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Linear response in a density-functional mixed-basis approach
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We present a generalization of density-functional based linear-response calculations of lattice dynamical
properties to the case of general energy-independent basis sets. The formalism accounts for the nonorthogo-
nality and atom-position dependence of the basis functions, and is suited for the application of norm-
conserving pseudopotentials. We have implemented this scheme in the framework of a mixed-basis pseudo-
potential technique, which allows an efficient treatment of localized electrons. The accuracy of the present
scheme is demonstrated by calculations of the phonon dispersions of the 4d metals Y and Ag.
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In recent years, density-functional perturbation theo
~DFPT! ~Refs. 1 and 2! has become a powerful tool forab
initio investigations of crystal properties related to exter
static perturbations of the electronic system. Applications
DFPT cover a broad spectrum of linear and nonlinear pr
erties, ranging from harmonic phonon dispersions and eig
vectors, Born-effective charges,2 dielectric permittivity to
various anharmonic properties~nonlinear dipole coupling,
Grüneisen parameters, and phonon linewidth3,4!, and
electron-phonon coupling,5–7 and they also provide a
parameter-free treatment of lattice thermodynamics.8–10

While originally formulated for insulators, the method h
been successfully extended to metallic systems.11

Until recently, the DFPT approach has been implemen
for three different electronic structure methods. Most ap
cations have been performed within the framework o
plane-wave basis set in conjunction with norm-conserv
pseudopotentials, which is conceptually simple because
basis set does not depend on the external perturbation.2,12,13

For solids containing localized electrons, as e.g., transit
metal compounds, the method requires a large numbe
plane waves, limiting its applicability to smaller syste
sizes. The other two DFPT implementations, which
based on linear muffin-tin orbital~LMTO! ~Ref. 14! and lin-
earized augmented plane-wave~LAPW! ~Ref. 15! schemes,
are better suited to describe localized electrons, as has
demonstrated in successful applications to perovskites
oxide compounds. However, for these all-electron metho
extensions to larger systems still remain a challenge.

Within the pseudopotential framework, there are two p
sible ways to improve the treatment of localized electro
with respect to the standard plane-wave approach:~i! modi-
fying the pseudopotential, or~ii ! modifying the basis set. The
first one is realized by the ultrasoft pseudopotential~USPP!
scheme, which allows a description of the valence orbitals
a rapidly converging plane-wave expansion, to the expe
of dealing with a generalized orthogonality constraint for t
orbitals, and of introducing augmentation charges in the c
region. For this scheme, a DFPT formulation has been
cently developed.16
PRB 600163-1829/99/60~6!/3709~4!/$15.00
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The second approach employs a mixed-basis set for
description of the valence electrons.17 It consists of localized
functions centered at atomic sites which are chosen to o
mize the description of the localized orbitals near an atom
site, and plane waves to account for the remaining smo
contributions of the wave functions. A proper choice of t
localized functions can lead to a drastic reduction in
number of basis functions without sacrificing the accura
The efficiency and accuracy of total-energy and froze
phonon calculations within this scheme has been dem
strated for a large variety of systems ranging from bulk a
surface properties of transition-metal compounds to mole
lar crystals.18–20 The disadvantages are technical complic
tions due to the nonorthogonality of the basis set and
dependence of the localized functions on the atomic s
resulting in an enhanced complexity when dealing with p
turbations, which up to now has prevented an implemen
tion of DFPT within this scheme.

In this paper, we present an extension of the DFPT
lattice dynamics of solids to the case of a mixed-basis
scription of the wave functions. The present formulation
valid for a general energy-independent basis set, and ca
used in conjunction with norm-conserving pseudopotenti
It accounts for possible nonorthogonality and atom
position dependence of the basis functions, and is applic
to both insulating and metallic systems. We discuss the e
ciency of the present method, and present results for
phonon spectra of two 4d transition metals with face-
centered cubic~Ag! and hexagonal~Y! lattice structure.

