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Mesoscopic fluctuations of the ground-state spin of a small metal particle
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We study the statistical distribution of the ground-state spin for an ensemble of small metallic grains, using
a random-matrix toy model. Using the Hartree-Fock approximation, we find that for interaction strengths well
below the Stoner criterion there is already an appreciable probability that the ground state has a spin other than
zero or one half. Possible relations to experiments are discussed.@S0163-1829~99!50644-9#
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According to the first Hund’s rule,1 electrons in a partially
filled shell in an atom form a many-body ground state w
maximum possible spin. The maximum spin is preferred
cause it allows a maximally antisymmetric coordinate wa
function in order to minimize the electrostatic repulsion b
tween the electrons. In recent experiments,2 Hund’s rule was
also observed in a cylindrically shaped semiconductor qu
tum dot, or ‘‘artificial atom.’’ The close similarity with rea
atoms is due to the degeneracy of single-particle lev
caused by the the high degree of symmetry of the devic

In generic ultrasmall systems such as small me
grains,3,4 semiconductor quantum dots,5,6 or carbon
nanotubes7,8 there is no systematic degeneracy due to
spherical ~or cylindrical! symmetric potential. However
even in the absence of degeneracies, a nonzero value o
ground-state spin may occur, as long as the gain in elec
static energy is larger than the loss in kinetic energy when
antisymmetric coordinate ground-state wave function
formed. Such a ground state is most likely to be detecte
ultrasmall metal and semiconductor devices, since in th
systems, unlike in macroscopic samples, the spacing betw
single-particle energy levels and the typical interaction en
gies can be larger than the temperature. In fact, the poss
ity of such a ‘‘weakly ferromagnetic’’ ground state has be
suggested as an explanation for some recent experim
that could not be explained by simple noninteracti
models.4,7,9 In addition, a nonzero ground-state spin fro
numerical simulations of a few particles in a chaotic do10

and a theory of spin polarization in larger dots11 were already
mentioned in the literature. The stability of the zero sp
ground state in a quantum dot was analyzed for weak in
actions in Ref. 9.

In this paper, we consider small metal grains in the m
soscopic regime, in which fluctuations of wave functions a
energy levels, caused by, e.g., disorder or an irregular sh
control the behavior of kinetic and interaction energies at
vicinity of the Fermi energy. As a result, the ground-sta
spin becomes subject to sample-to-sample fluctuatio
Then, the relevant quantity to consider is the statistical d
tribution of the ground-state spin for an ensemble of sm
metal grains or chaotic quantum dots, rather than the spi
a specific sample.

Our starting point is a simple toy model that captures
essential mechanisms for mesoscopic fluctuations of
ground-state spin. In second-quantized form, our mo
HamiltonianH reads
PRB 600163-1829/99/60~20!/13977~4!/$15.00
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H5 (
n,m,s

cn,s
† H0~n,m!cm,s1uM(

n
cn,↑

† cn,↓
† cn,↓cn,↑ ,

~1!

wherecn,s
† (cn,s) is the creation~annihilation! operator for

an electron with spins at site n. The indicesm,n are
summed overM sites. The HamiltonianH0 contains the ki-
netic energy and the impurity potential. We describe
electron-electron interaction by an on-site~Hubbard! interac-
tion, uM. While the long-range Coulomb interaction can
trivially included via a charging energy,6 the model~1! does
not include the Coulomb interaction at intermediate d
tances, which leads to a Gaussian level spacing distribu
at the Fermi energy.12 In this work, we report a calculation o
the ground-state spin of the Hamiltonian~1! using a re-
stricted version of the Hartree-Fock~HF! approximation with
a random-matrix assumption for the eigenvalues and eig
vectors of the self-consistent HF Hamiltonian.

We first present our main result. It consists of an equat
that relates the candidate ground-state energiesEG(s) for
different values of the total spins in terms of eigenvalues«m

0

of a Hermitian random matrix with level spacingD, the in-
teraction parameterl5u/D, and a~nonuniversal! numerical
constantc that describes the density response to a local p
turbation of the impurity potential inH0,

EG~s!2EG~s0!5 (
m51

s

~«N1m12s0

0 2«N112m
0 !

2lDFs22s0
21

2~s2s0!

b~12l2c2!G . ~2!

