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Linear response in a density-functional mixed-basis approach
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We present a generalization of density-functional based linear-response calculations of lattice dynamical
properties to the case of general energy-independent basis sets. The formalism accounts for the nonorthogo-
nality and atom-position dependence of the basis functions, and is suited for the application of norm-
conserving pseudopotentials. We have implemented this scheme in the framework of a mixed-basis pseudo-
potential technique, which allows an efficient treatment of localized electrons. The accuracy of the present
scheme is demonstrated by calculations of the phonon dispersions of dhenetals Y and Ag.
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In recent years, density-functional perturbation theory The second approach employs a mixed-basis set for the
(DFPT) (Refs. 1 and 2has become a powerful tool fab  description of the valence electrotfdt consists of localized
initio investigations of crystal properties related to externaffunctions centered at atomic sites which are chosen to opti-
static perturbations of the electronic system. Applications ofmize the description of the localized orbitals near an atomic
DFPT cover a broad spectrum of linear and nonlinear propsite, and plane waves to account for the remaining smooth
erties, ranging from harmonic phonon dispersions and eigerfontributions of the wave functions. A proper choice of the
vectors, Born-effective chargésdielectric permittivity to localized functions can lead to a drastic reduction in the
various anharmonic propertiggonlinear dipole coupling, number_ o_f basis functions without sacrificing the accuracy.
Grineisen parameters, and phonon linewidth and The efficiency z_ind accuracy of total-energy and frozen-
electron-phonon coupling;’ and they also provide a phonon calculations wlthm this scheme has been demon-
parameter-free treatment of lattice thermodynarfii8. —Strated for a large variety of systems ranging from bulk and
While originally formulated for insulators, the method has Surface properties of transition-metal compounds to molecu-
been successfully extended to metallic systés. Iar crystals'®2° The dlsadvantages are technl_cal complica-

Until recently, the DFPT approach has been implementedions due to the nonorthogonality of the basis set and the
for three different electronic structure methods. Most appli-dépendence of the localized functions on the atomic site,
cations have been performed within the framework of arésulting in an enhanced complexity when dealing with per-
plane-wave basis set in conjunction with norm-conservingurbations, which up to now has prevented an implementa-
pseudopotentials, which is conceptually simple because thé#n of DFPT within this scheme. _
basis set does not depend on the external perturbatfol. In this paper, we present an extension of the DFPT for
For solids containing localized electrons, as e.g., transitionlattice dynamics of solids to the case of a mixed-basis de-
metal compounds, the method requires a large number @icription of the wave funct.|ons. The present formulation is
plane waves, limiting its applicability to smaller system Valid for a general energy-independent basis set, and can be
sizes. The other two DFPT implementations, which areused in conjunction with norm-conserving pseudopotentials.
based on linear muffin-tin orbitdLMTO) (Ref. 14 and lin- It accounts for possible nonorthogonality and atomic-
earized augmented plane-wa(leAPW) (Ref. 15 schemes, posmon_depen_dence of the t_)a5|s functions, ar_1d is appllcab_le
are better suited to describe localized electrons, as has befhPoth insulating and metallic systems. We discuss the effi-
demonstrated in successful applications to perovskites arlency of the present method, and present results for the
oxide compounds. However, for these all-electron method?honon spectra of two dt transition metals with face-
extensions to larger systems still remain a challenge. centered cubi¢Ag) and hexagonalY) lattice structure.

Within the pseudopotential framework, there are two pos- N the Kohn-Sham scheme of DFT, the total energy of an
sible ways to improve the treatment of localized electrondnsulating system is given as the sum of the ion-ion interac-
with respect to the standard plane-wave approéighmodi- ~ tion and the electronic contributiofin Rydberg atomic
fying the pseudopotential, ¢ii) modifying the basis set. The Units)
first one is realized by the ultrasoft pseudopotentié&PP
scheme, which allows a description of the valence orbitals by
a rapidly converging plane-wave expansion, to the expense
of dealing with a generalized orthogonality constraint for the
orbitals, and of introducing augmentation charges in the corehere T= — V2 denotes the kinetic operator. The electron-
region. For this scheme, a DFPT formulation has been reion potentialv;,, is represented by norm-conserving nonlo-
cently developed® cal pseudopotentials, andyyc denotes the Hartree and

occ

Ee|=2i{<¢i|T+vion|¢i>}+vch[n<r>], (1)
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exchange-correlation contribution which is a functional ofHere,®;;=0(€;—¢;), with ® the Heaviside step function.

the electron density(r) ==°°9;(r)|%. The single-particle In harmonic approximation, phonons of wave vegare

wave functions|¢;) are the self-consistent solutions of the described by the dynamical matrix, or equivalently, by the

Kohn-Sham equatiomH gl #i)= €| ;) with Hcs=T+v,,,  Fourier transform of the interatomic force constadts The

+Vyxe andvyxc n(r) 1= Vuxc/ on(r). latter is given by the mixed second derivatives of the total
In the following, we consider the general case of expandenergy with respect to atomic displacements of the form

ing the wave functions into an energy-independent basis setir.a= UKae'q(R’rRK)Jrc.c.

