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Dynamical description of the buildup process in resonant tunneling:
Evidence of exponential and nonexponential contributions

Roberto Romo and Jorge Villavicencio
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The buildup process of the probability density inside the quantum well of a double-barrier resonant structure
is studied by considering the analytic solution of the time dependent Schro¨dinger equation with the initial
condition of a cutoff plane wave. For one level systems at resonance condition we show that the buildup of the
probability density obeys a simple charging up law,uC(t)/fu512e2t/t0, wheref is the stationary wave
function and the transient time constantt0 is exactly two lifetimes. We illustrate that the above formula holds
both for symmetrical and asymmetrical potential profiles with typical parameters, and even for incidence at
different resonance energies. Theoretical evidence of a crossover to nonexponential buildup is also discussed.
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Since the pioneering work of Esaki and Tsu,1 the tunnel-
ing in one-dimensional semiconductor heterostructures
been the subject of intense investigations.2–5 Resonant tun-
neling in double barrier~DB! systems has received spec
attention both by its technological applications and by
motivation to clarify the new interesting transport pheno
ena. Among the fundamental problems that have appeare
the scene, the charge buildup in the quantum-well regio
considered as one of the most important processes sin
governs the ultimate speed of resonant-tunneling device3,4

The need of a direct and comprehensive dynamical stud
this phenomenon has been widely recognized.4–6 However,
up to now we lack an exact description of the buildup p
cess itself.

In this paper we provide an exact description of t
buildup process at resonance condition, within the fram
work of the shutter model. This is based on a full quantu
dynamical approach, recently developed by Garcı´a-Caldero´n
and Rubio,7 that deals with the solution of the time
dependent Schro¨dinger equation for an arbitrary potenti
V(x) (0,x,L), with an initial condition of a cutoff plane
wave confined in the half-spacex,0 to the left of an ab-
sorbing shutter9 at x50. The sudden opening of the shutter
t50 allows the wave function to interact with the potenti
As a consequence, they found that the transient solution
the internal region may be written as the stationary solut
modulated by a time varying Moshinsky function plus
infinite sum of transient resonance terms associated with
S-matrix poles of the problem.

For the case of a reflecting shutter

C~x,k;t50!5H eikx2e2 ikx 2`,x<0

0 x.0,
~1!

one can proceed along the lines similar to that discusse
Ref. 7 and obtain the solution for the internal region

C~x,k;t !5f~x,k!M ~0,k;t !2f* ~x,k!M ~0,2k;t !

2 i (
n52`

`

TnM ~0,kn ;t !, ~2!
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wheref(x,k) is the stationary wave function and the facto
Tn52kun(0)un(x)/(k22kn

2) are given in terms of the reso
nant eigenfunctionsun(x). The indexn runs over the com-
plex poleskn distributed in the third and fourth quadrants
the complexk plane. The Moshinsky functions,7 as it is well
known, are defined in terms of the complex error functi
w(z):10 M (yq)[M (0,q;t)5w( iyq)/2, where the argumen
yq is given by

yq52e2 ip/4S m

2\ D 1/2F\q

m
t1/2G , ~3!

andq stands either for6k or k6n .
The time evolution of wave functionC(x,k;t) in the in-

ternal region may be described by the expression given
Eq. ~2!, which involves the contribution of the full resonan
spectrum of the system. For structures with typical para
eters, and incidence energiesE5\2k2/2m near a resonance
energy «n , Garcı́a-Caldero´n and Rubio7 showed that the
single resonance approximation for the wave funct
C(x,k;t) is valid from a few tenths of the correspondin
lifetime onwards. This is the case for the present study, si
we are not considering the regime of very short timest
!tn5\/Gn), which may require the contribution of fa
away resonances. The single resonance approximation to
~2! is

C~x,k;t !5f~x,k!M ~0,k;t !2f* ~x,k!M ~0,2k;t !

2 iTnM ~0,kn ;t !2 iT2nM ~0,2kn* ;t !, ~4!

where we have used the fact that the poles in the third qu
rant k2n are related to those of the fourthkn by k2n

52kn* . This is the one-level expression of the tim
dependent wave function for the description of the dynam
in the internal region.

In order to exemplify the building up of the probabilit
density in the quantum well for incidence at different res
nance energies and for different potential profiles, let
consider the following two numerical examples. The fi
R2142 ©1999 The American Physical Society
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case corresponds to the symmetrical DB structure with
rameters: barrier heightsV050.5 eV, barrier widthsb0

530 Å, and well widthv05100 Å. The resonance param
eters for the first three resonant states are«1537.8 meV,
G150.12 meV; «25149.2 meV, G251.40 meV; «3