The total number of electrons is 2(N1s0), s0 being 0 or 1/2.
The spin of the true ground state is found by minimizing E
~2! with respect tos. The parameterb51 (2) if time-
reversal symmetry is present~absent!. The effect of spin or-
bit coupling and Zeeman splitting is not included here.~The
caseb52 is only relevant for semiconductor quantum do
in a weak magnetic field, that affects orbital motion, b
causes no Zeeman splitting. It is not relevant for small me
grains,4 as laboratory magnetic fields do not affect orbi
motion in this case.! Equation ~2! reflects the competition
between kinetic energy@first term on the right-hand side
~rhs!#, which favors smalls and the on-site interaction~sec-
ond term!, which favors finites. The interaction term, in
turn, consists of two parts: A term quadratic ins, which
describes the exchange interaction, and a term linear is,
R13 977 ©1999 The American Physical Society
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which describes the additional ‘‘dressed’’ Coulomb rep
sion of two particles with the same spatial wave functio
For larges, the contribution from the kinetic term is approx
mately s2D, so that foru*D a finite fraction of the total
number of spins will align, rather than a small number
spins as in the caseu,D. The instability atu5D is known
as the Stoner instability. In Ref. 9, a result similar to Eq.~2!
was obtained fors51, but with a different and fluctuating
interaction term. The difference is due to the absence o
self-consistent approximation scheme in Ref. 9.

As a consequence of the additional dressed Coulomb
pulsion of particles with the same wave function, we fi
that already for interaction strengths considerably below
Stoner instabilityu5D, there is an appreciable probability o
nonzero ground-state spin. This is illustrated in Fig. 1, wh
the distribution of the ground-state spin at three differ
values of the interaction parameterl is shown: Already at
the quite modest interaction strengthu'0.4D, a ground-state
spin s51 is more likely thans50.

The effect of a weak magnetic field is twofold: First,
changes the statistics of the«m

0 ,13 and, second, it suppresse
the interference in the ‘‘Cooper channel,’’ leading to a fac
of 2 reduction of the interaction term linear ins @last term in
Eq. ~2!#. The first effect narrows the distributionP(s)
~which, for smalll, favors smallers), while the second ef-
fect shifts the mean ofP(s) towards lowers than without a
magnetic field. However, even in the absence of a magn
field we expect that, similar to three-dimensional~3D!
metals,14 inclusion of the electron-electron interaction b
yond the HF approximation will also lead to a suppression
the interference in the Cooper channel~logarithmically in the
system sizeM ). Hence whenM is sufficiently large, the
factor 2/b in the last term of Eq.~2! is effectively reduced to
unity even forb51.

Let us now turn to the details of our calculation. To fin
the ground state of the Hamiltonian~1! we use a simplified
version of the HF approximation: We assume that the gro
state has the form of a Slater determinant of single-part
wave functionscm,↑ andcm,↓ of particles which have eithe
spin up or spin down. In this case the self-consistent
equations read

HHF,scm,s5«m,scm,s ;

FIG. 1. The probability distributionP(s) of the ground-state
spin of a small metal grain, computed from Eq.~2! for three differ-
ent values of the interaction parameterl. The upper~lower! histo-
grams are for the presence~absence! of time-reversal symmetry
Solid histograms are for integer spin, dotted ones for half-inte
spin. ~The density-response parameterc has been set to zero; finit
c results in an even higher probability to find nonzero spin.!
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HHF,s~n,m!5H0~n,m!1uMr2s~n!d~n,m!, ~3!

rs~n!5(
m

f m,sucm~n!u2.

The occupation numberf m,s is 1 (0) if the levelm,s is
occupied~unoccupied! andd(n,m) is the Kroneckerd func-
tion. The ground-state energyEG is given by

EG5(
m,s

f m,s«m,s2uM(
n

r↓~n!r↑~n!. ~4!

Our strategy is as follows: We start from a reference st
with zero spin, in whichN particles of each spin are place
in the same levels«m,↑5«m,↓ and with the same wave func
tions cm,↑5cm,↓ . We assume, that for this symmetric ca
the eigenvectors and the eigenvalues ofHHF are distributed
like those of a random matrix, except that the energy lev
below EF are shifted upwards, by a small constant amou
relative to the levels aboveEF , see Eq.~14! below. ~If we
would have included long-range Coulomb interactions vi
charging energy, the shift would have been much larger
in the opposite direction. Omission of the charging ene
has no consequence in our case, as we compare ground
with the same number of particles.! The assumption that the
single-particle eigenvalues and wavefunctions in a s
consistent potential for a mesoscopic system below
aboveEF obey random-matrix statistics, even though th
may be quite different from their counterparts in the non
teracting system, was checked numerically for short-ra
interaction models somewhat similar to ours.12 The energy
shifts in our case result from the spin degeneracy, which w
not present in these calculations.

