyE, we need to know the relation betweén

o andT. In order to do that, we use the periodic@ of the
the first integral of Eq(4) for these paths becomes particle in the rangep;— ¢4 (po,— ¢1). From the energy
conservation7), we have

1 ¢
Em(¢>)(——

d
dr

T VK(X4—X_) 11
o To  2K(q)
whose approximate form becomes
> 2\2
0 2 - 8(1—-h%) To
| SN o _ 0 n=
e \ yan / E= T 7 exp[ SN (12)
ANV AL
\\v/ L S for g=1, i.e., in the limit of smallT. Until now, the tunnel
splitting A and the temperatur@ are the function of the
energy E, and thereby the thermal behavior @& can
- - L - - be obtained by varyingE in the energy range €E
- — n

<U(7/2)[=(1—k—h?/(2(1—K))]. At this point, we need
¢ to specify the crossover temperatdrg from the thermal to

FIG. 2. The shape of the potentidi ¢) in (a) and the inverted q_u_antum regime because the first- or the seconc_i-order tran-
potential— U(¢) in (b), where the field range ls<1—k, and¢,'s ~ Sition can occur around. In the case of the first-order

(i=1,2,3,4) are the intersection points 6fU(¢) and the particle  transition we should study nonmonotonic dependencgpof
energy—E. on E to determineT.. Meanwhile, if it is the second-order
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FIG. 3. The phase diagraimvs k, where | and Il indicate the

first- and the second-order transition, respectively. See the text for FIG. 4. The scaled tunnel splitting/A, as a functionT, with
details. S=10, k=0.713,h=0.02, andT,=5.42 K for Fg, whereA, is

the tunnel splitting al =0 and the transition is first order. Inset: the
same parameters excdpt 0.1 andT,=2.03 K, where the transi-
tion is second order.

transition,E=U(/2) providesT. in Eq. (11), which is rep-
exist two regimes which exhibit the first-order transition, and
the phase boundaries are given byh)=(1

resented as
T. 1 h?
T, A VI
0 —k)\(1=2K)/(1+K) and

Here we note that the crossover temperature decreases with
increasing field. In order to determine the first- or the
second-order transition, we consider the behavioSgF
around the top of the barrier. Expanding the integrand in Eq.
(4) near ¢, which corresponds to the top of the barrier, and
introducing the energy varialfep [= (U E)/AU] and
AU=Una—Upin, Where U, (Upyin) corresponds to the where < (>) indicates the field regiom smaller (large

top (bottom of the potential, the effective actio(®) be-  than 1-k. Thus, the first-order region is surrounded by
comes hy<h<l-kandh.,<h<h?,.

We now calculate the tunnel splitting by numerically
solving the result$8), (9), and(11) up to the preexponential
factor. Taking the measured value of the anisotropy param-
eterk=0.713 for Fg, it is seen from Fig. 3 that the system

where a=T/TO—1 with T = U (dg)[Im(bn)/(27) exhibits the f_irst_—order trangition _in the range of fid,fietl_ _
and the crite(r)ion parametgr Wh|iCh dtét|ermings first. o K- The oscillations are evident in Fig. 4. Even though it is

13

16— 16k + k2 +kk?+32k—32

16— 2k '

hey= (16)

1 AU
(P = gllraptpp®+O(Y], (14

second-order is given B quasiperiodic, it is remarkable that thg tu_nnel_ §plitting is
quenched at several temperatures, which is originated from
the topological phase term. Another interesting point is that
the tunnel splitting initially decreases monotonically with in-
creasing temperature and switches from monotonic to oscil-
latory behavior. This can be understood from the fact that,
since the factorjcos®| oscillates as a function of via
¢3[ T(E)], a small change oE nearE=0 induces a large
change ofT close to zero temperature, as is seen in (Ed).
Supposing that a smaller value kfis taken into account,
e.g.,k=0.1, the second-order transition is expected to occur
for h<<0.77 (Fig. 3). In this situation the monotonic region

. AU j12u4uz+15u§+3(m'(¢b))($)
16U,| 203 m(¢p) /| U,
m'(gp)  1[m'(¢p))?
3| m(qsb)) } 49

with the derivatives of the potential denoted hy,
=—U"(¢y)/2(>0), Us=UC)()/3!, and U,=UD(¢py,)/

41, Using the analogy with the Landau model of phase tranhear zero temperature becomes smaller and the topological
sition, the factorx changes signs at the phase transition tem-guenching occurs more often, compared with the first-order
peratureT=T{ . If the factor 8 is negative(positive, the ~ case. The reason that the interval between quenching points
system becomes the firgisecond) order transition. Noting in two situations decreases with increasing temperature is
that the value ofp, changes depending on whether the fieldrelated to the behavior of the periodicity of as a function
range ish<<1—k or h>1—k, one sees from Fig. 3 that there of E in Eq. (11). In the thermal activation regime the phase
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& vanishes becausés in Eq. (8) approachesw/2, and perature, which is more prevalent in the biaxial nanomagnets

thereby the oscillation or topological quenching does not exwith a lower value ofk, i.e., with larger basal anisotropy.

ist any more. This feature is expected to be observable in nanomagnets
In conclusion, we have considered oscillation of the tun-ncluding Fg molecular magnets.

nel splitting induced by temperature due to topological phase | am indebted to W. Wernsdorfer for many useful discus-
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