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Effect of the spin-orbit geometric phase on the spectrum of Aharonov-Bohm oscillations
in a semiconductor mesoscopic ring
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Taking into account the spin precession caused by the spin-orbit splitting of the conduction band in semi-
conductor quantum wells, we have calculated the Fourier spectra of conductance and state-density correlators
in a two-dimensional ring, in order to investigate the structure of the main peak corresponding to Aharonov-
Bohm oscillations. In narrow rings the peak structure is determined by the competition between the spin-orbit
and the Zeeman couplings. The latter leads to a peak broadening, and produces the peak splitting in the
state-density Fourier spectrum. We have found an oscillation of the peak intensity as a function of the spin-
orbit coupling constant, and this effect of the quantum interference caused by the spin geometric phase is
destroyed with increasing Zeeman coupling.@S0163-1829~99!50928-4#
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The spin-orbit interaction~SOI! gives rise to a geometric
phase in the quantum amplitude of a particle propaga
along a closed trajectory. In ideal one-dimensional~1D!
rings this can lead to quantum oscillations of transport
rameters similar to the Aharonov-Bohm effect.1,2 In disor-
dered conductors the interference between two time reve
paths produces the oscillation of mean conductance an
gous to the Altshuler-Aronov-Spivak effect. Such oscillati
in 1D systems was shown by Meir, Gefen, a
Entin-Wohlman,3 and in systems of higher dimensions b
Mathur and Stone.4 Besides, SOI also modifies the shape
the Aharonov-Bohm and Altshuler-Aronov-Spivak oscill
tions. For a disordered material, the mean conductanc
obtained as an ensemble average over a large numbe
measurements on different samples. One can try to detec
quantum effects associated to the spin-orbit phase by m
suring the oscillations of mean conductance when the s
orbit coupling strength or the external magnetic field is v
ied. To our knowledge, such experiments have not
established any evidence of the spin-orbit geometric pha

For a disordered material, if one takes the Fourier tra
form of the mean conductance^g(B)& as a function of the
external magnetic fieldB, the spectrum is dominated by th
Altshuler-Aronov-Spivak oscillations, which is periodic i
magnetic flux with a periodhc/2e. On the other hand, if one
takes first the Fourier transformg(n) of a measured conduc
tanceg(B), and then performs an ensemble average^ug(n)u&
of the Fourier amplitude, one would expect that the
derived spectrum will exhibit a main peak corresponding
the Aharonov-Bohm oscillations with a periodhc/e in mag-
netic flux.5 Consequently, the average of Fourier amplitu
^ug(n)u& represents correlations of conductances measure
different magnetic fields. The dependence of these corr
tions on the SOI can then manifest itself in the shape of
mean peak. In a recent experiment6 on mesoscopic rings
made from a AlSb/InAs quantum well structure, the da
were analyzed in this way, to the best of our knowledge
the first time, and a split of the main peak in the measu
PRB 600163-1829/99/60~4!/2161~4!/$15.00
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spectrum̂ ug(n)u& was observed. The authors of Ref. 6 ha
conjectured that the observed splitting is due to the str
Rashba SOI in a doped AlSb/InAs quantum well.

While the experimental results in Ref. 6 remain to
explained, in our opinion, the fundamental question t
needed to be answered is how the Fourier spectrum of
conductance correlations, particularly the shape of the m
Fourier peak, is influenced by the interplay between the sp
orbit phase and the external magnetic field.7 This is the aim
of the present paper. The more suitable starting point
such a theoretical analysis is

^ug~n!u2&5E E
2B0

B0
dB dB8ein(B2B8)^g~B!g~B8!&, ~1!

where the interval between2B0 andB0 covers the region in
which g(B) is measured. This interval is much larger th
both the period of the Aharonov-Bohm oscillations and t
magnetic-field correlation range8 of mesoscopic fluctuations
In this paper we will calculate Eq.~1! in the diffusion regime
of a disordered 2D semiconductor ring of widthw and radius
R. Our theory explains the main physical mechanisms t
determine the shape of the Fourier spectrum. For the st
density correlator that partly contributes to Eq.~1! we predict
a split of the main Fourier peak when the effect of the Ze
man interaction is not completely suppressed by SOI
mesoscopic fluctuations. After we point out that this sa
feature appears in an ideal ballistic ring, we conjecture la
that our theory also provides the physical origin of ma
peak splitting observed in a chaotic ballistic ring.6

