RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 60, NUMBER 20 15 NOVEMBER 1999-lI

Electron spectrum of a semiconductor quantum dot influenced by an interface
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The generalized boundary conditions for the envelope wave function that take into account the real structure
of an interface were used to investigate the hole spectrum of the semiconductor quantum dot embedded in an
insulator matrix. An essential influnece of the interface levels on the hole spectrum has been demonstrated.
Such levels could exist at the top of the valuence band. It is found that boundary conditions usually applied,
wherein all components of the envelope wave function vanish at the interface, can be used only in the absence
of the interface levels close to the band ed@0163-18209)51644-5

To determine the electron states in semiconductor quan- Letz=0 be the plane interface between a semiconductor
tum dots, the envelope function approximation is apptied. (z>0) and an insulatorZ<0). Assume the twofold degen-
The envelope wave functions are usually supposed to be vagracy for the electron band of the semiconductor and nonde-
ished at the interface in order to describe the quantum corgenerate electron band in the insulator. Then the boundary
finement. If the intervalley or interband degeneracy of theconditions for the envelope wave functions of the electrons
electron spectrum occurs in the semiconductor, then eadh these bands can be written as follofvs:
component of the envelope wave function is assumed to be

vanished at the interfade® The last statement, however, ‘I'l(Tg)zbll‘I’l(Tll)’
needs to be justified.
Indeed, the boundary conditigph=0 for the proper(not Wo(79)= bW (720, 1
envelope wave function arises from the solution of the
Schralinger equation for the infinitely high steplike potential barW1(730) + bW 5(73) =W (79),

barrier. Such a barrier cannot be considered in the framework

. S i where W, and ¥V, are the envelopes that relevant to the
of the envelope function approximation, wherein the poten- ) .
. . .degenerate band of the semiconductor, ¥nds the electron
tial must be smooth on the scale of the lattice constant. This

o envelope in the insulator. To obtain the parametgysand
means that the boundary conditidh=0 is justified if the 7, of the boundary condition€l), the Schfdinger equation

; Ras to be solved in the narroi@bout a few lattice constants

the scale of the lattice constant, put sharp on the scale of the ;ion at the interface. It is impossible at an arbitrary and
electron wavelength. Perhaps this happens ‘i‘t the contacts Rfiher imperfect interface. Nevertheless, these parameters are
chemically similar materialge.g., GaAs/AIA3" but not at  jydependent of the electron energy; they characterize the in-
the contacts of significantly different materigls.g., semi-  terface, and estimations of their valughe small width of
conductor microcrystals embedded in the glass matrix  the interface region is the fact that is important for these

The interface influence on the electrons in the quantungstimationy are b;;~1 and|r;j|~a, wherea is the lattice
dot has to be more complicated if the simple boundary coneonstant. Thus, the boundary conditidfistake into account
dition =0 does not hold. It is well known that band mix- the real structure of the interface.
ing exists at the interface in the heterojunctions”gfBy, We assume the effective-mass approximation holds in the
semiconductors® However, this is impossible at the plane bulk of each material, so thak(7)=W¥(0)+ ¥’ (0). The
interface where?=0. The bound electron states are alsolarge bands offset at the interface restricts the electron move-
possible at the interface owing to the interband mixirig;  ment. If so, then¥ ,<exp(y2) and¥| =y, ¥, where they,
these states the electron wave function behaves roughly aglue can be considered as independent of the electron en-
e[ exp(—yr)—exp(—1y.r)] i.e., the wave function vanishes ergy. Eliminating¥, from the Eqgs.(1) yields
at the interface and far from it, but has an extremum at a
certain distance from the interface. W,1(717) + bW 5(715) =0, 2)

The band mixing arises when the crystal symmetry that
leads to the interband degeneracy in the bulk disappears at
the interface. The lattice constant is the size that is charac-
teristic for such symmetry. Therefore, the proper boundar)(/vhereﬁij~bij and~7ij~m are known functions ob; , 7,

conditions for the envelope wave functions should take intoand ¥. To ensure the probability flux conservation at the
account the real structure of the interface. interfallée we have to assume

