
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 15 DECEMBER 1999-IIVOLUME 60, NUMBER 24
Composite fermion description of rotating Bose-Einstein condensates
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We study the properties of rotating Bose-Einstein condensates in parabolic traps, with coherence length large
compared to the system size. In this limit, it has been shown that unusual ground states form which cannot be
understood within a conventional many-vortex picture. Using comparisons with exact numerical results, we
show that these ground states can be well-described by a model of noninteracting ‘‘composite fermions.’’ Our
work emphasizes the similarities between the unusual states that appear in rotating Bose-Einstein condensates
and incompressible fractional quantum Hall states.@S0163-1829~99!50148-3#
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It has proved fruitful in fractional quantum Hall system1

to account for the many-body correlations induced
electron-electron interactions by introducing noninteract
‘‘composite fermions.’’2 Recently, a similar approach ha
been employed to show that the correlated states arising
interparticle interactions in dilute rotating confined bo
atomic gases can be described in terms of the condens
of a type of compositeboson.3 Here, we demonstrate that
transformation of the system of rotating bosons to that
noninteracting composite fermions is also successful in
counting for these correlated states. Our results establi
close connection between the ground states of rotating
fined Bose systems and the correlated states of fracti
quantum Hall systems.1

While the trapped atom gases have been shown to B
condense,4,5 the response of these condensates to rotat
has not, as yet, been measured experimentally. Theoretic
it is clear that there exist various different regimes. With
the Gross-Pitaevskii framework, which requires macrosco
occupation of the single particle states, the system fo
vortex arrays at both long6 and short7 coherence lengths
~compared to the size of the trap!, which are reminiscent o
Helium-4. Here, following Ref. 3, we choose to study t
system in the limit of large coherence length without d
manding macroscopic occupation numbers. This allows u
study both the regime considered in Ref. 6, as well as
gimes of higher vortex density where the quantum mech
cal nature of the vortices will be most prevalent. Indeed,
Ref. 3 it was shown that, in general, the ground states of
rotating boson system cannot be described within a conv
tional many-vortex picture. Rather, the system was found
be better described in terms of the condensation of ‘‘co
posite bosons’’—bound states of vortices and atom
across the whole range of vortex density. In the present
per, we show that a description in terms of noninteract
composite particles withfermionic statistics also provides
highly accurate description of the rotating Bose system: s
cifically, it enables us to predict many of the features in
energy spectrum and to form good overlaps with the ex
ground-state wave functions. In addition, this description
dicates a close relationship between the properties of rota
Bose systems and those of fractional quantum Hall syste

In a rotating reference frame, the standard Hamilton
for N weakly interacting atoms in a trap is5
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where we have used the trap energy,\AK/m5\v0 as the
unit of energy and the extent, (\2/MK)1/4, of the harmonic
oscillator ground state as the unit of length. (M is the mass
of an atom andK the spring constant of the harmonic trap!

The coupling constant is defined ash54pn̄a(\2/MK)21/2,
where n̄ is the average atomic density anda the scattering
length. The angular velocity of the trap,v, is measured in
units of the trap frequency.

Throughout this work, we make use of the limit of wea
interactions (h!1). It was shown in Ref. 8 that in this limi
the system may be described by a two-dimensional mo
with a Hilbert space spanned by the states of the low
Landau level:cm(r)}zm exp(2zz̄/2), wherem is the angular
momentum quantum number (m50,1,2. . . ) andz[x1 iy .
The kinetic energy is quenched and the ground state is
termined by a balance between the interaction and pote
energies. Noting that thez component of the angular momen
tum, L, commutes with the Hamiltonian, the total energ
scaled byh, may be written

E/h5VN~L !1~12v!/hL, ~2!

whereVN(L) is the interaction energy at angular momentu
L. While this separation holds for all energy eigenstates,
chooseVN(L) to denote the smallest eigenvalue of the int
actions at angular momentumL. Since the interactions ar
repulsive,VN(L) decreases asL increases and the particle
spread out in space; a tendency that is opposed by the
(12v)/hL describing the parabolic confinement. Thus,
the rotation frequencyv is varied, the ground-state angula
momentum will increase, fromL50 at v50, to diverge as
v→1 ~when the trap confinement is lost!; our goal is to
describe the sequence of states~of different L) through
which it passes.

