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Linear theory of unstable growth on rough surfaces
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Unstable homoepitaxy on rough substrates is treated within a linear continuum theory. The time dependence
of the surface widthW(t) is governed by three length scales: The characteristic scalel 0 of the substrate
roughness, the terrace sizel D and the Ehrlich-Schwoebel lengthl ES. If l ES! l D ~weak step edge barriers! and
l 0! l m; l DAl D / l ES, thenW(t) displays a minimum at a coverageumin;( l D / l ES)

2, where the initial surface
width is reduced by a factorl 0 / l m . The role of deposition and diffusion noise is analyzed. The results are
applied to recent experiments on the growth of InAs buffer layers@M.F. Gyureet al., Phys. Rev. Lett.81, 4931
~1998!#. The overall features of the observed roughness evolution are captured by the linear theory, but the
detailed time dependence shows distinct deviations which suggest a significant influence of nonlinearities.
@S0163-1829~99!50748-0#
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I. INTRODUCTION

A high symmetry crystal surface growing epitaxially fro
a molecular beam can become unstable towards the fo
tion of pyramidal mounds if the mass transport between
ferent atomic layers is reduced by additional energy barr
at step edges.1,2 Over the last few years, this phenomen
has been observed for a wide range of metal and semi
ductor surfaces, and a considerable body of theoretical w
has been devoted to the description of the asymptotic~late
time! evolution of the surface morphology.3–5 In the early
time regime, continuum theory predicts an exponen
growth of the surface modulations. For this reason the p
cise initial state of the surface has commonly been dis
garded, since the exponential instability should rapidly wa
out the details of the substrate roughness.

In a recent paper,6 Gyure, Zinck, Ratsch, and Vvedensk
~GZRV! presented experimental and numerical results
the early time development of unstable homoepitaxy from
rough substrate, which show a more complex scenario
was observed that the competition between smoothenin
the initial roughness and the instability associated with
incipient mound structure can lead to aminimumin the total
surface width. A similar effect was predicted previously
the context ofnoise-inducedroughening,7 and related experi-
mental observations have been reported both for thin m
films8 and semiconductor multilayers.9 Qualitatively, the
minimum originates from the wavelength dependence
smoothing and~deterministic or stochastic! roughening rates
If the roughness spectrum of the substrate has suffic
weight at short wavelengths, which are efficiently smoo
ened by capillarity effects,10 then the decrease of the su
strate contribution to the surface width can tempora
dominate the long wavelength roughening induced
growth.

The possibility to minimize the surface roughness by
appropriate choice of the buffer layer thickness and ot
growth parameters is of obvious interest in applications.
PRB 600163-1829/99/60~24!/16334~4!/$15.00
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this paper we develop a quantitative theory of unsta
growth on rough substrates, which allows us to determine
conditions under which a minimum occurs, and to estim
the layer thickness of minimal roughness in terms of mic
scopic length scales and parameters, such as the in-laye
interlayer diffusion barriers. Our starting point is the obs
vation of GZRV that the time evolution of the roughne
spectrum appears to be well described by the linearized c
tinuum evolution equation for the surface. By incorporati
various kinds of noise11 into the linear theory, we can com
pare the influence of stochastic and deterministic rough
ing, and obtain a unified description of both cases. A criti
discussion of our results in relation to the experiments
GZRV will be presented at the end of the paper.

II. LINEARIZED CONTINUUM THEORY

The standard phenomenological evolution equation
the continuous surface profileH(r ,t) is of the form1,3–5

] tH1¹•J5F, ~1!

where the surface currentJ incorporates both a growth
induced destabilizing contribution3–5,12and a stabilizing term
originating in capillarity,10 andF denotes the deposition flux
which will be assumed constant for the time being. Sm
fluctuationsh(r ,t) around the flat singular surfaceH5Ft
then satisfy the linear equation

] th52a¹2h2k~¹2!2h, ~2!

with positive coefficientsa,k representing deposition~a! and
smoothening (k), respectively, whose relation to the grow
parameters will be explained below.