5325.7 meV,G358.60 meV. We show in Fig. 1 the tim
evolution of the probability density calculated by Eq.~4! for
incidence at resonanceE5«n and fixed positionx ~we have
considered values ofx near the maxima ofuf(x,k)u2 as the
most natural choice! for the cases:n51, x580 Å ~solid
line!; n52, x548 Å ~dashed line!; andn53, x580 Å ~dot-
ted line!. The second example consists of an asymmetr
DB structure with the following parameters: barrier heigh
V15V250.3 eV, barrier widthsb1530 Å and b25100 Å,
and well widthv0550 Å. The resonance parameters for t
first resonant state are«1589.1 meV andG152.4 meV. The
time evolution ofuC(x,k;t)u2 for incidence atE5«1 andx
555 Å is also depicted in Fig. 1~dashed-dotted line!. For all
cases, the probability densityuC(x,k;t)u2 grows up mono-
tonically towards its asymptotic value. We can see that b
the level off and the rate of increase of the curves are q
different. However, a common feature, not evident in Fig.
can be appreciated if we replot the normalized probabi
density uC(x,k;t)/f(x,k)u2 as a function of the new vari
able t, which is now the time given in lifetime units~t re-
placed byt\/Gn for each curve!. As a result, all four curves
become indistinguishable among them as depicted in Fig
We can see that the full establishment of the stationary s
ation is preceded by a transient in which the probability d
sity is built up inside the quantum well with a unique cha
acteristic curve. Thus, there must also exist a character
transient time constantt0 that governs the buildup proces
with the same value~in lifetimes! for all cases. The observe
regularity and the fact that it holds for both symmetrical a
asymmetrical cases and at different resonances, is a man
tation that the buildup process in one-level systems is g
erned by a simple law. In what follows we shall be co

FIG. 1. This graph illustrates the building up of the probabil
density for the two examples discussed in the text. In the symm
cal system we show the time evolution foruC(x,k;t)u2 for inci-
dence at«1537.8 meV~solid line!, «25149.2 meV~dashed line!,
and«35325.7 meV~dotted line!. The fixed positionsx are 80 Å, 48
Å, and 80 Å, respectively. In the asymmetric case«1589.1 meV
~dashed-dotted line! at x555 Å.
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cerned to find the analytic expression of the actual build
law and the exact value of the characteristic transient t
t0 .

For sharp (Rn[«n /Gn@1) and isolated resonances w
know that the stationary wave functionf(x,k) can be writ-
ten as the one-term expression11 f(x,k)52ikun(0)un(x)/
(k22kn

2), thus the factorsiTn and iT2n , appearing in Eq.
~4!, can be identified asf(x,k) and 2f* (x,k), respec-
tively. By expressing formula~3! in lifetime units, it can be
seen thatyq depends only on the ratioRn5«n /Gn , and not
on the particular values of the resonance parame
«n and Gn . For q56kn and q56kn* , yq reads y6kn

57e2 ip/4@(Rn2 i /2)t#1/2, and y6k
n*
57e2 ip/4@(Rn

1 i /2)t#1/2, respectively. For the casesq56k we have
y6k57e2 ip/4@Rnt#1/2 ~sinceE5«n!. From the above con-
siderations and the well-known symmetry relation,7 M (yq)

5eyq
2
2M (2yq), applied to the Moshinsky functionsM (yk)

and M (ykn
), we obtain a convenient representation for t

probability density,

uC~x,k;t!u25uf~x,k!u2~12e2t/2!21D~t!, ~5!

whereD~t! stands for the remaining terms, which involve th
square modulus of the Moshinsky functions and several
terference terms. It is not difficult to convince oneself th
for very large times, expression~5! possesses the corre
asymptotic behavior, i.e., ast˜`, uC(x,k;t)u2 goes into
the stationary probability densityuf(x,k)u2. This follows di-
rectly from the presence of the decreasing exponentiale2t/2,
and from the fact that each of the Moshinsky functions
volved inD~t! can be represented by a series expansion c
sisting of inverse powers oft. In Ref. 7 it was shown tha
M (yq) has the asymptotic expansionM (yq)5a1 /yq

1a2 /yq
21a3 /yq

31••• for large values of the variableyq pro-

ri-
FIG. 2. Evolution ofuC(t)/fu2 as a function oft for the same

cases of Fig. 1. All four curves become identical. For compariso
plot of uC(t)/fu2 using Eq. ~6! is also included. The resulting
values are also superimposed on the other curves illustrating
they obey a simple exponential law with a unique transient ti
constant of two lifetimes.
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vided that2p/2,arg(yq),p/2. By inspection of our expres
sions foryq , we can see that the above inequality holds
the three cases involved inD~t! ~q52k, 2kn , and2kn* !,
and as a consequenceD~t!˜0 whent˜`, as expected. It is
important not only that bothe2t/2 and D~t! go to zero, but
also the fact that their rates of decrease are quite differ
leading to important consequences on the nature of
buildup. In particular it reveals that there exist exponen
and nonexponential contributions to the buildup mechani
as we shall see later. In view of the series expansions c
sidered above,D~t! also contains inverse powers ofyq , that
is, inverse powers of the product (Rnt)1/2. This means that
D~t! can be vanishingly small even fort equal to a few
lifetimes, provided thatRn@1. In fact, there exists a finite
time interval in whichD(t)/ufu2 is negligible compared to
e2t/2, leading to the following exponential buildup law:

uC~t!/fu512e2t/2. ~6!