We have obtained the ground-state interaction energ
VN(L), for N53 to 10 particles, from exact numerical d
agonalizations within the space of bosonic wave functions
the lowest Landau level.9 While the interaction energy
VN(L) does decrease with increasing angular momentum
is not a smooth function ofL. Thus, the ground-state angula
momentum, obtained by minimizing Eq.~2!, is not a
smoothly increasing function ofv. As shown in Fig. 1, cer-
tain values of angular momentum, corresponding to dow
ward cusps inVN(L), are particularly stable, and are select
as the ground state over a range ofv.
R16 279 ©1999 The American Physical Society
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The existence of certain angular momentum states of
hanced stability is reminiscent of the ‘‘magic values’’ of a
gular momentum for electrons in quantum dots;10–13by anal-
ogy we will also refer to the stable angular momenta of
bosons as the magic values. Indeed, the system of boson
study is precisely thebosonicvariant of the~fermionic! prob-
lem of a parabolic quantum dot in strong magnetic field, w
v0 playing the role of the magnetic field and (12v)/h the
role of the parabolic confinement, and withd-function inter-
actions replacing the more usual Coulomb repulsion. As
shall explain, the magic values of angular momenta for
bosonic and fermionic systems are, in fact, closely rela
This is a corollary of our principal result, to which we no
turn, that much of the structure appearing in Fig. 1 can
interpreted simply in terms of the formation of bound sta
of bosons and vortices behaving as noninteracting compo
particles with fermionic statistics—‘‘composite fermions’’
~CF!.

It is known that, forhomogeneous systems, interacting
bosons and interacting fermions within the lowest Land
level have many features in common. For example, th
exist certain filling fractions14 of both the boson and fermio
systems at which interactions lead to incompressible gro
states, with wave functions that may be related by a sim
statistical transformation if 1/nF51/nB11,15 (nB andnF are
the filling fractions of the bosons and fermions!. These simi-
larities arise from the remarkable effectiveness of mean-fi
approximations to Chern-Simons theories of such system2

Here, we are interested in aninhomogeneoussystem, in
which the bosons are subject to a parabolic confinement.
and co-workers13,16,17have shown that the fermionic equiva
lent of this problem—interacting electrons in a quantum
—can be well-described in terms of properties ofnoninter-
acting composite fermions. Motivated by the success of the
theory, we apply a similar transformation to describe
present bosonic problem.

Specifically, we make the following ansatz for the man
boson wave function:

CL
ansatz~$zi%!5PH)

i , j
~zi2zj !CLCF

CF ~$zi%!J , ~3!

where CLCF

CF ($zi%) is a wave function for some fermioni

particles—the composite fermions. Multiplication of the a

FIG. 1. Ground state angular momentum as a function of ro
tion frequency,v, for N53→10 particles~Ref. 9!.
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tisymmetric CF wave function by the Jastrow prefactor ge
erates a completely symmetric bosonic wave function.P
projects the wave function onto the lowest Landau lev
which amounts to the replacementzi

nz̄i
m→$(n!/m!)zi

n2m (n
>m); 0 (n,m)% for all terms in the polynomial part of the
wave function. For a full discussion, see Ref. 18.~For ease of
presentation, we omit exponential factors and normalizat
constants from all wave functions.!

The transformation~3! causes the boson wave function
describe a vortex around the position of each other particl
addition to the motions described byCCF. One can therefore
interpret a composite fermion as a bound state of a bo
with a vortex of fermionic statistics~cf. Ref. 19!. As a result,
the angular momentum of the bosons,L, is increased with
respect to that of the composite fermions,LCF , according to

L5LCF1N~N21!/2. ~4!

Note that the transformation~3! relates 1/nCF51/nB21 and
is not the same as that used in Ref. 15. There are an un
ited number of fermion↔ boson mappings that one ca
effect through transformations of the form~3!. In Fig. 2 we
present a schematic of how, by subsequent attachmen
vortices—each causing an addition ofN(N21)/2 to the an-
gular momentum—one can transform from the compos
bosons~CB! introduced in Ref. 3 to the composite fermion
used here~CF!, to the bare boson system in which we a
interested~B!, and finally to a fermion system~F!.

We introduce the fermion system~F! to point out that the
composite fermions~CF! which we use to describe the boso
system ~B! are the same as those used by Jain a
Kawamura13 to describe interacting electrons in quantu
dots ~F!. The predictions of the energy spectrum flowin
from a model of noninteracting composite fermions w
therefore be identical in the boson and fermion systems u
the shiftLF5L1N(N21)/2.