Starting from this reference state, we build other states
the subsequent addition and removal of electrons. We
discuss the addition of a single up spin in the (N11)st level.
The first question that needs to be answered is how this
dition affects the self-consistent densityrs(n). The density
changedr↑(n) consists of a direct and an induced contrib
tion, while dr↓(n) has an induced density shift only,

dr↑5dr↑,dir1dr↑, ind, dr↑,dir~n!5ucN11,↑~n!u2,

dr↓5dr↓, ind. ~5!

Since the density shifts change the HF Hamiltonians by
amountdHHF,s(n,m)5uMdr2s(n)d(n,m), we obtain the
following self-consistency equations fordrs :

drs, ind~n!52 uM Re (
m,n,m

f m,s~12 f n,s!dr2s~m!

3
cm,s* ~n!cm,s~m!cn,s* ~m!cn,s~n!

«m,s2«n,s
. ~6!

Both dr↑ and dr↓ are of order 1/M . In Eq. ~6! we have
computed the induced density change to first order indHHF.
Higher order terms do not contribute todr ind,s to order 1/M
and are neglected. To evaluate Eq.~6!, we first sum the rhs
over the space indexm and then over the energy levels«m
and «n . Because the eigenfunction has a random sign
single term in the latter summation is of ord

r
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lM 23/2D/(«m2«n), which is not relevant in the limitM
@1, even if«m and«n are both close to the Fermi levelEF .
For the summation over all levels we may perform an av
age over the wave functions~since the denominator is
slowly varying function ofm and n away from the Fermi
level!. This average is done using that for generalmÞn and
in the limit M@1 one has,13

^cm,s* ~n!cm,s~m!cn,s* ~m!cn,s~n!&5
d~m,n!

M2 2
1

M3 .

Putting everything together, we find the following sol
tion of the self-consistency equations~5! and ~6!,

dr↑~n!5
1

12~cl!2S ucN11,↑~n!u22
1

M D1
1

M
,

dr↓~n!5
2cl

12~cl!2S ucN11,↑~n!u22
1

M D , ~7!

wherec is a numerical constant of order unity defined by

c5 lim
M→`

2D

M E
2`

EF
d«1E

EF

`

d«2

r~«1!r~«2!

«22«1
. ~8!

In this equation,r(«) is the mean density of HF energ
levels.@The mean level spacingD51/r(«F).# The constantc
gives the linear density responsedr(n) to a shift of the
impurity potential H0(n,n) at that same site,dr(n)
5cdH0(n,n)/MD, which can be verified using first-orde
perturbation theory with respect todH0. Notice thatc is not
a universal constant, but depends on an integration of
density of states over the entire bandwidth. For example,
the Wigner semicircular density of states we findc54/3 if
the Fermi energyEF is at the band center andc→0 if EF is
at a band edge. Equation~7! expresses that the interactio
enhances the fluctuations of the spin density: ifucN11,↑(n)u2
is larger than average, the on-site repulsion reducesr↓(n),
which in turn causes an increase ofr↑(n), and so on. At the
same time, the interaction reduces fluctuations of the cha
densityr↑1r↓ .

At lc51, which may occur before the Stoner instabili
l51 if c.1, the density changes diverge. Although th
instability signals a breakdown of our approach, it is n
clear whether it will also lead to a true macroscopic grou
state spin. Below, we restrict our discussion to the caselc
,1.

Next we address the HF energy levels«m,s and find

d«m,↑52lD
2

b

cl

12~cl!2 dm,N11 ,

d«m,↓5lDS 11
2

b

1

12~cl!2 dm,N11D . ~9!

The shift of «N11,s is extra large, since for that level th
interaction effects are enhanced by the spatial fluctuation
the wave function. Equation~9! is the result of first-order
perturbation theory indrs ; second-order perturbation theo
d«m,s gives a correction of orderl2D ln M/M, which we
r-

e
r

ge

t
-

of

may neglect in the limitM@1. In the same way, one find
that the changes in each individual wave function is not s
nificant for M@1.

Finally, we consider the change in the ground-state
ergy EG. Because the summation overm in Eq. ~4! extends
over O(M ) levels, it is important to follow the shifts in the
HF levels to second-order perturbation theory, although
level of accuracy was not needed for the shift of each le
individually, cf. Eq.~9!. Putting everything together, we fin
that

dEG5«N11,↑2cl2D@b~12c2l2!#21. ~10!