In the Kohn-Sham scheme of DFT, the total energy of
insulating system is given as the sum of the ion-ion inter
tion and the electronic contribution~in Rydberg atomic
units!

Eel5(
i

occ

$^c i uT1v ionuc i&%1VHXC@n~r !#, ~1!

whereT52¹2 denotes the kinetic operator. The electro
ion potentialv ion is represented by norm-conserving nonl
cal pseudopotentials, andVHXC denotes the Hartree an
R3709 ©1999 The American Physical Society
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exchange-correlation contribution which is a functional
the electron densityn(r )5( i

occuc i(r )u2. The single-particle
wave functionsuc i& are the self-consistent solutions of th
Kohn-Sham equationHKSuc i&5e i uc i& with HKS5T1v ion
1vHXC andvHXC@n(r )#5dVHXC /dn(r ).

In the following, we consider the general case of expa
ing the wave functions into an energy-independent basis
uc i&5(aca( i )uxa&. The basis functionsuxa& may be nonor-
thogonal and atom-position dependent, thus including
mixed-basis representation as a special case. The expa
coefficientsca( i ) are solutions of the generalized eigenval
problem

(
b

~Hab2e iSab!cb~ i !50 ~2!

with Hab5^xauHKSuxb&. The overlap matrix Sab
5^xauxb& reflects the nonorthogonality of the basis set. T
coefficients obey the generalized orthogonality constra
(abca* ( i )Sabcb( j )5d i j . Adopting a similar notation for the
matrix elements ofT andv ion , the electronic part of the tota
energy takes the form:

Eel5(
i

occ

(
ab

ca* ~ i !~Tab1vab
ion!cb~ i !1VHXC@n#. ~3!

Within the adiabatic approximation, lattice dynamic
properties are accessible by considering a linear respons
the electron system to a perturbation induced by atom
placements. A central quantity is the first-order variation
the valence charge densitydn. In the mixed-basis scheme
dn is the sum of two terms,dn5dnrigid1dnc . The first one
accounts for the rigid shift of the local basis functions and
given by dnrigid(r )5( i

occ(abca* ( i )cb( i )d„xa* (r )xb(r )….
The second term describes the first-order response of
Kohn-Sham wave functions arising from changes in the
pansion coefficientsca( i ). Similar to the case of a pur
plane-wave basis,1 it can be written as

dnc~r !52(
i

occ

(
ab

ca* ~ i !xa* ~r !xb~r !„Db
H~ i !2Db

S~ i !…, ~4!

whereDH is the solution of the linear equation

(
b

~Hab2e iSab!Db
H~ i !52(

bg
Pab

c dHbgcg~ i ! ~5!

andPab
c 5dab2( j

occ(gSagcg* ( j )cb( j ) is the projector onto
the conduction space. Due to the implicit dependence oH
on the density,dH depends ondn leading to a self-
consistent set of equations. The quantityDS reflects the non-
orthogonality of the basis functions and satisfies a lin
equation similar to Eq.~5!, but withdH replaced bydS, and
the projectorPc replaced by

Pab
(1)5dabe i2(

j

occ

~e iQ i j 1e jQ j i !(
g

Sagcg* ~ j !cb~ j !

5e i Pab
c 1(

j

occ

~e i2e j !Q j i (
g

Sagcg* ~ j !cb~ j !. ~6!
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Here,Q j i 5Q(e j2e i), with Q the Heaviside step function
In harmonic approximation, phonons of wave vectorq are

described by the dynamical matrix, or equivalently, by t
Fourier transform of the interatomic force constantsF. The
latter is given by the mixed second derivatives of the to
energy with respect to atomic displacements of the fo
uRka5Ukaeiq„R1Rk)1c.c.