In the spirit of Ref. 13, we shall consider the CF’s, d
scribed byCLCF

CF ($zi%), to be noninteracting, and look at th

variation of the minimumkinetic energy of the CF’s as a
function of the total angular momentum. We further assu
that a composite fermion in the Landau level state (n,m)
~with Landau level indexn50,1,2. . . , andangular momen-
tum m52n,2n11 . . . ) has an energy En5(n
11/2)ECF , whereECF is some effective cyclotron energy
These assumptions may be viewed as a mean-field treat
of the appropriate Chern-Simons theory for this system;
timately, they are justified by the predictive successes of
resulting theory.

Figure 3 shows the resulting ground-state energy of n
interacting CF’s as a function ofL5LCF1N(N21)/2 for
N57,8,9, together with the exact interaction energ
VN(L).

-

FIG. 2. A schematic relating the transformation we are perfor
ing to those that have been used previously.
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It is apparent that the composite fermion energies fai
capture the rapid rise in the exact energies at small ang
momenta; this can be interpreted as a failing of the assu
tion of a constant effective cyclotron energyECF . The prin-
cipal success of this approach is the identification of
cuspsin the exact energyVN(L): at almost all of the angula
momenta for which the composite fermion kinetic ener
shows a downward cusp~we label these sets of angular m
menta byLN* ), there is a corresponding cusp in the exa
energyVN(L). Since a ‘‘magic’’ angular momentum of th
boson system must coincide with a downward cusp
VN(L), the setLN* representsa set of candidate values for th
magic angular momenta. For example: forN57, the CF
model predicts all nine actual magic numbers and in addi
identifies cusps which do not become ground states fo
further threeLPL7* . These missing values are not necess
ily a failing of the composite fermion model. The main fa
ing, to which we will return later, is that there is a sma
number of magic angular momenta that are not identified

Not only does the composite fermion model successfu
identify the majority of the magic angular momenta, as
now show it also provides a very accurate description of
associated wave functions. The composite fermion w
functions corresponding to the angular momentaLN* are the
‘‘compact states’’ discussed in Ref. 13. For these states,
composite fermions occupy the lowest available angular m
mentum states within each Landau level. As an illustrati
for N54, there is a cusp in the composite fermion energy
L58 (LCF52), at which the composite fermions occupy t
single particle states (n,m)5$(0,0),(0,1),(0,2),(1,21)%.
The wave functionCLCF

CF is formed as a Slater determinant

these states, and the bosonic wave functionCL
ansatz is con-

structed via Eq.~3!.
In the casesL50 andL5N(N21), this procedure yields

the exact ground-state wave function for allN. At L50,
there is only one many-body state within the lowest Land
level ~all bosons occupy them50 state!; the ansatz~3! has
nonzero overlap with this state, so must~trivially ! be the

FIG. 3. The circles show the ground-state energies of nonin
acting composite fermions as a function of angular momentum,
N57,8,9 ~filled circles identify the sets,LN* , of angular momenta a
which the CF energy has a downward cusp!. The exact interaction
energies,VN(L) are shown as solid lines for comparison.~All
curves are offset for clarity.!
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ground state. ForL5N(N21), the lowest energy composit
fermion state is formed from the state
$(0,0),(0,1),. . . (0,N)%. The Slater determinant of thes
states may be writtenCCF5) i , j (zi2zj ), which, inserted in
Eq. ~3!, generates the bosonic Laughlin stateCansatz

5) i , j (zi2zj )
2. ~This state is in the lowest Landau leve

and projection is unnecessary.! Since this wave function van
ishes forzi5zj ( iÞ j ), it is the exact zero energy eigensta
of the d-function two-body interaction potential.

At intermediate values of the angular momentum, our
satz~3! is not, in general, exact. We have performed nume
cal calculations to determine the overlaps of the ansatz w
functions with the exact ground-state wave function
u^CL

ansatzuCL
exact&u. We list these overlaps in Table I at eac

of the angular momenta,LPLN* , selected by the noninterac
ing composite fermion model. In general, the ansatz~3! has
an overlap of close to unity with the exact ground state:
composite fermion model provides an excellent descript
of these states. Small overlaps can occur when the comp
fermion model does not produce a unique ansatz, i.e., w
two, or more, sets of single particle states for the compo
fermions have the same kinetic energy at a givenL ~e.g.,N
56,L512). In these cases, the overlaps could be impro
by diagonalizing the Hamiltonian within the space of sta
spanned by the two ansatz states.

