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Theory of dephasing by external perturbation in open quantum dots
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We propose a random matrix theory describing the influence of a time-dependent external field on the
average magnetoresistance of open quantum dots. The effect of the external field is taken into account to all
orders of perturbation theory, and the result is applicable to both weak and strong fields.
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The anomalous magnetoresistance of bulk disordered
tems is governed by weak localization~WL!.1–3 Being an
interference phenomenon, it is extremely sensitive to ine
tic processes commonly referred to as dephasing.

Recently, another object for the study of quantum effe
appeared—ballistic quantum dots.4 In the absence of inelas
tic processes, the transport properties of the dots are
described within the random matrix theory~RMT!.5 The
magnetoresistance within this theory manifests itself a
crossover between two universal ensembles~orthogonal and
unitary!, and the strength of the magnetic field defines
position on this crossover. This picture per se did not inclu
dephasing, and the dephasing processes were considere
phenomenological basis.6 The relation of this phenomeno
logical description used to fit the data of Ref. 7 to the mic
scopic mechanisms of dephasing is still an open questio

In this paper, we propose a random matrixlike theory
magnetoresistance affected by an external time-depen
perturbation. We will find both the amplitude and frequen
dependence of the magnetoresistance using only one
known parameter. This parameter can be related to the
relator of the level velocities due to the same perturbation
zero frequency and, thus, in principle, can be determined
an independent experiment. After the strength of the po
tial is normalized by this parameter, all results become u
versal. As for the experimental realization, we imply chan
ing the shape of a quantum dot by applying an externa
bias to the dot forming leads.4

Before we proceed, let us mention that the effect stud
in the present paper is similar to that of Refs. 8 and 9, wh
it was shown that a uniform ac-electric field suppresses
weak localization correction to the conductivity of a diso
dered wire. The results of Ref. 8 are not directly applica
to quantum dots with sizeL so small that the Thouless en
ergyET;\/terg is much greater than all other energy sca
of the problem~here terg is the characteristic time for a
classical particle to cover all of the available phase spac!.

On the other hand, in this limit, one can use the RMT
study the conductance of the system, see Ref. 10. All cor
tions to the RMT are as small asNch /gdot;gdot5ET /d1 and
d1 is the mean level spacing. We consider the WL correct
to the conductance of quantum dots with a large numbe
open channelsNch . In this approximation, we neglect th
PRB 600163-1829/99/60~24!/16311~4!/$15.00
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effects of the electron-electron interaction on the cond
tance which are as small as 1/Nch

2 ,11 while the weak local-
ization correction to the conductance is proportional
1/Nch . The same condition also allows us to use a conv
tional diagrammatic technique12 to take the ensemble ave
age.

The Hamiltonian of the system is10

Ĥ5ĤD1ĤL1ĤLD , ~1!

where ĤD is the Hamiltonian of the electrons in the do
which is determined by theM3M matrix Hnm :

ĤD5 (
n,m51

M

cn
†Hnmcm , ~2!

where the thermodynamic limitM→` is assumed. We con
sider the case, whereHnm is a time-dependent random matr
in the form

Hnm~ t !5Hnm1Vnmw~ t !. ~3!

Here, the time-independent part of the HamiltonianHnm is a
random realization of theM3M matrix, which obeys the
correlation function

^HnmHn8m8
* &5ldnn8dmm81l8dmn8dnm8 , ~4!

where l5M (d1 /p)2 and l85l(12gh/4M ), and gh de-
fines the crossover from orthogonal (gh50) to unitary (gh
54M ) ensembles. The parametergh has the meaning of the
dephasing rate due to an external magnetic field in the u
of the level spacingd1.3,10 It can be estimated asgh
.gdot(F/F0)2, whereF is the magnetic flux through the
dot andF05hc/2e is the flux quantum. The time-depende
perturbation is described by the symmetricM3M matrices
Vnm and the function of timew(t).

The coupling between the dot and the leads is

ĤLD5 (
a,n,k

@Wnaca
†~k!cn1H.c.#, ~5!

wherecn corresponds to the states of the dot,ca(k) denotes
different electron states in the leads, and momentumk labels
R16 311 ©1999 The American Physical Society
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continuous states in each channela. For a dot connected
with two leads byNl andNr channels, respectively, we de
note the left lead channels by 1<a<Nl and the right chan-
nels byNl11<a<Nch , whereNch5Nl1Nr . The electron
spectrum in the leads near the Fermi surface can be lin
ized:

ĤL5vF(
a,k

kca
†~k!ca~k!, ~6!

wherevF51/2pn is the Fermi velocity, andn is the density
of states at the Fermi surface.