| i) == ,C.(i)| xa)- The basis functionky,) may be nonor-

thogonal and atom-position dependent, thus including the @Kak/a/(q)zﬁ,jaﬁ:,a,Emt. @)

mixed-basis representation as a special case. The expansion ) ) )
coefficientsc (i) are solutions of the generalized eigenvalueHere,aanda’ denote Cartesian coordinates, and we adopted

problem the notations, ,= &/ 8U*, and s, ,, = 8/ 8U 1o . When tak-
ing the derivatives, displacement induced changesjn as
E (H. 1= €S,,)C4(1)=0 ) well as in the local orbitals have to be taken into account. By
7 ap  SiSap/™p straightforward differentiation of Eq3) we obtain three dif-
ferent contributions ta. The first contribution involves sec-
with  H,z=(x./Hks/xz). The overlap matrix S,;  ond derivatives of the matrix elements
=(Xalxp) reflects the nonorthogonality of the basis set. The
coefficients obey the generalized orthogonality constraint oce

; . . o ) 1 (e
S apCh(i)Sapcp(j) = 8 . Adopting a similar notation for the o), = Z > (i) (80t Hap
matrix elements of andv;,,, the electronic part of the total o>
energy takes the form: — € 5;a5:/a/saﬁ)cﬁ(i ). (8)

xe Here, the derivatives dfl have to be taken at fixed charge

EeFEi EB Ca()(Taptvap)Ca(i) +Viuxcdnl. (3 density. Contrary to the plane-wave formalism, this expres-
“ sion also involves contributions from the matrix elements of
Within the adiabatic approximation, lattice dynamical T a@nd vixc due to nonvanishing derivatives of the basis
properties are accessible by considering a linear response Bfctions. _ _ o
the electron system to a perturbation induced by atom dis- The second part_ob is related to the first-order variation
placements. A central quantity is the first-order variation ofof the charge density via
the valence charge densigin. In the mixed-basis scheme,
on is the sum of two termsyn= &nyigiq + N . The first one @ :EJ r 3 5*Vixc 5on(r)8 (")
accounts for the rigid shift of the local basis functions and is ~ xax’a’ = 2 sn(ryon(r’) Ka x'a’ '
given by onyigig(r) =27 ,5¢% (1) ca(i) (x5 (r) x5(r))- 9)
The second term describes the first-order response of the
Kohn-Sham wave functions arising from changes in the ex- The third contribution toP contains the remaining terms
pansion coefficients,(i). Similar to the case of a pure involving first-order changes of the expansion coefficients.
plane-wave basisjt can be written as To write it in a compact form, it is convenient to spbti
into a bare part obtained by keeping the charge density fixed,

. . . SHP, and the part arising from the implicit dependenceHof
5nc(r):22i aEB CZ(I)XZ(r)XB(r)(Ag(I)_Alsa(l))a (4) on the Charge density’

occ

1)

whereA" is the solution of the linear equation VHxc

6Hrc]v,3: J d3r<Xa|

_ H,: — c .
% (Hap™ €iSap) A (1) ﬁzy PagdHp,Cy(D) () Adopting a corresponding division df"'=AP+A", we ob-
tain

andP;, ;= 6q5—2f°°278a7c’;(j)cﬁ(j_) is the projector onto

the conduction space. Due to the implicit dependenckl of @) oce b

on the density,6H depends onén leading to a self- D2 =22 2 AL, ()" 8, H2sCH()

consistent set of equations. The quantityreflects the non- Lok

orthogonality of the basis functions and satisfies a linear —A" ()* 65, ,H”ﬁcﬁ(i)

equation similar to Eq(5), but with SH replaced bysS, and o e

the projectorP® replaced by —Afa’a(i)* 5:,a,HgﬁcB(i)
—Ch()(FaHop) * AT o0 4(0)

P%:@wfi_z (Eiij+6j®ji)2 SayCy(J)Cp(J) .
J 2 +A ()*8),.Saac(D)]} (11
occ
—ePC .+ 0.3 S c*(i)ca(i). 6 The last three terms represent corrections due to the nonor-
€iTap 2 (e~¢) ”Ey arCy (1NC(1)- (6) thogonality of the basis seA®? is related to a linear equa-
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9 FIG. 2. Theoretical phonon dispersions and density of states for
10 é . . ‘ m ‘ . Ag. Experimental room temperature dafdots are taken from
0 10 20 30 40 50 60 70 Ref. 28.

