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Dynamical description of the buildup process in resonant tunneling:
Evidence of exponential and nonexponential contributions
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The buildup process of the probability density inside the quantum well of a double-barrier resonant structure
is studied by considering the analytic solution of the time dependent @olger equation with the initial
condition of a cutoff plane wave. For one level systems at resonance condition we show that the buildup of the
probability density obeys a simple charging up laW,(7)/¢|=1—e~ 7", where ¢ is the stationary wave
function and the transient time constagtis exactly two lifetimes. We illustrate that the above formula holds
both for symmetrical and asymmetrical potential profiles with typical parameters, and even for incidence at
different resonance energies. Theoretical evidence of a crossover to nonexponential buildup is also discussed.
[S0163-182699)51728-1

Since the pioneering work of Esaki and Tsthe tunnel-  whereg(x,k) is the stationary wave function and the factors
ing in one-dimensional semiconductor heterostructures haBn=2kun(0)un(x)/(k2—kﬁ) are given in terms of the reso-
been the subject of intense investigatiGNSResonant tun-  nant eigenfunctionsi,(x). The indexn runs over the com-
neling in double barriefDB) systems has received special plex polesk,, distributed in the third and fourth quadrants in
attention both by its technological applications and by thehe complexk plane. The Moshinsky functiorfsas it is well
motivation to clarify the new interesting transport phenom-, o are defined in terms of the complex error function

ena. Among the fundamental problems that have appeared .10 — Y
the scene, the charge buildup in the quantum-well region imglgivlt\aﬂrf)@ M(0.g;t) =w(iy,)/2, where the argument

considered as one of the most important processes since’if

governs the ultimate speed of resonant-tunneling devites. 1
. . ; , m hq

The need of a direct and comprehensive dynamical study of Y= _e—mm( _) Z[_tl/2}, (3)

this phenomenon has been widely recogni#&€dowever, 2h m

up to now we lack an exact description of the buildup pro-

cess itself. : . . o :
In this paper we provide an exact description of the The time evolution of wave functiot’ (x,k;t) n the In-
ternal region may be described by the expression given by

buildup process at resonance condition, within the frame S L
work of the shutter model. This is based on a full quantum-Eq' (2), which involves the contribution of the full resonant

dynamical approach, recently developed by Gaaldera spectrum O.f the system. Fpr strlzjc;ures with typical param-
and Rubio] that deals with the solution of the time- eters, and mudgnce ene,rg|ES?h K /2_m near a resonance
dependent Schdinger equation for an arbitrary potential energy ey, Garca—CaIdero_ anq Rubié showed that thg
V(x) (0<x<L), with an initial condition of a cutoff plane single resonance approximation for the wave func_tlon
wave confined in the half-space<0 to the left of an ab- \.P()f’k;t) Is valid frqm_ a few tenths of the correspondlng
sorbing shuttératx=0. The sudden opening of the shutter atIn‘etlme onwards. This is the case for the present study, since

t=0 allows the wave function to interact with the potential. V<\ie a_r; /rllot conﬁldherlng the re_glmteh of verty.bsr;.ort twpefs (
As a consequence, they found that the transient solution for ' n), whic may require the contribution ot tar
way resonances. The single resonance approximation to Eq.

the internal region may be written as the stationary solutio o) i
modulated by a time varying Moshinsky function plus an ) is
infinite sum of transient resonance terms associated with the
Smatrix poles of the problem.

andq stands either for-k or k...

P (x,k;t)= p(x,K)M(0K;t) — p* (X, k)M (0,— k;t)

For the case of a reflecting shutter —iT,M(0Kky:t)—iT_,M(0,—Kk*:t), (4)
ikx _ q—ikx
W(x,k;t=0)= € € »=x=<0 (1) where we have used the fact that the poles in the third quad-
0 x>0, rant k_,, are related to those of the fourtk, by k_,
one can proceed along the lines similar to that discussed it —Ky - This is the one-level expression of the time-
Ref. 7 and obtain the solution for the internal region dependent wave function for the description of the dynamics
in the internal region.
W (x,k;t)= (X, K)M(0k;t) — ¢* (X,K)M(0,—k;t) In order to exemplify the building up of the probability
w density in the quantum well for incidence at different reso-
—i T M(OK,t). 2 nance energies and for different potential profiles, let us
n:z—oc nM(Okn:t) @ consider the following two numerical examples. The first
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FIG. 1. This graph illustrates the building up of the probability
density for the two examples discussed in the text. In the symmetri
cal system we show the time evolution fp¥ (x,k;t)|? for inci-
dence ate;=37.8 meV(solid line), e,=149.2 meV(dashed ling
ande ;= 325.7 meV(dotted ling. The fixed positionx are 80 A, 48
A, and 80 A, respectively. In the asymmetric case=89.1 meV
(dashed-dotted lineat x=55 A.