Owing to the impressive agreement between the an
wave functions~3! and the exact ground states atLN* , an
accurate description of the ground-state angular momen
as a function of rotation frequency can be obtained us
only this set of ansatz wave functions. Minimizing the e
pectation value of the energy~2! within this set of ansatz
wave functions, one obtains a ground-state angular mom
tum as a function of (12v)/h that is in excellent agreemen
with the exact results shown in Fig. 1. This approach do
however, omit a small number of magic angular momenta
some cases, these are magic values identified by the com
ite fermion model, but for which the expectation value of t
energy happens not to be sufficiently low to become sta
(N56, L512; N59, L533,37; N510, L538). The most
important omissions are the magic angular momenta aN
58,L512, N510,L516,21 for which there areno features
in the composite fermion kinetic energy that would sugges
stable angular momentum state. We believe that this em
gent structure at larger numbers of particles represents m
body correlations that are not captured by the noninterac
composite fermion model used here.~Some of these state
are correctly identified by the composite boson approac3!
They could be related to the incompressible states, suc
n54/5, of quantum Hall systems which cannot be explain
in terms of noninteracting composite fermions alone, but
quire an additional ‘‘particle-hole’’ transformation. Thi
view is strengthened by the observation that related ma
angular momenta also appear in the exact ground-state
ergy of electrons in quantum dots interacting by Coulom
forces, up to the shiftLF5L1N(N21)/2 ~e.g., Ref. 17
identifies a stable state ofN510 electrons atLF561—
equivalent toN510,L516 of the present bosonic model!.
The study of this additional structure is beyond the scope
the present work.
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TABLE I. For each number of bosons,N, the angular momenta,LN* , at which the noninteract-
ing composite fermion description predicts a downward cusp are given, together with~in brackets!
the overlaps of the ansatz wave function~3! with the exact ground-state wave function. Where
given angular momentum appears more than once for fixedN, the composite fermion mode
provides more than one candidate ground state.

N Angular momentumL, @ u^CL
ansatzuCL

exact&u#

3 0 @1#, 3 @1#, 6 @1#

4 0 @1#, 4 @0.980#, 6 @0.980#, 8 @0.997#, 12 @1#

5 0 @1#, 5 @0.986#, 8 @0.983#, 10 @0.986#, 12 @0.979#, 15
@0.996#, 20 @1#

6 0 @1#, 6 @0.989#, 10 @0.956#, 12 @0.770#, 12@0.745#, 15
@0.977#, 18 @0.981#, 18 @0.240#, 20 @0.978#, 24
@0.996#, 30 @1#

7 0 @1#, 7 @0.992#, 12 @0.931#, 15 @0.971#, 18 @0.952#,
20 @0.948#, 22 @0.920#, 24 @0.970#, 27 @0.963#, 30
@0.979#, 35 @0.996#, 42 @1#

8 0 @1#, 8 @0.993#, 14 @0.886#, 18 @0.959#, 21 @0.915#,
24 @0.960#, 26 @0.917#, 28 @0.946#, 28 @0.072#, 30
@0.943#, 32 @0.917#, 35 @0.963#, 38 @0.972#, 42
@0.980#, 48 @0.996#, 56 @1#

9 0 @1#, 9 @0.994#, 16 @0.861#, 21 @0.926#, 24 @0.541#,
24 @0.854#, 28 @0.944#, 30 @0.795#, 30 @0.388#, 33
@0.912#, 35 @0.937#, 37 @0.899#, 39 @0.911#, 42
@0.074#, 42 @0.927#, 44 @0.917#, 48 @0.081#, 48
@0.958#, 51 @0.978#, 56 @0.981#, 63 @0.996#, 72 @1#

10 0 @1#, 10 @0.995#, 18 @0.848#, 24 @0.853#, 28 @0.934#,
32 @0.907#, 35 @0.902#, 38 @0.872#, 40 @0.733#, 40
@0.607#, 42 @0.016#, 42 @0.577#, 42 @0.779#, 45
@0.894# . . . 90 @1#
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In summary, we have studied the properties of rotati
Bose systems in parabolic traps in the limit of large cohe
ence length. Through comparisons with exact results
small systems, we showed that many of the features of
exact spectrum of the bosons can be understood in term
noninteracting composite fermions. The noninteracting com-
posite fermion model leads to~i! the identification of a set of
candidate values for the stable angular momenta of
bosons, and~ii ! associated many-body wave functions th
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have large overlap with the exact ground-state wave fu
tions. The success of the mapping to composite fermi
indicates that the ground states of rotating Bose-Eins
condensates, in the limit of large coherence length,
closely related to the correlated states appearing in fractio
quantum Hall systems.
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