The substrate roughness is incorporated through a sp
roughness spectrum̂ uĥ(k,0)u2&5S(k,0)[S0(k), where
ĥ(k,t) is the Fourier transform ofh(r ,t) andk5uku. Under
the linear equation~2! the roughness spectrum evolves as
R16 334 ©1999 The American Physical Society
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S~k,t !5S0~k!exp@2~ak22kk4!t#, ~3!

which implies that fluctuations with wave numbersk.kc

5Aa/k are damped, while those withk,kc are exponen-
tially amplified. The surface widthW(t) is obtained by sum-
ming over all wave numbers,

W2~ t !52pE
0

`

dkkS0~k!e2(ak22kk4)t. ~4!

Motivated by the experimental data shown in Fig. 4
GZRV, we choose a white noise roughness spectrum,

S0~k!5H l 0
2W0

2/p3 : k,p/ l 0

0 : else,
~5!

where the small scale cutoffl 0 is required for a finite value
W05W(0) of the initial surface width. Taking the time de
rivative of Eq.~4! and evaluating it att50, we find that the
surface width shows an initialdecreaseif ( l m / l 0)2.12,
where l m52pA2k/a is the wavelength6 of those fluctua-
tions which are maximally amplified by the linear equati
~2!. Thus the condition for a nonmonotonic time depende
of the surface width is that the length scale characterizing
substrate roughness,l 0, is much smaller than the typica
scalel m of the emerging mounds. This result holds also
more general initial roughness spectra, e.g.,S0(k)5Ak2r

with r,2 and a small scale cutoffl 0. For substrates whos
roughness is dominated by long wavelength fluctuations
the sense thatS0;k2r with r.2, a large scale cutoff is
needed and the time derivativedW/dtu t50 does usually not
exist.

In the following we takel 0! l m . Then, Eq.~4! reduces to
the scaling form

W2~ t !5W0
2~ l 0 / l m!2F~ t/t!, ~6!

where 1/t5a2/4k is the amplification rate of the maximall
unstable fluctuations and the scaling function is

F~x!5e2xA2p/x@11erf~A2x!#, ~7!

with erf(s)5(2/Ap)*0
sexp(2t2)dt. The width attains its

minimum at a timetmin'0.18t, where it has been reduce
by a factor

W~ tmin!/W0'3.7~ l 0 / l m!. ~8!

Since the factor 11erf(A2x) in Eq. ~7! only varies between
1 and 2, the scaling functionF(x) is essentially the produc
of a decaying power and an exponentially increasing fac
The power law for smallx reflects the particular smoothen
ing mechanism~capillarity-driven surface diffusion! and its
general form7 is given by Eq.~18! below. For finitel 0 / l m ,
the power law sets in for timest.t0 with t0'( l 0 / l m)4t.

To relate the behavior ofW(t) to microscopic parameter
we need to express the coefficientsa and k of Eq. ~2! in
terms of the two length scales governing unsta
homoepitaxy:3,5 The typical terrace size13 l D and the
Ehrlich-Schwoebel-length12

l ES5ai~D/D821!5ai~eDE/kBT21! ~9!
f

e
e

r

in

r.

e

defined in terms of the in-layer lattice spacingai , the in-
layer ~interlayer! surface diffusion constantD (D8) and the
step edge barrierDE. Comparison of the two length scale
makes it possible to distinguish conditions of strong (l ES
@ l D) and weak (l ES! l D) step edge barriers; in the first cas
a'Fl D

2 , in the seconda'Fl Dl ES. The coefficientk is tra-
ditionally associated with near-equilibrium surfac
diffusion,10 however, under far-from-equilibrium growth
conditions the dominant contribution tok is believed to arise
from the random nucleation process.12 The expressionk
'Fl D

4 is then suggested by dimensional analysis12 and scal-
ing arguments.14 It leads to a consistent picture4 in the sense
that l m' l D and t'F21 in the strong barrier case, whic
implies that mounds develop on the submonolayer isla
already during the growth of the first few layers~‘‘wedding
cake’’ regime15,16!. In the weak barrier case we find

l m; l DAl D / l ES and t;F21~ l D / l ES!
2. ~10!

