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Composite fermion description of rotating Bose-Einstein condensates
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We study the properties of rotating Bose-Einstein condensates in parabolic traps, with coherence length large
compared to the system size. In this limit, it has been shown that unusual ground states form which cannot be
understood within a conventional many-vortex picture. Using comparisons with exact numerical results, we
show that these ground states can be well-described by a model of noninteracting “composite fermions.” Our
work emphasizes the similarities between the unusual states that appear in rotating Bose-Einstein condensates
and incompressible fractional quantum Hall staf&0163-18209)50148-3

It has proved fruitful in fractional quantum Hall systéms where we have used the trap energy/K/m=%w, as the
to account for the many-body correlations induced byunit of energy and the extentz/MK)Y4 of the harmonic
electron-electron interactions by introducing noninteractingpscillator ground state as the unit of lengtM (s the mass
‘t‘)compositle fe&rrt]ionﬁ.’z ?he?‘iﬂﬂy. a Slir?”éif ta;t)proa_ch he;s of an atom and the spring constant of the harmonic trap.

een employed to show that the correlated states arising fro . . i — .5 —12

interpartigleyinteractions in dilute rotating confined tg)]osethe C%P“ng constant is def'hed a$_47rna(ﬁ IMK) N
atomic gases can be described in terms of the condensatigyeren is the average atomic density aadhe scattering
of a type of compositdoson® Here, we demonstrate that a length. The angular velocity of the trap, is measured in
transformation of the system of rotating bosons to that otunits of the trap frequency.
noninteracting composite fermions is also successful in ac- Throughout this work, we make use of the limit of weak
counting for these correlated states. Our results establish iateractions ¢<1). It was shown in Ref. 8 that in this limit
close connection between the ground states of rotating corihe system may be described by a two-dimensional model
fined Bose systems and the correlated states of fractionafith a Hilbert space spanned by the states of the lowest
quantum Hall systems. Landau levely,(r)<z™ exp(—zZ2), wherem s the angular

While the trapped atom gases have been shown to Boggomentum quantum numbemE&0,1,2. .. ) andz=x+1iy.
condensé;® the response of these condensates to rotationshe kinetic energy is quenched and the ground state is de-
has not, as yet, been measured experimentally. Theoreticalligrmined by a balance between the interaction and potential
it is clear that there exist various different regimes. Withinenergies. Noting that thecomponent of the angular momen-
the Gross-Pitaevskii framework, which requires macroscopi¢um, L, commutes with the Hamiltonian, the total energy,
occupation of the single particle states, the system formscaled byz, may be written
vortex arrays at both loffigand short coherence lengths
(compared to the size of the trapvhich are reminiscent of
Helium-4. Here, following Ref. 3, we choose to study the
system in the limit of large coherence length without de-
manding macroscopic occupation numbers. This allows us tevhereVy(L) is the interaction energy at angular momentum
study both the regime considered in Ref. 6, as well as rek. While this separation holds for all energy eigenstates, we
gimes of higher vortex density where the quantum mechanichooseV(L) to denote the smallest eigenvalue of the inter-
cal nature of the vortices will be most prevalent. Indeed, inactions at angular momentulm Since the interactions are
Ref. 3 it was shown that, in general, the ground states of theepulsive,V\(L) decreases als increases and the particles
rotating boson system cannot be described within a converspread out in space; a tendency that is opposed by the term
tional many-vortex picture. Rather, the system was found td1— w)/»L describing the parabolic confinement. Thus, as
be better described in terms of the condensation of “comihe rotation frequencw is varied, the ground-state angular
posite bosons”—bound states of vortices and atoms—momentum will increase, froh=0 at w=0, to diverge as
across the whole range of vortex density. In the present pan—21 (when the trap confinement is Ipsiour goal is to
per, we show that a description in terms of noninteractingdescribe the sequence of stat@d different L) through
composite particles witliermionic statistics also provides a which it passes.
highly accurate description of the rotating Bose system: spe- We have obtained the ground-state interaction energies,
cifically, it enables us to predict many of the features in theVy(L), for N=3 to 10 particles, from exact numerical di-
energy spectrum and to form good overlaps with the exachgonalizations within the space of bosonic wave functions in
ground-state wave functions. In addition, this description inthe lowest Landau levél.While the interaction energy
dicates a close relationship between the properties of rotatingy(L) does decrease with increasing angular momentum, it
Bose systems and those of fractional quantum Hall systemss not a smooth function df. Thus, the ground-state angular

In a rotating reference frame, the standard Hamiltoniarmomentum, obtained by minimizing Eq2), is not a