FIG. 2. Evolution of|W(7)/¢|? as a function ofr for the same
Cases of Fig. 1. All four curves become identical. For comparison, a
plot of |¥(7)/$|? using Eq.(6) is also included. The resulting
values are also superimposed on the other curves illustrating that
they obey a simple exponential law with a unique transient time
constant of two lifetimes.

cerned to find the analytic expression of the actual buildup

case corresponds to the symmetrical DB structure with par, anq the exact value of the characteristic transient time
rameters: barrier height¥(=0.5eV, barrier widthsb, -

=30A, and well widthwo=100A. The resonance param-
eters for the first three resonant states aye-37.8 meV,
I'1=0.12 meV; £,=149.2 meV, T',=1.40 meV; &3
=325.7meV,I';=8.60 meV. We show in Fig. 1 the time
evolution of the probability density calculated by E4) for
incidence at resonande= ¢, and fixed positiorx (we have
considered values of near the maxima of4(x,k)|? as the
most natural choidefor the casesn=1, x=80A (solid

For sharp R,=¢,/I",>1) and isolated resonances we
know that the stationary wave functiab(x,k) can be writ-
ten as the one-term expressibnp(x,k) = 2iku,(0)up(x)/
(k?*—k3), thus the factorsT, andiT_,, appearing in Eq.
(4), can be identified asp(x,k) and — ¢* (x,k), respec-
tively. By expressing formul@3) in lifetime units, it can be
seen thay, depends only on the ratie,=e,/T",, and not

on the particular values of the resonance parameters
line); n=2, x=48 A (dashed ling andn=3, x=80A (dot- particuiar valu P

— — *
ted ling. The second example consists of an asymmetrica n_an_cij Z”' For_ 9= J_;L(” and ==k, yq_reidilyikn
DB structure with the following parameters: barrier heights= *€  L(Ra=1/2)7]7% and  y.x=+e "™ (R,
V,=V,=0.3eV, barrier widthsh;=30A andb,=100A, +i/2)7]*2 respectively. For the cases=*+k we have
and well widthwy,=50A. The resonance parameters for they. ,= ¥ e " R,7]? (sinceE=¢,). From the above con-
first resonant state agg =89.1 meV and’;=2.4meV. The siderations and the well-known symmetry reIatToM(yq)
time evolution of| ¥ (x,k;t)|? for incidence aE=¢, andx —eVa M(—yq), applied to the Moshinsky functiortd (y,)

=55A is also depi.c.ted in Fig. Gdashedédotted lineFor all and M (y, ), we obtain a convenient representation for the
cases, the probability densit¥ (x,k;t)|* grows up mono- n

tonically towards its asymptotic value. We can see that botrobability density,

the level off and the rate of increase of the curves are quite

different. However, a common feature, not evident in Fig. 1, 5 5 o

can be appreciated if we replot the normalized probability [P (x,k;7)|*=]p(x,K)[*(1—e" ") *+ A(7), (5
density | (x,k; 7)/ ¢(x,k)|? as a function of the new vari-

able 7, which is now the time given in lifetime unit& re- . L
placed byr# /T, for each curvi As a result, all four curves whereA(7) stands for the remaining terms, which involve the

become indistinguishable among them as depicted in Fig. Zduare modulus of the Moshinsky functions and several in-
We can see that the full establishment of the stationary sitterference termg. It is not dlfflpult to convince oneself that,
ation is preceded by a transient in which the probability denfor Very large times, expressiofs) possesses the correct
sity is built up inside the quantum well with a unique char-asymptotic behavior, i.e., as—, |¥(xk;7)|* goes into
acteristic curve. Thus, there must also exist a characteristi®e stationary probability densifys(x,k)|?. This follows di-
transient time constant, that governs the buildup process, rectly from the presence of the decreasing exponeetiaf,

with the same valuén lifetimes) for all cases. The observed and from the fact that each of the Moshinsky functions in-
regularity and the fact that it holds for both symmetrical andvolved in A(7) can be represented by a series expansion con-
asymmetrical cases and at different resonances, is a manifegsting of inverse powers of. In Ref. 7 it was shown that
tation that the buildup process in one-level systems is govM(y,) has the asymptotic expansioM(yy)=a;/yq
erned by a simple law. In what follows we shall be con-+a2/y§+ a3/y§+--- for large values of the variablg, pro-
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vided that— 7/2<arg(y,)<m/2. By inspection of our expres- 0.0
sions fory,, we can see that the above inequality holds for

the three cases involved i(7) (q=—k, —k,, and —k}),

and as a consequendér)—0 whenr—, as expected. It is -5.0f
important not only that botle™ 2 and A(7) go to zero, but =
also the fact that their rates of decrease are quite differents
leading to important consequences on the nature of théz
buildup. In particular it reveals that there exist exponential —
and nonexponential contributions to the buildup mechanism,
as we shall see later. In view of the series expansions con 150
sidered above)(7) also contains inverse powers yf, that R.=311.4
is, inverse powers of the produdR{r)*2 This means that . . )
A(7) can be vanishingly small even far equal to a few '20'%‘0 10.0 20.0 30.0 40.0
lifetimes, provided thaR,,>1. In fact, there exists a finite
time interval in whichA(7)/|¢|? is negligible compared to
e~ ", leading to the following exponential buildup law:

-10.0F R =37.8

t (lifetimes)

FIG. 3. Exponential and nonexponential contributions to the
buildup. We plot the logarithm of the difference af{(7)=|1
|W(r)/p|=1—e 6)  —|¥(n)/¢ll versusr, for the statesi=1 andn=3 of the sym-
metrical system considered in the text. The corresponding values of
g1e ratiosR,=¢,/T", are shown in the figure. The linear behavior
corresponds to the exponential regime, and the deviations from it
appear after a certain transition timg,ge.