The minimum in the surface width thus occurs at a cover

umin;~ l D / l ES!
2@1 ~11!

which corresponds, not surprisingly, to the coverage wh
mounds first become visible for growth from a smoo
substrate.3,12 Similarly, the coverageu05Ft0 at which the
scaling form~6! for the width begins to hold is of the orde
of u0;( l 0 / l D)4 independent ofl ES ~providedl ES! l D).

To apply these considerations to the experiment on In
growth of GZRV, we first need to check the conditionl 0
! l m . From Fig. 4 of the paper6 we estimate that
W0 /W(tmin)'4. Comparing this to the theoretical predictio
~8! we find l 0'0.073 l m and l m / l 0@1 is true. This is in
contrast to the kinetic Monte Carlo simulations of GZR
whereW0 /W(tmin)'1.1. The instability length in the experi
ment isl m'1.0 mm, which yieldsl 0'70 nm for the small
scale cutoff of the substrate roughness. This is consis
with the initial roughness spectrum in Fig. 4 of GZRV
which is constant at least down to a length scale of 300 n
The minimum width is attained at a film thickness of abo
0.57mm. Using ai'6 Å and a bilayer thicknessa'

'3 Å , we therefore estimate thatumin'1900 andl m /ai
'1700, and hencel ES/ai'6 and l D /ai'250. At the ex-
perimental temperature of 500 °C, this implies a step e
barrier DE of the order of 0.1 eV, comparable t
estimates3,17 for GaAs.

III. NOISE EFFECTS

Next we include a noise termh(r ,t) in Eq. ~2!. The dif-
ferent sources of noise, the individual events of deposit
~‘‘shot noise’’! and diffusion, enter the noise correlator wi
different dependence11,18 on the wave numberk. We write it
in the form

R~k![^h~k,t !h~2k,t !&5RS1RDk2, ~12!

with RS andRD denoting the strength of deposition and d
fusion noise, respectively. In the linear model with noise
roughness spectrumS(k,t) then contains a part reflecting th
history of the noise, as well as the deterministic evolution
the initial roughness treated above. The full expression re
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S~k,t !5Sdet~k,t !1Snoise~k,t !

5S0~k!e2(ak22kk4)t1
R~k!

2~ak22kk4!

3@e2(ak22kk4)t21#. ~13!

Unlike the deterministic mechanism, the noise increases
amplitude of the spectrum for every wavelength, i.
] tSnoise(k,t).0 for all k. We shall now examine whethe
under the experimental conditions of GZRV noise subst
tially contribute to the surface width.

The deposited particle flux can be seen as a Poisson
cess with intensityF, so RS5a'ai

2F. Shot noise thus con
tributes to the total width by

WS~ t !25Fta'~ai / l m!2C~ t/t!, ~14!

with C8(x)5F(x) for the choice~5! of S0(k). Using Eq.
~10!, we see that Eq.~14! can be ignored against Eq.~6! if

~W0 /a'!2~ l 0 /ai!
2@~ l D / l ES!

2. ~15!

With our estimate ofl 0'70 nm, this condition is satisfied in
the experiment. A different interpretation of Eq.~15! will be
given below.

The diffusion noise strength is given by the average r
of adatom jumps on the surface,11 so

RD;r1D; l D
2 F, ~16!

where we have used the estimater1;Fl D
2 /D for the adatom

density.13 Diffusion noise thus becomes more important th
shot noise fork.p/ l D , whereas it can be neglected for lon
wavelengths. For largek we can approximate the contribu
tion of diffusion noise in Eq.~13! by RDk2/(kk4) which
enters the total width asWD(t)25 l D

2 / l m
4 Ft log(lD /ai). This

means that roughlyWD(t)2'( l D / l m)2WS(t)2!WS(t)2, be-
causel m@ l D in the weak barrier regime. In particular, at th
time when the width minimum is attained, diffusion noi
can be neglected against shot noise, and for the experim
of GZRV, Eq. ~6! remains valid.