E/n=V\(L)+(1-w)/ gL, (2

for N weakly interacting atoms in a trap°is smoothly increasing function ab. As shown in Fig. 1, cer-
LN N tain values of angular momentum, corresponding to down-
_ d cusps in/y(L), are particularly stable, and are selected
H=~ —V24r2+ S(ri—r)—2e-L;|, (1) War NE), '
2 .21 IR ;1?‘# (fi=r)-2e-Li), (D as the ground state over a rangeaof
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FIG. 2. A schematic relating the transformation we are perform-
] ing to those that have been used previously.
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tisymmetric CF wave function by the Jastrow prefactor gen-
erates a completely symmetric bosonic wave functign.
projects the wave function onto the lowest Landau level,
which amounts to the replacemeziz]"—{(n!/m!)z"~ ™ (n
=m); 0 (n<m)} for all terms in the polynomial part of the
wave function. For a full discussion, see Ref. (Bor ease of

~ FIG. 1. Ground state angular momentum as a function of rotapresentation, we omit exponential factors and normalization
tion frequency,w, for N=3—10 particles(Ref. 9. constants from all wave functions.

The existence of certain angular momentum states of en- The transformatiori3) causes the boson wave function to
hanced stability is reminiscent of the “magic values” of an- desqlbe a vortex a_round the position of each other particle in
gular momentum for electrons in quantum dBts*3by anal- gddmon to the motions deS(_:nbed H§“F. One can therefore
ogy we will also refer to the stable angular momenta of thenterpret a composite fermion as a bound state of a boson
bosons as the magic values. Indeed, the system of bosons Wéth a vortex of fermionic statisticef. Ref. 19. As a result,
study is precisely thbosonicvariant of the(fermionic) prob-  the angular momentum of the bosots,is increased with
lem of a parabolic quantum dot in strong magnetic field, withrespect to that of the composite fermiohg,-, according to
wq playing the role of the magnetic field and{l)/» the L=Lce+N(N-1)/2. (4)
role of the parabolic confinement, and wigkfunction inter-
actions replacing the more usual Coulomb repulsion. As wéVote that the transformatiof3) relates 1/c¢=1/vg—1 and
shall explain, the magic values of angular momenta for thds not the same as that used in Ref. 15. There are an unlim-
bosonic and fermionic systems are, in fact, closely relatedted number of fermion— boson mappings that one can
This is a corollary of our principal result, to which we now €&ffect through transformations of the for(8). In Fig. 2 we
turn, that much of the structure appearing in Fig. 1 can béresent a schematic of how, by subsequent attachments of
interpreted simply in terms of the formation of bound statesvortices—each causing an addition/é(N—1)/2 to the an-
of bosons and vortices behaving as noninteracting composi@ular momentum—one can transform from the composite
particles with fermionic statistics—“composite fermions” ©bosons(CB) introduced in Ref. 3 to the composite fermions
(CP). used hergCF), to the bare boson system in which we are

It is known that, forhomogeneous systemisteracting interestedB), and finally to a fermion systertF).
bosons and interacting fermions within the lowest Landau We introduce the fermion syste(f) to point out that the
level have many features in common. For example, theréomposite fermion§CF) which we use to describe the boson
exist certain filling fraction¥ of both the boson and fermion system (B) are the same as those used by Jain and
systems at which interactions lead to incompressible grounfawamura® to describe interacting electrons in quantum
states, with wave functions that may be related by a simpl&lots (F). The predictions of the energy spectrum flowing
statistical transformation if Lk=1/vg+1,2° (vg andvg are  from a model of noninteracting composite fermions will
the filling fractions of the bosons and fermign¥hese simi-  therefore be identical in the boson and fermion systems up to
larities arise from the remarkable effectiveness of mean-fieldhe shiftLg=L+N(N—1)/2.
approximations to Chern-Simons theories of such systems. In the spirit of Ref. 13, we shall consider the CF’s, de-
Here, we are interested in anhomogeneousystem, in  scribed by\PECFF({zi}), to be noninteracting, and look at the
which the bosons are subject to a parabolic confinement. Jaigariation of the minimumkinetic energy of the CF’s as a
and co-workerS*'®*"have shown that the fermionic equiva- function of the total angular momentum. We further assume
lent of this problem—interacting electrons in a quantum dotthat a composite fermion in the Landau level staten)
—can be well-described in terms of propertiesnohinter-  (with Landau level index=0,1,2. . ., andangular momen-
acting composite fermion#/otivated by the success of their {ym m=-n,—n+1...) has an energy E,=(n

theory, we apply a similar transformation to describe the 1/2)Ecg, WhereEcr is some effective cyclotron energy.