Fkak8a8~q!5dka
2 dk8a8

1 Etot . ~7!

Here,a anda8 denote Cartesian coordinates, and we adop
the notationdka

2 5d/dUka* anddk8a8
1

5d/dUk8a8 . When tak-
ing the derivatives, displacement induced changes inv ion as
well as in the local orbitals have to be taken into account.
straightforward differentiation of Eq.~3! we obtain three dif-
ferent contributions toF. The first contribution involves sec
ond derivatives of the matrix elements

Fkak8a8
(1)

5(
i

occ

(
ab

ca* ~ i !~dka
2 dk8a8

1 Hab

2e idka
2 dk8a8

1 Sab!cb~ i !. ~8!

Here, the derivatives ofH have to be taken at fixed charg
density. Contrary to the plane-wave formalism, this expr
sion also involves contributions from the matrix elements
T and vHXC due to nonvanishing derivatives of the bas
functions.

The second part ofF is related to the first-order variatio
of the charge density via

Fkak8a8
(2)

5
1

2E d3r d3r 8
d2VHXC

dn~r !dn~r 8!
dka

2 n~r !dk8a8
1 n~r 8!.

~9!

The third contribution toF contains the remaining term
involving first-order changes of the expansion coefficien
To write it in a compact form, it is convenient to splitdH
into a bare part obtained by keeping the charge density fix
dHb, and the part arising from the implicit dependence ofH
on the charge density,

dHab
n 5E d3r ^xau

dvHXC

dn~r !
uxb&dn~r !. ~10!

Adopting a corresponding division ofDH5Db1Dn, we ob-
tain

Fkak8a8
(3)

52(
i

occ

(
ab

$Dka,a
b ~ i !* dk8a8

1 Hab
b cb~ i !

2Dka,a
n ~ i !* dk8a8

1 Hab
n cb~ i !

2Dka,a
S ~ i !* dk8a8

1 Hab
b cb~ i !

2ca* ~ i !~dka
2 Hab

b !* Dk8a8,b
S

~ i !

1Dka,a
S2 ~ i !* dk8a8

1 Sabcb~ i !%. ~11!

The last three terms represent corrections due to the no
thogonality of the basis set.DS2 is related to a linear equa
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tion similar toDS, with the only modification that alle fac-
tors in P(1) are replaced by correspondinge2 factors @Eq.
~6!#.

It is worth mentioning that onlydHn andDn have to be
updated in each iteration step of the self-consistent solu
of dn, while all other terms have to be calculated only on
The present formulation corresponds to the stationary fo
of the mixed second derivatives~see Gonze and Lee21!,
which possesses the property that each component ofF con-
verges quadratically towards its self-consistent value, in
sense that its error is proportional to the square of the erro
dn.

The generalization to metallic systems can be perform
in a straightforward manner. As in the case of a pure pla
wave basis,11 the introduction of fractional occupation num
bers can be accounted for by a modification of theP matrices
appearing in the linear equations for the quantitiesD, for
example,

Pab
(1)5dabe i2(

j
~e iQ̃F,iQ̃ i , j1e jQ̃F, jQ̃ j ,i !

3(
g

Sagcg* ~ j !cb~ j !. ~12!

The occupation factorsQ̃F,i are defined as in Ref. 11 an
restrict the sum to states with energies slightly larger than
Fermi energy.

FIG. 1. Frequencies of the LA and TA phonons of Ag at theX
point as a function of the cutoff energy for the plane-wave ba
Compared are results for calculations including~circles! and ex-
cluding~squares! local basis functions~dashed lines are guide to th
eyes only!. The two horizontal lines correspond to the converg
mixed-basis results~14.44 meV for TA and 21.30 meV for LA,
respectively!.

TABLE I. Calculated bulk properties of Ag and Y. Experime
tal values are given in parentheses.