~No terms proportional to lnM appear here since they canc
in the summation over the energy levels.! With the help of
Eq. ~9!, we can rewrite Eq. ~10! as dEG5«N11,↑
1 1

2 d«N11,↑ , which is the average of the energy for th
newly occupied level«N11,↑ before and after its occupation
This may be interpreted as a simple extension of Koopma
theorem15 to the present case, where the modification in ea
one-electron wave function is small~of relative order
M 21/2), but the resulting contribution todEG cannot be ne-
glected to the order we are interested in. In the usual form
Koopmans’ theorem, where one ignores any change in
one-particle wave functions, the HF energies of the low
unoccupied state before addition of the electron, and of
highest occupied state after addition are identical.~The usual
Koopmans’ theorem is correct for an infinite system, in ge
eral, or for a translationally invariant finite system, as t
one-electron states are trivially plane waves in that ca!
The simple extension of Koopmans’ theorem also works
our model, for the addition of several electrons.

We have repeated these calculations for the addition
two electrons with opposite spin in the (N11)th level,

drs~n!5
1

M
1

1

11cl S ucN11,↑~n!u22
1

M D , ~11!

d«m,s5lDS 11
2

b

1

11cl
dm,N11D , ~12!

dEG52«N111
2

b
lD

1

11cl
. ~13!

As in the case of the addition of a single particle, the in
vidual wave functions do not change to orderM 21/2. Equa-
tion ~12! allows us to find the statistics of the HF energ
levels«m,s in our reference system withN electrons of each
spin: The only distribution that is consistent both with t
assumption that the«m,s obey random-matrix statistics awa
from the Fermi level and with the shifts of Eq.~12! is one
where the«m,s have the form

«m,s5«m
0 1

2

b
f m

lD

11lc
, ~14!

where the«m
0 have random-matrix statistics andf m51 ~0! if

the levelm is ~un!occupied. In other words, the distributio
of the «m is the same as that of the eigenvalues of a rand
matrix, with all occupied levels shifted upwards by a
amount (2/b)lD/(11cl).
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With the knowledge we have gained above, there is li
work left for the calculation of our main result, Eq.~2!.
Some remarks about the validity of this result are appro
ate. First, to make a connection between our random-ma
toy model and a laboratory made quantum dot we must id
tify M5(L/lF)3 as we expect the length scale for wav
function correlations16 and the range of the screened Co
lomb interaction to be of order of the Fermi waveleng
lF .17 Second, while our solution is complete within the H
approximation, one must bear in mind that this approxim
tion scheme does not include correlation effects, such as
Cooper channel renormalization, as we discussed below
~2!. Those correlation effects are not expected to affect
result to first order inl, but it cannot be excluded that the
are important in the higher order terms in Eq.~2!, which
involve the factorcl.

We close this paper with a discussion of the physical c
sequences of a ground state with spins.1/2 and of the ex-
perimental situations in which it can be observed.

First, the temperatureT needs to be smaller than the sep
ration of the ground states for different spins. This separa-
tion, which is typically smaller than the single-particle lev
spacingD, is a fluctuating quantity. Very small values a
possible, because, unlike in noninteracting random syste
there is no level repulsion if states of different spin are
volved.

For sufficiently lowT, the magnetization of the grain i
proportional to the spins of the ground state. However,s will
also affect other properties which are more easily access
in an experiment, like current-voltage characteristics: A n
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zero ground-state spin can serve to explain the absence
even-odd structure in the addition spectra of Coulom
blockaded quantum dots,9,10,18,19or the presence of kinks in
the parametric dependence of Coulomb blockade peak p
tions, as was noted in Ref. 20. Spin is also relevant for c
ductance measurements at a finite bias voltage, which a
for a ‘‘spectroscopy’’ of the quantum dot or metal grain.6,21

In the presence of a magnetic field, the ground state is s
by the Zeeman energy, and the differential conductance
show two peaks, whose relative intensity differs by a fac
2sN1111 or 2sN11, depending on whether the tunnelin
onto or from the grain is the faster process.22 Even without
an external magnetic field the ground state may be split, e
by spin-orbit coupling or magnetic impurities, and thus gi
rise to a multiplet of peaks in the differential conductance23

The peak separation within a multiplet is controlled by t
strength of the splitting mechanism and may be mu
smaller thanD.
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us. When this work was nearly completed, we learned
related work by H. U. Baranger, D. Ullmo, and L.
Glazman~Ref. 20!, in which some similar results were ob
tained. We thank H. U. Baranger for discussions on th
points. This work was supported in part by the NSF throu
the Harvard MRSEC~Grant No. DMR 98-09363!, and by
Grants Nos. DMR 94-16910, DMR 96-30064, and DMR 9
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