—_
o

Ground state Angular Momentum, L

(=4
o
=
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present bosonic problem. . These assumptions may be viewed as a mean-field treatment
Specifically, we make the following ansatz for the many-of the appropriate Chern-Simons theory for this system; ul-
boson wave function: timately, they are justified by the predictive successes of the
t _ CF resulting theory.
Iz =P ,EIJ (Zi_zi)q,ch({zi}) ' ©) Figure 3 shows the resulting ground-state energy of non-

oF ] _ ~_ interacting CF's as a function df=Lce+N(N—1)/2 for
where ¥ °" ({z}) is a wave function for some fermionic N=7,8,9, together with the exact interaction energies
particles—the composite fermions. Multiplication of the an-Vy(L).
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ground state. Foc=N(N—1), the lowest energy composite
] fermion  state is formed from the  states
{(0,0),(0,1),...(ON)}. The Slater determinant of these
M 1 states may be writte “F =11, ;(z,— z;), which, inserted in
S m\.q Eqg. (3), generates the bosonic Laughlin stafg®"satz
a8 &%_q N=9 =Hi<j(zi—zj)2. (This state is in the lowest Landau level,
§ \'%\-%.;M and projection is unnecessargince this wave function van-
> o P SO N ishes forzi=z; (i#]), it is the exact zero energy eigenstate
> \whé of the 5-function two-body interaction potential.
M S SR I 1 At intermediate values of the angular momentum, our an-
: satz(3) is not, in general, exact. We have performed numeri-
R N=7 ] cal calculations to determine the overlaps of the ansatz wave
; = Re00 0000000 c000secobacnadon functions with the exact ground-state wave functions,
0 5 10 1520 25 30 35 40 45 50 55 60 65 70 75 |(WansaigpExach| e list these overlaps in Table | at each
Angular Momentum, L=L,+N(N-1)/2 of the angular momenté, e L% , selected by the noninteract-

FIG. 3. The circles show the ground-state energies of nonintering composite fermion model. In general, the ang&jzhas
acting composite fermions as a function of angular momentum, foan overlap of close to unity with the exact ground state: the
N=7,8,9(filled circles identify the setd.§ , of angular momenta at composite fermion model provides an excellent description
which the CF energy has a downward cusfhe exact interaction  f these states. Small overlaps can occur when the composite
energies,Vy(L) are shown as solid lines for comparisall  tormion model does not produce a unique ansatz, i.e., when
curves are offset for clarity. two, or more, sets of single particle states for the composite

It is apparent that the composite fermion energies fail toferm|0ns have the same kinetic energy at a 9"‘9(“*-9-"\'
capture the rapid rise in the exact energies at small angular &L =12). In these cases, the overlaps could be improved
momenta; this can be interpreted as a failing of the assumppy diagonalizing the Hamiltonian within the space of states
tion of a constant effective cyclotron enerfyr. The prin- ~ SPanned by the two ansatz states.
cipal success of this approach is the identification of the OWwing to the impressive agreement between the ansatz
cuspsin the exact energy(L): at almost all of the angular wave functions(3) and the exact ground states laf, an
momenta for which the composite fermion kinetic energyaccurate description of the ground-state angular momentum
shows a downward cudpve label these sets of angular mo- as a function of rotation frequency can be obtained using
menta byLy), there is a corresponding cusp in the exactonly this set of ansatz wave functions. Minimizing the ex-
energyVy(L). Since a “magic” angular momentum of the pectation value of the energ{2) within this set of ansatz
boson system must coincide with a downward cusp inwave functions, one obtains a ground-state angular momen-
Vn(L), the setL} represents set of candidate values for the tum as a function of (+ w)/ % that is in excellent agreement
magic angular momentaFor example: forN=7, the CF  with the exact results shown in Fig. 1. This approach does,
model predicts all nine actual magic numbers and in additiotowever, omit a small number of magic angular momenta. In
identifies cusps which do not become ground states for 8ome cases, these are magic values identified by the compos-
further threeL e L7 . These missing values are not necessarite fermion model, but for which the expectation value of the
ily a failing of the composite fermion model. The main fail- energy happens not to be sufficiently low to become stable
ing, to which we will return later, is that there is a small (N=6, L=12; N=9, L=33,37;N=10, L=38). The most
number of magiC angular momenta that are not identified. important omissions are the magic angu'ar momentdl at