The coupling constantsWna in Eq. ~5! are10

Wna5S Md1

p2n
D 1/2H ta if n5a<Nch ,

0 otherwise,
~7!

whereta determines the dimensionless conductance of e
lead ~in units of 2e2/h) according to

gl5 (
a51

Nl 4tata*

~11tata* !2
, gr5 (

a5Nl11

Nch 4tata*

~11tata* !2
~8!

and utau<1. The factor in Eq.~7! is chosen so that the en
semble average scattering matrixSab of a dot with fully
open channels (ta51) is zero. A more complicated structur
of Ŵ can always be reduced to the form~7! by suitable
rotations.

The scattering matrix of the system,Ŝ, has the form

Sab~ t,t8!5dabd~ t2t8!22p inWan
† Gnm~ t,t8!Wmb , ~9!

and the Green’s functionGnm(t,t8) is the solution to

S i
]

]t
2Ĥ~ t !1 ipnŴŴ†D Ĝ~ t,t8!5d~ t2t8!, ~10!

where the matricesĤ andŴ are comprised by their elemen
~3! and ~7!, respectively.

The average dimensionless dc conductance of the do
temperatureT in terms of the scattering matrix of the syste
in linear response theory is13

g5K E
2`

1`

dt1dt2 tr @ t̂ lS~ t,t1!t̂ rS †~ t2 ,t !#L f ~ t12t2!,

~11!

f ~ t !5E
2`

1`

dv eivt
]

]v

1

ev/T11
5

pTt

sinhpTt
, ~12!

where^•••& stands for both ensemble and timet averages.
We also introduce a notation for the projector on the l
lead, t̂ l , which is a diagonalNch3Nch matrix with the first
Nl diagonal elements equal to unity and the other diag
al elements equal to zero,t̂ r5 Î 2 t̂ l .

The ensemble averagêS(t,t1)S †(t2 ,t)&;d(t12t2).
This property allows us to eliminate one of the time integr
in Eq. ~11! and the thermal functionf (t): f (0)51. There-
fore, the result does not depend on the electron tempera
similarly to the conductivity of bulk metal in the weak loca
ization regime without interaction.
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We perform calculations of the average conductan
keeping the leading terms in 1/M . The diagrammatic tech
nique is somewhat similar to that developed for bu
metals,12 where the small parameter is 1/eFt imp, with eF
being the Fermi energy andt imp being the elastic mean fre
time.

First we find the ensemble average Green’s funct
^G(R)&. One can see that̂G(R)& is diagonal, ^Gnm

(R)(e)&
5dnmGn

(R)(e). Using the self-consistency equation for th
Green’s function, Fig. 1~a!, we find

Gn
(R)~e!5

1

iAlM 5
1

11tntn*
, n<Nch ,

11

(
a51

Nch 2tata*

11tata*
1 i e

4M
, n.Nch .

~13!

Above we introduced the dimensionless energye measured
in the units ofAl/4M5d1/2p. We expand these Green’
functions ine/M andgl ,r /M , since only those terms surviv
the thermodynamic limitM→`. For the same reason, in th
expression forGn

(R) with n<Nch we neglect such terms sinc
the contribution of these elements to the final result is
ready of the order ofNch /M .

We rearrange Eq.~11! as the following:

g5
Nrgl

21Nlgr
2

~gl1gr !
2

1E dt1dt2 tr^ĴlS~ t,t1!ĴrS †~ t2 ,t !&,

~14!

Ĵl ,r5 t̂ l ,r2
gl ,r

gl1gr
Î . ~15!

Equation~14! immediately follows from Eq.~11! and from
the unitarity of theS matrix SS †5 Î . The calculations of the
conductance in the form of Eq.~14! are significantly simpler
since the vertices~15! are not dressed by the dashed line
see Fig. 1~b!. This trick is similar to the calculation of the
conductivity of disordered bulk systems in terms of t
current-current, rather than density-density, correlation fu
tion, Refs. 2 and 3.

Now, we substitute the scattering matrix defined by E
~9! to Eq.~14!. One can independently average to the lead
order in 1/(gl1gr) with the help of Eq.~13! and obtain the
classical conductance

gcl5
glgr

gl1gr
. ~16!

Particularly, for the dot with fully open channels (ta51), the
averageS matrix vanishes, and the first term of Eq.~14!
givesgcl5NlNr /Nch , since in this casegl ,r5Nl ,r .

The first order correction in 1/(gl1gr) to Eq. ~16! is
given by the diagram in Fig. 2~a!. It represents the WL cor-
rection to the conductance and has the expression
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Dgwl52
f lgr

21 f rgl
2

~gl1gr !
2 E0

2p/v v dT

2p E
0

`

2 dt C~T,t,2t!;

~17!

where the form factorsf l ,r are given by

f l5 (
a51

Nl 16~ tata* !2

~11tata* !4
, f r5 (

a5Nl11

Nch 16~ tata* !2

~11tata* !4
. ~18!

The CooperonC is defined in Fig. 2~b!:

S ]

]t
1K~T,t! D C~T,t,t8!5d~t2t8!, ~19!

where time is measured in the units of inverse level spac
2p/d1 and the ‘‘Hamiltonian’’ for the Cooperon is

K~T,t!5g* 1p2C0@w~T1t/2!2w~T2t/2!#2. ~20!