Since it is the Rashba9 term rather than the Dresselhaus10

term that gives the major contribution to the SOI in an InA
based quantum well,11 for simplicity in this paper we will
neglect the Dresselhaus term. We will use the standard
turbation theory that was applied previously8 to analyze the
conductance correlations. In the framework of this theory
correlator in Eq.~1! is expressed via two-particle propagato
~Cooperons and diffusions! where one of the particles propa
R2161 ©1999 The American Physical Society
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gates at the magnetic fieldB and the other atB8. If one
neglects the Zeeman interaction with the external magn
field, the Cooperon propagator is a function ofB1B8, while
the diffusion depends only onDB5B2B8. Hence, in the
vicinity of the main peak atn52p2R2/F0, where F0
5hc/e is the flux quantum, the major contribution to Eq.~1!
is given by diffusons. If the Zeeman interaction is taken in
account, the Cooperon propagator is no longer a functio
B1B8 alone. Nevertheless, Cooperon’s contribution is re
tively small if the Zeeman energygmBF0 /pR2 is much less
than the Thouless energyET5D\/R2. Therefore, in the in-
tegrand of Eq.~1! we will retain only the part of the cor
relator associated to diffusions.

Each of the diffusions is a component of a matrixD(r ,r 8)
with four spin indices representing the spin states of an e
tron and a hole. Following Ref. 8 one can show that
correlator in the integrand of Eq.~1! is proportional to

E d2r d2r 8$Re„Tr@D~r ,r 8!D~r 8,r !#…

12 Tr@D~r ,r 8!D†~r ,r 8!#%. ~2!

In the above equation the trace is taken separately over
electron and hole spin indices. It is convenient to expresD
in the representation of the total spinS of the electron-hole
two-particle system.12 In this representationD is a 434 ma-
trix with componentsDmn . The indicesm andn can have the
values21,0,1~for the z component of the triplet! ands ~for
the singlet!.

In A3B5 semiconductors the spin-orbit coupling has t
form Hso5hk•s for an electron having spins and quasimo-
mentumk. This SOI and the Zeeman interaction determ
the spin dependence ofD, which can be written as13

t K S 2 iv•¹1
e

c
v•DA1hk•SD 2L

ang

D~r ,r 8!1ZD~r ,r 8!

1
1

tw
D~r ,r 8…5d~r2r 8!, ~3!

wheret is the elastic mean free scattering time,tw the phase
breaking time, and the notation̂&ang is an angular averag
over the Fermi surface. The termZD~r ,r 8) in the above
equation is due to the Zeeman interaction, and the non
components ofZ are

Z0s5Zs05
igmB

2
~B2B8!

Z1152Z21215
igmB

2
~B1B8!. ~4!

We see that ifBÞB8 the matrixZ contains components tha
mix the singlet part and the triplet part of the diffuson.

We choose the gauge such that for the field differenceDB
the vector potential isDA5DBrt/2, wheret is a unit vector
tangential to the ring. SinceHso5a(kxsy2kysx) when the
Rashba term dominates, the boundary conditions at the i
and the outer radii of the ring are
ic
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]r
D~r ,r 8!2

am*

\
~ t•S!D~r ,r 8!50. ~5!

In a narrow ring with the widthw much less than the radiu
R, D(r ,r 8) varies slowly across the annulus. If the elas
mean free pathl is much shorter thanw, such slow variation
can be treated perturbatively in the diffusio
approximation.14 Using the boundary conditions of Eq.~5!,
after averaging overr, Eq.~3! is reduced to an effectively 1D
equation, whereD depends only on the azimuthal angl
w,w8. This function can be expressed in the form

D~w,w8!5eiSz(w82w)(
n

Mn~w8!eiwn. ~6!