Cutoff energy (Ry)
We note that for metallic systems g&=0 a first-order

FIG. 1. Frequencies of the LA and TA phonons of Ag at ¥ie  change in the chemical potential may occur which results in
point as a function of the cutoff energy for the plane-wave basisgdditional contributions tén and®. It vanishes for pertur-
Compared are results for calculations includifegrcles and ex-  pations which do not preserve the symmetry of the lattice,
cluding (squarelocal basis functiongdashed lines are guide to the ;4 is therefore of relevance only for totally symmetric pho-
eyes only. The two horizontal lines correspond to the convergednon modes.
mixed-pasis result$14.44 meV for TA and 21.30 meV for LA, We have implemented the present formulation for the
respectively. mixed-basis scheri®and have applied it to the calculation

) o s . o of phonon spectra for the two elemental metals Ag and Y.
tion similar toA®, with the only modification that alé fac-  The calculations were carried out in the local-density ap-
tors in P™*) are replaced by corresponding factorsEq. proximation using the Hedin-Lundqvist form of the
(6)]. _ o exchange-correlation function@ .The electron-core interac-

It is worth mentioning that onlyH" and A™ have to be  {jon is represented by norm-conserving pseudopotentials of
updated in each iteration step of the self-consistent solutioghe Hamann-Schter-Chiang typé? which have been used
of &n, while all other terms have to be calculated only once.gyccessfully in previous studiés?® For Y, the 4o electrons
The present formulation corresponds to the stationary forpaye peen treated as valence electrons to ensure a sufficient
of the mixed second derivativesee Gonze and L&b, transferability of the pseudopotentf&lCorrespondingly, we
which possesses the property that each componebtain-  pave used eight local functions pfandd type with radial
verges quadratically towards its self-consistent value, in th@toffs of 2.6 a.u. For Ag, five local functions dftype have
sense that its error is proportional to the square of the error gfeen employed with a cutoff of 2.7 a.u.
on. To demonstrate the efficiency of the mixed-basis ap-

The generalization to metallic systems can be performegoach, we present in Fig. 1 results for the convergence of
in a Straightfor\Nard manner. As in the case Of a pure planethe X_point phonon frequencies of Ag W|th respect to the
wave baSIé,l the introduction of fractional OCCUpation num- Cutoﬁ energy Of the p|ane-Wave basis_ These Ca'cu'ations
bers can be accounted for by a modification of fh@atrices  payve been performed for fixed lattice constards-¢.1 A)
appearing in the linear equations for the quantitlesfor  ang for fixed number ok points in the Brillouin zon&BZ)
example, integration(60 special points in the irreducible wedgdo

obtain frequencies converged up to 0.5 meV, the use of a
) ~ - ~ - pure plane-wave basis requires a cutoff of at least 60 Ry.
PU=5,56— 2 (€00, +¢€0¢;0;)) When the locald-type basis functions are employed, the
! same accuracy is reached already with a cutoff energy of 8
Ry, reducing the number of basis functions from 932 to 60.
XX S, (i) (120 This drastically reduces the numerical effort for solving the
7 linear equationde.g., Eq.(5)], which represents the most
- time-consuming step of the algorithm.
The occupation factor®¢; are defined as in Ref. 11 and
restrict the sum to states with energies slightly larger than the 5
Fermi energy. 50

TABLE I. Calculated bulk properties of Ag and Y. Experimen- % 15 /\\\
tal values are given in parentheses. L /\

® (m
-
o
4

Element  a(A) cla B (Mban dB/dP 5¢

Ag  4.11(4.09 - 1.052(0.997) 5.5 O T KTM = rAA S HSL R A DOS
\% 3.58(3.65) 1.570(1.578) 0.460(0.47) 3.5

FIG. 3. Theoretical phonon dispersions and density of states for
aReference 30. Y. Experimental room temperature datedoty are taken from

bReference 31. Ref. 29.
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For the calculation of the whole phonon spectra, we havesults are in good agreement with available experimental data
used a plane-wave cutoff energy of 16 Ry and 60 spécial from inelastic neutron-scattering experiments.
points in the irreducible wedge of the fcc BZ for A§12 The present mixed-basis scheme bears formal similarities
points in the whole BZ For Y, the corresponding values are t0 the USPP case, where the nonorthogonality of the wave
12 Ry and 76k points in the irreducible wedge of the hex- functions and site dependent augmentation charges result in

agonal BZ (1152 points in the whole BZ The smearing similar correction terms in the expressions #r and®.™
. : : . Both methods thus share a similar degree of complexity with
technique with a Gaussian broadening of 0.2 eV has bee

N i . Hespect to their implementations. While all types of norm-
applied in both casés. Corresponding bulk properties are conserving pseudopotentials can be combined with the

presented in Table I, which have been obtained by a fit to thg,ixed-basis approach, the USPP method employs, by con-
Murnaghan equation of state. In the case of Y, the optimaktryction, pseudopotentials with potentially higher transfer-
lattice parameters are the results of an iterative optimizatio@bility. A more detailed comparison of the two approaches
of the volume and the ratia/a with respect to the total with respect to accuracy or performance is, however, not
energy. possible on the basis of presently available literature.

Phonon dispersions shown in Figs. 2 and 3 are obtained In summary we have presented a formulation of DFPT in
by standard Fourier interpolation methott. For this, force  the framework of a mixed-basis pseudopotential method.
constants were calculated on &4 x4 g-point grid for Ag  The combined use of plane waves and local orbitals provides
and on a &<6X4 grid for Y. With this choice of parameters an accurate and efficient treatment of the lattice dynamics of
phonon frequencies were converged up to 0.2 meV. The resolids containing localized electrons.
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