Not only does the composite fermion model successfully—g| =12 N=10L =16,21 for which there arao features
identify the majority of the magic angular momenta, as Wej, the composite fermion kinetic energy that would suggest a
now show it also provides a very accurate description of theyahie angular momentum state. We believe that this emer-
associated wave functions. The composite fermion wWavee s syrcture at larger numbers of particles represents many-
functions corresponding to the angular momeinfaare the .4y relations that are not captured by the noninteracting

“compact states” discussed in Ref. 13. For these states, th@omposite fermion model used hef&ome of these states

composite fermions occupy the lowest available angular moz ., correctly identified by the composite boson apprdach.

mentum states within each Landau level. As an iIIustration,-I-hey could be related to the incompressible states, such as

fOLN:4’ tEere is @ cusp in the composite fermion energy aj, _ 4/5 of quantum Hall systems which cannot be explained
L=8 (Lcr=2), at which the composite fermions occupy the i, terms of noninteracting composite fermions alone, but re-

single particle states n(m)={(0,0),(0,1),(0.2).(x-1)}-  quire an additional “particle-hole” transformation. This
The wave functionV'"__is formed as a Slater determinant of \je s strengthened by the observation that related magic
these states, and the bosonic wave functigfi*®?is con-  angular momenta also appear in the exact ground-state en-

structed via Ed3). ergy of electrons in quantum dots interacting by Coulomb
In the cases =0 andL =N(N— 1), this procedure yields forces, up to the shifL,=L+N(N—1)/2 (e.g., Ref. 17
the exact ground-state wave function for &ll At L=0, identifies a stable state dfl=10 electrons atL =61—

there is only one many-body state within the lowest Landatequivalent toN=10L =16 of the present bosonic moglel
level (all bosons occupy then=0 state; the ansat43) has  The study of this additional structure is beyond the scope of
nonzero overlap with this state, so mustvially) be the the present work.
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TABLE I. For each number of bosonl, the angular momenta.y , at which the noninteract-
ing composite fermion description predicts a downward cusp are given, togethginlittacket$
the overlaps of the ansatz wave functi@ with the exact ground-state wave function. Where a
given angular momentum appears more than once for figedhe composite fermion model
provides more than one candidate ground state.

Angular momentunt, [|[(W2nsatqyexach|]

0[1], 3[1], 6 [1]

0[1], 4[0.980, 6[0.980, 8 [0.997, 12[1]

0[1], 5[0.986], 8[0.983, 10[0.986|, 12[0.979, 15

[0.996], 20[1]

6 0[1], 6[0.989, 10[0.956], 12[0.770], 120.745, 15
[0.977, 18 [0.981, 18 [0.240, 20 [0.978, 24
[0.996], 30[1]

7 0[1], 7[0.992, 12[0.931, 15[0.971, 18[0.957,
20 [0.948, 22 [0.920, 24 [0.970, 27 [0.963, 30
[0.979, 35[0.996), 42[1]

8 0[1], 8[0.993, 14[0.886], 18[0.959, 21[0.915,
24 [0.960, 26 [0.917], 28 [0.946], 28 [0.072, 30
[0.943, 32 [0.917, 35 [0.963, 38 [0.977, 42
[0.980, 48[0.996), 56[1]

9 0[1], 9[0.994, 16[0.861, 21[0.926], 24 [0.541],
24 [0.854), 28 [0.944], 30 [0.795|, 30 [0.388, 33
[0.917, 35 [0.937, 37 [0.899, 39 [0.911, 42
[0.074, 42 [0.927], 44 [0.917, 48 [0.081], 48
[0.958, 51[0.978, 56 [0.981], 63[0.996], 72[1]

10 0[1], 10[0.995, 18[0.848, 24[0.853, 28[0.934),

32 [0.907], 35 [0.902, 38 [0.872, 40 [0.733, 40

[0.607, 42 [0.016], 42 [0.577, 42 [0.779, 45

[0.894 ... 90[1]

aONw| =z

In summary, we have studied the properties of rotatinchave large overlap with the exact ground-state wave func-
Bose systems in parabolic traps in the limit of large cohertions. The success of the mapping to composite fermions
ence length. Through comparisons with exact results foindicates that the ground states of rotating Bose-Einstein
small systems, we showed that many of the features of theondensates, in the limit of large coherence length, are
exact spectrum of the bosons can be understood in terms ofosely related to the correlated states appearing in fractional
noninteracting composite fermionshe noninteracting com- quantum Hall systems.
posite fermion model leads t0) the identification of a set of We would like to thank J.M.F. Gunn and R.A. Smith for
candidate values for the stable angular momenta of thenany helpful discussions. This work was supported by the
bosons, andii) associated many-body wave functions thatRoyal Society and EPSRC GR/L28784.
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