It was mentioned already that due to noise, a minimum
the surface width may occur even in the absence of step e
barriers.7 For completeness, we provide here a simple ana
sis for the most general linear Langevin equation of kine
roughening,

] th52~2n¹2!z/2h1h, ~17!

where z52 and z54 correspond to evaporation
condensation and surface diffusion dominated relaxat
respectively,10 n.0 is a constant, andh is the deposition
noise. Odd or noninteger values ofz describe nonlocal relax
ation mechanisms and can be treated on the same grou3

The linearity of Eq.~17! implies that the substrate contribu
tion and the growth induced contribution to the roughn
can be separated.7 The substrate contribution is found to d
cay according to

Wsub~ t !'W0„l 0 /j~ t !…d/2, ~18!

for a d-dimensional surface, for times such that the corre
tion length of the growth-induced roughnessj(t) exceedsl 0
he
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~otherwiseWsub'W0). In terms of physical quantities, th
correlation length can be written as14 j(t)' l Du1/z. To deter-
mine the coverageûmin of minimal surface width for purely
stochastic roughening, the substrate contribution~18! should
be compared to the growth induced roughness14

Wgrowth'a'~u/ ũ !(z2d)/2z, ~19!

whereũ is the coverage at which the width becomes of t
order ofa' , and thus lattice effects~such as temporal oscil
lations of the step density! die out; the expression~19! holds
for u@ ũ. With the estimate14,19 ũ;( l D /ai)

zd/(z2d), we ob-
tain

ûmin'~W0 /a'!2~ l 0 /ai!
d ~20!

independent ofz. Comparing Eqs.~20! and ~11! we have
thus recovered the crossover condition~15! between deter-
ministic instability and stochastic roughening from the opp
site side. To neglect the growth instability in Eq.~17! is no
longer justified when the minimum width coverageumin pre-
dicted by the deterministic theory@Eq. ~11!# is smaller than
ûmin in Eq. ~20!.

IV. DISCUSSION AND CONCLUSION

The main results of this paper are Eqs.~6! and~14!, which
express the time dependent surface roughness in terms o
characteristic length and time scales of the problem—
substrate roughness scalel 0, the incipient mound sizel m ,
and the linear growth timet—the latter two of which are, in
turn, related to the microscopic growth parameters throu
Eq. ~10!. For the experiment of GZRV, the measured valu
of l m and t were seen to imply reasonable numbers for
microscopic lengthsl D andl ES, and for the step edge barrie
DE.

It is then natural to ask to what extent the linear theo
can be used toquantitativelydescribe the experimentally ob
served roughness evolution, beyond providing consis
order-of-magnitude estimates. Inspection of the data for
surface roughness depicted in the inset of Fig. 4 of GZ
quickly leads to the conclusion that, despite a similar ove
appearance, the shape ofW(t) is not well reproduced by our
scaling functions~6! and~14!. In fact, the data for the struc
ture factor in Fig. 4 show aqualitative feature which the
linear theory is unable to explain: It is an immediate con
quence of Eq.~13! that S(k,t) is a monotonic function oft
~increasing or decreasing! for any k; in contrast, the mea-
sured structure factor shows a nonmonotonic dependenc
film thickness fork.kc .

This prompts the question whether the use of the line
ized theory is really justified under the experimental con
tions. Nonlinear terms in the surface currentJ in Eq. ~1! are
expected3,4,12to matter when the surface slopeu¹hu becomes
comparable toa' / l D . Since typical slope values of the in
tial surface profile are of the order ofW0 / l 0, the condition
for the validity of the linear theory is

W0 /a', l 0 / l D . ~21!
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In the experiment of GZRV,W0 /a''3 and, from the esti-
mates presented above,l 0 / l D'0.5; thus the condition~21! is
~weakly! violated. The analogy to phase ordering kinetic4

suggests that the early time evolution may be qualitativ
altered when nonlinearities are important.20 This seems like
an interesting problem for future study.

Note added in proof.A more accurate treatment of th
numerical coefficients in Eqs.~10! and ~11! yields the esti-
matesl D'0.103 l mumin

21/4'15 nm andl ES'0.853 l Dumin
21/2

'3 Å for the experiment of GZRV, suggesting that the st
st

en
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ys
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edge barrier is only about 0.03 eV and the conditin~21! is
marginally satisfied. We are grateful to Claudio Castella
for clarifying this point.
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