Making use of the rotation properties of the spin operato

exp@ iSz~w2w8!#~S•n!exp@ iSz~w82w!#5~S–n8!,

where nx85cosw8 and ny85sinw8, we arrive at a set of 4
34 algebraic equations for the components of the matri
Mn . From these equations one can derive the following s
set of equations that contains only the21,0,1 components o
the matricesMn :

@n2Df2z~S•N!#2Mn1@a1r2M0~12Sz
2!#~Df!2Mn

1 irSz~f1f8!Mn1
1

twET
Mn51, ~7!

where a5w2/4R2, M05@(n2Df)21a(Df)211/
twET#21, z2511(Ram* /\)2, and r5gm* /kf lm. N is a
unit vector with Nx5nx8(12z22)1/2, Ny5ny8(12z22)1/2,
andNz51/z.

The three dimensionless parametersa, z, andr determine
the shape of the main peak in^ug(n)u2& given by Eq.~1!. a
describes the dephasing due to the penetration of the m
netic fluxDf5DBpR2/F0 into the annulus of the ring. We
should remind the reader that to calculatea we have assumed
diffusive propagation of particles in the radial directio
However, it is reasonable to believe that the dependence
flux of the form a(Df)2, as appearing in Eq.~7!, is also
valid for rings with ballistic transport along the radial dire
tion. In this casea can be considered as a phenomenologi
parameter. The spin-orbit coupling constantz gives the spin-
phase winding number after a particle has traversed a clo
path along the ring. The parameterr is related to the Zeeman
interaction. It determines the amount of mixing between
triplet and the singlet components of the diffusion propa
tor. This mixing appears in Eq.~7! in the form r2M0(1
2Sz

2). Hence, althoughr is small, the effect of mixing is
enhanced by theresonanceof the singlet diffusion mode and
the Sz50 component of the triplet. However, with strong
spin-orbit coupling the system is driven out of the resona
due to the termz(S–N) in Eq. ~7!.

After substituting Eq.~6! into Eq.~2! and carrying out the
integration, we need to perform a numerical summation o
n in order to obtain the conductance fluctuations and
state-density fluctuations which, according to Ref. 15,
given by the first term of Eq.~2!. The summation overn is
from 2nmax to nmax550, which gives converging results
The magnetic fieldB0 is set at a value corresponding to
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flux of 300F0. Within a reasonable range of material para
eters our numerical results depend only weakly on the va
of B0.

Figures 1–3 were calculated witha5231024 and
1/twET51022. For the convenience of presentation, thefre-
quencyin Figs. 1 and 2 is defined asv52p2nF0 /pR2,
which is dimensionless. Figure 1 shows the main Fou
peak of the state-density correlator. The splitting of the p
~solid curve! for r50.006 andz51 is due to the resonanc
of diffusion modes. As the Zeeman coupling is reduced

FIG. 1. Fourier spectra of state density for various Zeeman c
pling r and SOI strengthz: r50.006, z51 ~solid curve!; r
50.0033, z51 ~dot-dashed curve!; r50.006, z52.5 ~dashed
curve!. The frequency is defined asv52p2nF0 /pR2.

FIG. 2. Fourier spectra of conductance:r50.006, z51 ~solid
curve!; r50.0033, z51 ~dot-dashed curve!; r50.006, z52.5
~dashed curve!. The frequency isv52p2nF0 /pR2.
-
e

r
k

o

r50.0033~dot-dashed curve!, or as the resonance is detune
by increasing the SOI toz52.5 ~dashed curve!, the phenom-
enon of peak splitting disappears. We have also found
vanishing of this splitting when the value of the parametea
is enhanced, corresponding to a decrease of the magn
field correlation range of mesoscopic fluctuations. While
splitting is seen in the state-density peak, it is absent in
diffusion coefficient spectrum. In the parameter regime c
sidered here, the contribution to the conductance correl
from the diffusion coefficient spectrum is larger than th
from the state-density correlator. Consequently, there is
peak splitting in the Fourier spectrum of conductance os
lations as shown in Fig. 2.