In this paper, we propose simplest boundary conditions
that take into account these subtle details of the interface ~ o~ o~ ~ o~ o~
influence. We find the conditions under which the boundary b1 72~ T12) _ Bar(m11— 720) 3
condition =0 is applicable at a sharp interface. my my ’

DoV (790 +W5(722) =0,
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wherem,; and m, are effective masses of the appropriatem;/m,. Moreover,t;,~a, and so it is possible to assume
bands. t1,=0 by the appropriate choice of the position of the plane
Equations(2) are the general form of the boundary con- z=0 within the unit cell at the interface.
ditions that should be written instead @ =0 at a sharp Thus, there are two parameters,~1 andt,;~a !, that
semiconductor/insulator interface. The most general bounddetermine the interface influence on the electron. One of
ary conditions that are applicable at such interface have beahem,t,,, is sensitive to the position of the interface level: it
considered in Ref. 7. Ours, shown in E@8), hold in the  vanishes when this level coincides with the band edge. An-
effective-mass approximation. This approximation has beewnther onet,;, can be considered as a trial parameter.

used in Ref. 8 to obtain Eq4) and to estimate the param-
etersh;; and 7; .

It is important that the boundary conditiof®) are non-
local; they relate the envelopes at the different po?'fi]tsnear

the interface. However, the mean width of the “nonlocality
region” is small in comparison with the electron wavelength

N (|~rij|~a< \) . To understand consequences of this nonlo-

cality, let us, at first, assume;=0. Then Eqs(2) become
homogeneous iV, ,, and so their nonzero solutions exist

To consider the hole states in the spherical quantum dot,

we write the Luttinger Hamiltonian in the spherical approxi-

mation as follows-

L

2mg  mq

H:

( Ntz (PI)?, ®)
Whereﬁ is the momentum and are the 4< 4 matrices of the
angular moment33/2; y>0 and y, are the Luttinger pa-

rameters that are relevant to the light and heavy effective

only when masses of the holesn=mg(y;+2y)" ! and my=mgy(y;

—2%) "1, my is mass of the free electron.

The momentF=1/2, 3/2,..., and itsprojectionM are
good quantum numbers due to the spherical symmetry. So-
lutions of the Schrdinger equation with the Hamiltonig(6)
are of the form!

1—Dby1bs,=0. 4

To be precise, for the paramete'friv? that do not obey Eq.
(4), the envelopest; (0) are as small as¥'(0), i.e.,
V¥, (0)~a/A—0; this is the accuracy under which the
simple boundary conditiond; ,(0)=0 are applicable. They
are not applicable if Eq(4) holds. It can be shown that
condition(4) means the proximity of a certain interface level
to the band edge. The energy position of this level is deter-

mined by the parametels; and7; , i.e., by structure of the

Yem(r,0,0)=\2F+1 EI (—1)' 32 MR (1)

I 32 F
-M Ylm( 01(P)X,u g

x>

interface. mu \Mp
Thus, the simple boundary conditiods; 0)=0 can be \yhere

used at a sharp interface in the absence of interface levels

close to the band edge. Otherwise, the general boundary con- | 3/2 F

ditions (2) should be used. (m - M)

It should be noted that assumption of the large bands off-
set at the interface is not important for our consideration. Theyre the Wigner symbols, ang, is the eigenvector of tha,
boundary conditiong1) could be used in that case. This matrix. The radial function®Re ¢ 1, and R ¢ g, that are

means that the simple boundary conditiochg,=0 can be  relevant to the even solutions obey the equatins
used at a sharp interface even in the absence of real potential

barrier there, provided that the interface levels are not close
to the band edge. In that case, the quantum confinement
arises because the resonant tunneling of electrons is no
longer possible through the interfate.