This simple formula reproduces successfully the predicte
values of expressiof¥). For comparison, we have included
in Fig. 2 a plot of the normalized probability density calcu-
lated from Eq.6). The corresponding curve is indistinguish-
able from all the other curves, showing, in particular, that
A(7) has an exceedingly small contribution in the relevanttime 74, at which e ™2 and A(7)/|$|? are comparable.
time interval for all of our numerical examples. We see thatSuch a critical time defines a crossover from the exponential
formula (6) does not depend explicitly on the potential pro-to a nonexponential regime of the buildup process. In the
file parameters nor the resonant state, this explains why alixamples depicted in Fig. 2 the nonexponential contributions
the numerical examples illustrated in Fig. 2 share the samg | (7)/¢|? are overwhelmed and cannot be appreciated
curve, despite the fact that they COI’reSpond to different Situdue to the scale of the graph_ However, if we p|0t the |oga_
ations. Note that in the exponential regime the buildup lawiihm of the differences(r) =|1—|W(7)/ ¢| versusr, [using
becomes identical to the charging up law of a capacitor in aikq. (4)] the transition from the exponential to the nonexpo-
RCcircuit:  Q(7)/Qo=1—e" T/T_C, where Qo is the nential regime is clearly appreciated, see Fig. 3. In this fig-
asymptotic charge, and.=RC is the capacitive time con- re the exponential regime can be identified by the straight
star_lt. T_h|s is relevant, because we find in the Iltergture C3iine with slope—1/2, extending over a few lifetimes until it
pacitorlike models used to describe quantum tunneling propregches the onset of the nonexponential buildugee,
erties in DB structures, such as the charge buildup and it§hich depends oR, .

imp!icaticigs on the speed limit on resonant-tunneling s interesting to note the similarity of the results de-
devices™ “ According to Eq.(6), the transient time constant picted in Fig. 3 to the behavior of the survival probability
7o Of our "quantum capacitor” is always two lifetimes, and (5 4 in studies of the phenomenon of quantum dé&ag,
IS a charactgrlsn_c .feature of ong-lc_evel systems. On the ®X¥hich also exhibits this transition with an oscillatory struc-
perimental §|de, it is worth mentioning that measured Valueﬁjre at such a crossover. We believe that this striking resem-
gf Esﬁﬁpe tl”QeS of the (r)1rder Oﬁzrh“ has been Zje_ported“br)]/ blance is not a simple coincidence but rather a manifestation
akakiet al,” arguing that, at coherence conditions, "the 4t e existence of a more profound link between both phe-
buildup time and the tunneling escape time are roughlyy,mena |n fact, the survival probability may also be ex-
the same. An |mpc_)rt§1nt r_emar_k_|s that_the condition pressed in terms of the Moshinsky functidisyhich are, in
R,>1 is not so restrlctlve_ since it is satisfied for most of our expressions, the key ingredients for the time evolution.
the _resonant structure§ with typical parameters. In fact W& hese findings open up new questions about the common
carried out a systematical studyot shown hereand found o a¢res in both processes, for example, those about the ex-
that for values oR, from 10 onwards this condition is sat- jgtence of deviations from the exponential buildup also at
isfied. early times, as it occurs in the decay procesSuch analysis

In order to show the existence of deviations from the ex+equires the contribution of far away resonances to the tran-
ponential regime, we shall examine the contributions arisingiant solution. and is deferred to future wébk.

from A(7). The explicit calc_ulation qﬁ(r) in terms ofy_, We summarize this paper as follows.

Y-k, andy_,x may resultin a too involved task, however, ) we have accomplished the first analytic derivation of
for the purpose of our discussion, it is sufficient to realizethe actual buildup law in resonant tunneling structures. It
that the dominant term is proportional to an oscillatory func-was based on general properties of the solution of the 'Schro
tion of 7 modulated by the factor *2. We know that at dinger equation, without any assumptions on the potential
very long times the exponential term goes to zero faster thaprofile, except that it is finite and support well-defined reso-
12 i.e.,e” <712 Therefore, there must exist a critical nances.
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(i) We have shown the existence of both exponential anéccurately the exponential buildup for a great variety of situ-

nonexponential contributions to the buildup process. ations: it works very well for different potential profiles, and
(iii ) The exponential regime is characterized by a transienis valid not only for the “ground state”rf=1), but also for
time constant whose value is exactly two lifetimes. “excited states” i>1).
(iv) We have illustrated that formulés) describes very We thank G. Gara-Caldera for useful discussions.
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