Our theory predicts a quantum oscillation of the intens
of the main peak in the Fourier spectrum of conductan
oscillation, as a function of the SOI strength. To demonstr
that its origin lies in the geometric phase, let us first set
Zeeman interactionr50. In this case Eq.~7! can be easily
diagonalized by choosing the spin quantization axis alongN.
The eigenvalues ofzS–N are z, 0, and2z. Including the
singlet state, the eigenvalue 0 is doubly degenerate. The
pendence of̂ ug(n)u2& in Eq. ~1! from z can then be readily
calculated, because the6z can be absorbed by a shift ofDf
in corresponding components of the correlator. If we igno
the small change produced by this shift in thea(Df)2 term,
after taking trace,̂ ug(n)u2& is found to be proportional to
11cos@(2p2v)z#. At the center of the peak,v50 and so
^ug(n)u2& oscillates withz as cos2 pz. Since the Zeeman in
teraction breaks the time inversion symmetry and thus le
to an additional dephasing, the magnetic-field correlat
length is reduced and hence the dependence on the geom
phase gets weaker. As a result, the oscillating amplitude
^ug(n)u2& decreases rapidly with increasing Zeeman inter
tion. The numerical result of this oscillation is shown in Fi
3 for r51024 ~circular dots!, r5531024 ~triangles!, and
r51023 ~squares!.

The splitting of the main Fourier peak has been obser

u-
FIG. 3. The intensity of the main Fourier peak as a function

the SOI coupling:r51024 ~circular dots!; r5531024 ~triangles!;
r51023 ~squares!.
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in a recent experiment on AlSb/InAs/AlSb quantum w
rings with radii about 1mm.6 The material parameters fo
these samples are l 51024 cm, g514, and a
.1029 eV cm,11 which giver.1023 andz.3. With these
values ofz andr, our calculation does not yield the splittin
of the main Fourier peak in both the state-density and
conductance. However, this is not a total surprise because
samples used in Ref. 6 are very small withl .R, which is
nearly in ballistic regime instead of in diffusion regime. Fu
thermore, in these samples the spin precession le
\2/am* is shorter than the elastic mean free path, for wh
our perturbative treatment of SOI is not valid.

In order to judge how relevant are our qualitative resu
to the above mentioned experiment, let us consider the
posite limit of an ideal 1D ring. The period of the Aharono
Bohm ~AB! oscillations changes due to the dependence
the geometric phase and dynamic spin phase on the mag
field. We will consider first the effect of geometric phase.
the region of our interestr8f!(z221)1/2 with r8 defined as
r85gm* /kfRm, for an ideal ring one gets from Refs. 1 an
2 the geometric phaseug56pr8(z221)21/2f1C , where
C is a constant independent of the magnetic field, and th6
signs refer to the two electron spin orientations. Combin
the geometric phase to the AB phase 2pf, we see that SOI
leads to a split of the AB oscillations in the transmittance
the ring into two oscillations with close frequencies. Ho
ever, this frequency splitting is about two orders of mag
tude less than the observed value.6 Next, we consider the
split of the AB oscillation frequency caused by dynamic sp
phases, which depend on the magnetic field in the fo
nd
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6pdkfR, where6dkf are the shifts of the Fermi wave vec
tor for up- and down-spin electrons. The shiftpdkfR has its
maximum valuepr8f/2 in the absence of the SOI, and d
creases with increasing SOI strength.1,2 Even at the larges
valuepr8f/2, the corresponding split in AB oscillation fre
quency is of the orderr8, which is too small to explain the
experimental value.

The general feature of the peak splitting for the ideal
ballistic ring is then similar to that for the diffusive 2D ring
Furthermore, in the 2D ring the amount of the AB oscill
tions splitting as seen in the state-density correlations a
decreases with increasing SOI. If we use the same value
r8 in a 1D ballistic ring and forr in a 2D diffusive ring,
which means the same strength of the Zeeman couplin
both systems, in the absence of SOI, the peak splitting
state-density correlations is larger than that in the transm
tance of a 1D ring. This is due to the longer paths traver
by a diffusing particle in its random walk along a ring, an
so acquiring a larger dynamic phase. We have reached
conclusion that the two quite distinct limiting cases have
to the same qualitative picture. Consequently, we conjec
that the peak splitting observed in near ballistic 2D sampl6

is due to the Zeeman interaction, which is not complet
suppressed by the SOI and the mesoscopic fluctuations.
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