Element a ~Å! c/a B ~Mbar! dB/dP

Ag 4.11 ~4.09a! - 1.052~0.997b! 5.5
Y 3.58 ~3.65a! 1.570~1.571a! 0.460~0.47b! 3.5

aReference 30.
bReference 31.
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We note that for metallic systems atq50 a first-order
change in the chemical potential may occur which results
additional contributions todn andF. It vanishes for pertur-
bations which do not preserve the symmetry of the latti
and is therefore of relevance only for totally symmetric ph
non modes.

We have implemented the present formulation for t
mixed-basis scheme22 and have applied it to the calculatio
of phonon spectra for the two elemental metals Ag and
The calculations were carried out in the local-density a
proximation using the Hedin-Lundqvist form of th
exchange-correlation functional.23 The electron-core interac
tion is represented by norm-conserving pseudopotential
the Hamann-Schlu¨ter-Chiang type,24 which have been used
successfully in previous studies.25,26 For Y, the 4p electrons
have been treated as valence electrons to ensure a suffi
transferability of the pseudopotential.26 Correspondingly, we
have used eight local functions ofp and d type with radial
cutoffs of 2.6 a.u. For Ag, five local functions ofd type have
been employed with a cutoff of 2.7 a.u.

To demonstrate the efficiency of the mixed-basis a
proach, we present in Fig. 1 results for the convergence
the X-point phonon frequencies of Ag with respect to t
cutoff energy of the plane-wave basis. These calculati
have been performed for fixed lattice constants (a54.1 Å!
and for fixed number ofk points in the Brillouin zone~BZ!
integration~60 special points in the irreducible wedge!. To
obtain frequencies converged up to 0.5 meV, the use o
pure plane-wave basis requires a cutoff of at least 60
When the locald-type basis functions are employed, th
same accuracy is reached already with a cutoff energy o
Ry, reducing the number of basis functions from 932 to
This drastically reduces the numerical effort for solving t
linear equations@e.g., Eq.~5!#, which represents the mos
time-consuming step of the algorithm.

.

FIG. 2. Theoretical phonon dispersions and density of states
Ag. Experimental room temperature data~dots! are taken from
Ref. 28.

FIG. 3. Theoretical phonon dispersions and density of states
Y. Experimental room temperature data~dots! are taken from
Ref. 29.
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For the calculation of the whole phonon spectra, we h
used a plane-wave cutoff energy of 16 Ry and 60 specik
points in the irreducible wedge of the fcc BZ for Ag~512
points in the whole BZ!. For Y, the corresponding values a
12 Ry and 76k points in the irreducible wedge of the he
agonal BZ ~1152 points in the whole BZ!. The smearing
technique with a Gaussian broadening of 0.2 eV has b
applied in both cases.27 Corresponding bulk properties ar
presented in Table I, which have been obtained by a fit to
Murnaghan equation of state. In the case of Y, the optim
lattice parameters are the results of an iterative optimiza
of the volume and the ratioc/a with respect to the tota
energy.

Phonon dispersions shown in Figs. 2 and 3 are obtai
by standard Fourier interpolation method.2,21 For this, force
constants were calculated on a 43434 q-point grid for Ag
and on a 63634 grid for Y. With this choice of parameter
phonon frequencies were converged up to 0.2 meV. The
hy
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sults are in good agreement with available experimental d
from inelastic neutron-scattering experiments.

The present mixed-basis scheme bears formal similar
to the USPP case, where the nonorthogonality of the w
functions and site dependent augmentation charges resu
similar correction terms in the expressions fordn andF.16

Both methods thus share a similar degree of complexity w
respect to their implementations. While all types of nor
conserving pseudopotentials can be combined with
mixed-basis approach, the USPP method employs, by c
struction, pseudopotentials with potentially higher transf
ability. A more detailed comparison of the two approach
with respect to accuracy or performance is, however,
possible on the basis of presently available literature.

In summary we have presented a formulation of DFPT
the framework of a mixed-basis pseudopotential meth
The combined use of plane waves and local orbitals provi
an accurate and efficient treatment of the lattice dynamic
solids containing localized electrons.
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