Hereg* characterizes the total dephasing due to the esc
as well as the magnetic field,

g* 5gl1gr1gh ,

and we chosew(t)5cosvt to describe the time dependen
of the perturbation.

The only unknown parameterC0 in Eq. ~20! depends on
the strength of the perturbation. In terms of the origin
Hamiltonian~3!, it is defined as

FIG. 1. ~a! Diagrams for the ensemble average Green’s functi
The second term in the self-energy includes an intersection
dashed lines and is as small as 1/M . ~b! The representation of the
conductance in the form of Eq.~14! forbids renormalization of the
verticesJ from Eq. ~15! by disorder.

FIG. 2. ~a! The diagram for the WL correction to the condu
tance.~b! The diagram equation for the Cooperon.
g

pe

l

C05
2

p2Ml
(
nm

Vnm
2 , ~21!

where we used the fact that the matrixV̂ is symmetric. This
parameter is related to the typical value of the level velo
ties, which characterizes the evolution of an energy le
en(X) under the external perturbationXV̂,14

d1
2C05 K S ]en

]X D 2L 2 K ]en

]X L 2

. ~22!

Since all other responses~e.g., parametric dependence of th
conductance of the dot! are expressed in terms of the unive
sal functions of the same parameterC0,14 it can be found
from independent measurements. For the rather unreal
case of homogeneous electric fieldE introduced into a dot of
linear sizeL, one can estimateC0.(eEL)2/(ETd1). It is
important to emphasize that a homogeneous shift of all lev
does not affect the magnetoresistance and that is why
average level velocitŷ]en /]X& is irrelevant.

In the absence of time dependent perturbationw[0,10,15

one obtains from Eqs.~17!–~20!:

Dgwl
(0)52

f lgr
21 f rgl

2

~gl1gr !
2g*

. ~23!

The solution to Eq.~19! gives the weak localization correc
tion to the conductanceDgwl in the presence of the time
dependent field. It can be expressed in terms of the un
turbed correction~23! as

Dgwl

Dgwl
(0)

5F~y,z!, y5
pv

g* d1
, z5

p2C0

g*
, ~24!

where the dimensionless functionF(y,z) is given by

F~y,z!5E
0

`

dx e2x2zfI 0@zf#, f5x2
sinxy

y
. ~25!

.
of

FIG. 3. Representative curves ofF(y,z) as a function ofz for
two values ofy. F(y,z) decreases linearly withz at small values of
z. The inset shows they dependence of the functionF(y,z) for two
values ofz. F(y,z) decreases quadratically iny at small values ofy
and saturates at largery.
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Here I 0(j) is the modified Bessel function. Some curves
this function are plotted in Fig. 3.

Equations~24! and~25! are the main results of our pape
They give a universal description of the effect of an exter
field on the weak localization correction. Below we will di
cuss different asymptotic regimes and compare them w
the results for bulk systems.3

For a weak external fieldz!max(1,y22) we find

Dgwl

Dgwl
(0)

512
p2C0

g*

p2v2

p2v21d1
2g

*
2

. ~26!

In this regime the correction is quadratic in frequency fo
slowly oscillating field atv smaller than the dephasing ra
1/tf . However, the frequency dependence saturates at l
frequency. It is different from the result for bulk system
where a characteristic spatial scale shrinks as 1/Av, whereas
in our case it is determined by the size of the dot.

In the opposite limit of a strong external field,z
@max(1,y22), we have to consider separately the cases
fast,y@1, and slow,y!1 field oscillations. In the first cas
we find

Dgwl

Dgwl
(0)

5S g*
2p2C0

D 1/2

. ~27!

The linear dependence of the quantum correction on 1/AC0
is similar to that for bulk systems. Contrary to the situati
d

hy
r

l

th

ge
,

f

in bulk systems, the result does not depend on the freque
v for reasons we have already discussed.

In the case of a slowly varying field,y!1, but still zy2

@1 ~strong field! we obtain

Dgwl

Dgwl
(0)

5
G~1/6!

pG~5/6! S 2d1
2g

*
3

9C0v2D 1/3

, ~28!

i.e., the dependences on both the amplitude and the
quency are different from the bulk case.

In conclusion, we propose a random matrix theory d
scribing the influence of a time-dependent external field
the average magnetoresistance of open quantum dots.
dependence can be recast in the form of the universal fu
tion Eq. ~25! of one fitting parameter Eq.~22! which can be
fixed by an independent experiment. The results canno
described by a simple replacementg* →g* 1gf . Finally,
we note that thermal fluctuations of the gate potentials m
induce dephasing by virtue of the mechanism conside
here. However, the spectral density of such fluctuations
model dependent and thus not universal.
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Cornell Center for Materials Research, funded under N
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