It is possible to rewrite Eqg2) in a more simple form:

il
vy tor 1 ’

v,
D12021721— 711 012021712721~ T11722

11~ = = ~ =~
B21( 11— 721)

(71— 2ycosag)PE PeRE F+12

+2ysinagPEP _(Re e g

2my
+ ?[E_U(r)]RF,F+1/2:O:

(5 ™

(y1+2ycosap)PLeP_gRe k-3

where +2)/Sina,:PJ_r,:P,:RF’,:+1/2

2mg
12= : +?[E_U(r)]RF,F73/2:Oa

boy(T11—721)

t 1_612521 ’512’621’;'12_;22 where
P bt Ba(ru— ) 2F-3 d F+312
COSCYF: y S|na|:20, Pl::_"f‘ y
Then Eq(4) takes the fornt,;=0. 4F dr r
The interface influence on the electrons is determined by
the parametersy; . They are not independent. It follows from + :i _ F-1/2
Eq. (3) that the determinant of thgt;;|| matrix is equal to Fodr ro’
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~ Let us, at first, suppose that Eqg¥) also hold at the have to multiply Eqs(7) by r—r, before the integration.
interface where the potentidl(r) restricts the hole move-  After elimination of R ¢ 1x(T o+ W/2)cexp(— ye1 ) and
ment. Then we can obtain the boundary conditions for theh (Fo+W/2)%ex '(_ r) (where ~0 and
radial wave functions. Two of them arise after integration of "F.F~3/2°0 P ¥e-312 YF+12 i

Egs. (7) over the narrow regiofr —ro| <w/2 (a<w<\) at Yr-32>0 are the decay exponents of thg wave funcﬂqns off
the interface. To obtain another two boundary conditions, wéhe dot boundaryfrom the derived equations, we obtain

, (Ye+22Ws +V ) (y1+ 2y cosap) =2y SINNe(YE 1 12W-+V_)
—Yr+12RF Fr12t RE piap™=

Yi—4y '

, ®)

, (YF-32W-+V_)(y1—2ycosag) =2y SINNe(ye-32W; +V )

—Ye-32RrF-3pt REF_3p= 5 3 .

yi—4y
|
where V+=2m0fv_”’vzv,2U(r—ro)RF,FH,zdr, V_ where j(z) are the spherical Bessel function#;
=2mofV_V/v2v/zU(r—fo)RF,F—s/zdf, W, = —2m0fv_”’vzv,2(r =_Atan(aF/2), B,=Bcot(ar/2), cosar=(2F—3)/(4F),
—ro)U(r —ro)Re £4 14T, and  W_=-2mj VXIVZ\I/Z(r sinag=0, B=m;/m;; A and B are the constants that are

—ro)U(r—ro)Re g 32dr. These values vanish whew determined by the boundary conditionsratry.
—0, if the potentialU(r) has not any singularity at the By substituting Eq(9) into the boundary condition&),
interface. This leads to the simple boundary conditiongVe obtain the system of equations which is homogeneous in
Rerr v — 7l ver 1) =Rer_ 3 — hl v _32)=0. A andB. _Its nonzero solutions exist only when the determi-
The values oV, andW. don't vanish at a sharp inter- nant vanishes, i.e.,
face where the potentidl(r) changes essentially on the ar
scale of the lattice constant. In particular, this is possible at %tllj FH,Z(kro)—tan?j F3,z(kro)Ht21j £+ 12kroVB)
strain interface due to mismatch of the lattice constants o
the bordering materialge.g., at the Ge/Si interfageThen ap
U(r) can be estimated atl~D(da/a) for |r—rq<a, +t22j’F+1,2(kro\//—3)+cot7j;3,2(kr0\/ﬁ)}
whereD~10 eV is the constant of the deformational poten-
tial and da is the lattice mismatch. So th#{~ sa/a~1 and ap
V~ sala?. The boundary conditioné8) accept the form of —{tzﬂ F+1/2(kr0)+t22j|,:+1/2(kr0)_tan7jl,:—3/2(kr0)}
Egs. (2) after expansion of the radial wave functions in the
integrands. This is the case even whep_;,— and
YE+12 7.
We shall use the boundary conditio(® in the form(5) _ ) ) )
to obtain the hole spectrum of the quantum dot. The radiayvherej’=dj/dr. Equation(10) determines the hole spec-