This simple formula reproduces successfully the predic
values of expression~4!. For comparison, we have include
in Fig. 2 a plot of the normalized probability density calc
lated from Eq.~6!. The corresponding curve is indistinguis
able from all the other curves, showing, in particular, th
D~t! has an exceedingly small contribution in the releva
time interval for all of our numerical examples. We see th
formula ~6! does not depend explicitly on the potential pr
file parameters nor the resonant state, this explains why
the numerical examples illustrated in Fig. 2 share the sa
curve, despite the fact that they correspond to different s
ations. Note that in the exponential regime the buildup l
becomes identical to the charging up law of a capacitor in
RC-circuit: Q(t)/Q0512e2t/tC, where Q0 is the
asymptotic charge, andtC5RC is the capacitive time con
stant. This is relevant, because we find in the literature
pacitorlike models used to describe quantum tunneling pr
erties in DB structures, such as the charge buildup and
implications on the speed limit on resonant-tunneli
devices.3,12 According to Eq.~6!, the transient time constan
t0 of our ‘‘quantum capacitor’’ is always two lifetimes, an
is a characteristic feature of one-level systems. On the
perimental side, it is worth mentioning that measured val
of escape times of the order of 2\/Gn has been reported b
Sakaki et al.,8 arguing that, at coherence conditions, ‘‘th
buildup time and the tunneling escape time are roug
the same.’’4 An important remark is that the conditio
Rn@1 is not so restrictive since it is satisfied for most
the resonant structures with typical parameters. In fact
carried out a systematical study~not shown here! and found
that for values ofRn from 10 onwards this condition is sa
isfied.

In order to show the existence of deviations from the
ponential regime, we shall examine the contributions aris
from D~t!. The explicit calculation ofD~t! in terms ofy2k ,
y2kn

, andy2k
n*

may result in a too involved task, howeve

for the purpose of our discussion, it is sufficient to real
that the dominant term is proportional to an oscillatory fun
tion of t modulated by the factort21/2. We know that at
very long times the exponential term goes to zero faster t
t21/2, i.e.,e2t/2!t21/2. Therefore, there must exist a critic
r
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time tonset at which e2t/2 and D(t)/ufu2 are comparable.
Such a critical time defines a crossover from the exponen
to a nonexponential regime of the buildup process. In
examples depicted in Fig. 2 the nonexponential contributi
to uC(t)/fu2 are overwhelmed and cannot be apprecia
due to the scale of the graph. However, if we plot the log
rithm of the differenced(t)5u12uC(t)/fi versust, @using
Eq. ~4!# the transition from the exponential to the nonexp
nential regime is clearly appreciated, see Fig. 3. In this
ure, the exponential regime can be identified by the stra
line with slope21/2, extending over a few lifetimes until i
reaches the onset of the nonexponential buildup,tonset,
which depends onRn .

It is interesting to note the similarity of the results d
picted in Fig. 3 to the behavior of the survival probabili
found in studies of the phenomenon of quantum decay,13,14

which also exhibits this transition with an oscillatory stru
ture at such a crossover. We believe that this striking res
blance is not a simple coincidence but rather a manifesta
of the existence of a more profound link between both p
nomena. In fact, the survival probability may also be e
pressed in terms of the Moshinsky functions,13 which are, in
our expressions, the key ingredients for the time evoluti
These findings open up new questions about the comm
features in both processes, for example, those about the
istence of deviations from the exponential buildup also
early times, as it occurs in the decay process.15 Such analysis
requires the contribution of far away resonances to the tr
sient solution, and is deferred to future work.16

We summarize this paper as follows.
~i! We have accomplished the first analytic derivation

the actual buildup law in resonant tunneling structures
was based on general properties of the solution of the Sc¨-
dinger equation, without any assumptions on the poten
profile, except that it is finite and support well-defined res
nances.

FIG. 3. Exponential and nonexponential contributions to
buildup. We plot the logarithm of the difference ofd(t)5u1
2uC(t)/fi versust, for the statesn51 and n53 of the sym-
metrical system considered in the text. The corresponding value
the ratiosRn[«n /Gn are shown in the figure. The linear behavi
corresponds to the exponential regime, and the deviations fro
appear after a certain transition timetonset.
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~ii ! We have shown the existence of both exponential
nonexponential contributions to the buildup process.

~iii ! The exponential regime is characterized by a trans
time constant whose value is exactly two lifetimes.

~iv! We have illustrated that formula~6! describes very
nd
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accurately the exponential buildup for a great variety of si
ations: it works very well for different potential profiles, an
is valid not only for the ‘‘ground state’’ (n51), but also for
‘‘excited states’’ (n.1).

We thank G. Garcı´a-Caldero´n for useful discussions.
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