Xty + 1 KroVB) + COt%j F—3/2(kr0\/E)} =0. (10

wave functions in the free spack €0) aré trum of the quantum do&, = (y; —2y)#%2k;/2m,, wherek,,
are the roots of Eq(10). Influence of the interface on this
RF',:+1,2(r)=AjF+1,2(kr)+BjF+1,2(kr\/E), spectrum is determined by the parametgys To estimate
(9)  the energyE, of the interface hole state, we assukreix,
RF,F—3/2(r) = AlJ ,:_3/2(kl‘) + BlJ ,:_3/2(kl’ \/E) y WhereKr0> 1. Then, from the Eq(lO) we obtain

ap ap
1,4 tan— +cot—-
21 2 2 )

, (11)

K=

2 2

o o o o
(tygtor—1)(1—/B) + tu( JB cot?F + tan7F - tzz( JB tan— + cot—

so thatEq= —#%2«?/2my,. The simple case that correspondsinterface, if |Eq|>#%2k?/2my,, i.e., when the energy of the
to ¥, (0)=0 follows from Eq.(10) if we assume that,; interface level much exceeds the energy of the hole. Other-
—. This is possible wheiyp;>k. The value oft,; can be  wise, the general boundary conditio® should be used.
estimated from Eq(11), ty;~«x=%"1y2m,|Ey|. Therefore Figure 1 displays the left side of E€L0) as a function of
the boundary condition; ,(0)=0 are applicable at a sharp kr,. We assume;;=1, my=my, S=0.1, and obtairt,;
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the valence band in some semiconductor/insulator contacts;
they are responsible for the Fermi-level pinning. It seems
that the electron interface level should be close to the valence
band, at least in wide-gap semiconductors. If the interface
level is shifted too far off the top of the valence band, then it
i . becomes empty. This results in a large surface charge and a
strong band bending that is not favorable from the energeti-
cal point of view. Nevertheless, the interface level can be
shifted as the result of the structure reconstruction of the
interface. Such reconstruction does not essentially affect the
interatomic spaces or angles, but it makes the interface level
FIG. 1. Left side of Eq(10) as a function okr, (bold curve. closer to the top of the valence band.
Similar dependence which is relevant to the boundary conditions |n conclusion, we propose the general boundary condi-
W10)=0 (dashed curve tions for the envelope wave functions to investigate the hole
from Eq.(10), providedEy=0.01 eV. The dashed curve pre- spectrum of the spherical quantum do_t. We show that usually
sents the similar dependence that follows from the simple‘;‘ppl'cab.Ie boundary conditioni,; {0)=0 can be used at a
Smooth interface or at a sharp one, provided that the energy

boundary conditionsP1,2(0)=0.3 We reveal an essential separation nearest to the band edge interface level much ex-
difference between the hole spectra. Apart from an essential " 9

change of the position of the roots of E4.0), we find that ceeds the energy o_f Fhe hole under consu_jeranon. Two real
some of them become complexro=155+1.3 and kr, parameters are sufficient to determine an interface influence

o ; on the hole spectrum. They could be measured in optical
=25.3:0.7 on Fig. J, and so the relevant hole states be'.experiments or estimated theoreticdkyg., from Eq(8)] for

come quasistationary and bc_Junded at _the interface. Th'g certain model of the interface structure. The boundary con-
could be essential for the optical properties of the quantun)

dot. Moreover, such states affect the electron transport in thg_ItlonS (5) can be u_sed also to de_scnbe the intervalley mix-
: ’ ) . . Ihg of the electron in the conduction band.

array of the quantum dots; they increase the effective cross

section of the quantum dot. Note that the solid curve be- | wish to thank Professor V. A. Volkov for helpful dis-

comes close to the dashed one wiignis about a few eV. cussions, and Professor B. A. Foreman for the refrint,
The hole spectrum was found to be sensitive to the energwhich was sent to me before publication. This work was

position of the interface level, namely, whether or not it issupported by the Russian Foundation for Basic Research,

close to the band edge. Such levels really exist at the top dbrant No. 99-02-17019.
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