
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 15 NOVEMBER 1999-IIVOLUME 60, NUMBER 20
Electron spectrum of a semiconductor quantum dot influenced by an interface

Leonid S. Braginsky*
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~Received 26 July 1999!

The generalized boundary conditions for the envelope wave function that take into account the real structure
of an interface were used to investigate the hole spectrum of the semiconductor quantum dot embedded in an
insulator matrix. An essential influnece of the interface levels on the hole spectrum has been demonstrated.
Such levels could exist at the top of the valuence band. It is found that boundary conditions usually applied,
wherein all components of the envelope wave function vanish at the interface, can be used only in the absence
of the interface levels close to the band edge.@S0163-1829~99!51644-5#
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To determine the electron states in semiconductor qu
tum dots, the envelope function approximation is applie1

The envelope wave functions are usually supposed to be
ished at the interface in order to describe the quantum c
finement. If the intervalley or interband degeneracy of
electron spectrum occurs in the semiconductor, then e
component of the envelope wave function is assumed to
vanished at the interface.1–3 The last statement, howeve
needs to be justified.

Indeed, the boundary conditionc50 for the proper~not
envelope! wave function arises from the solution of th
Schrödinger equation for the infinitely high steplike potenti
barrier. Such a barrier cannot be considered in the framew
of the envelope function approximation, wherein the pot
tial must be smooth on the scale of the lattice constant. T
means that the boundary conditionC50 is justified if the
potential that restricts the electron movement is smooth
the scale of the lattice constant, but sharp on the scale o
electron wavelength. Perhaps this happens at the contac
chemically similar materials~e.g., GaAs/AlAs!,4 but not at
the contacts of significantly different materials~e.g., semi-
conductor microcrystals embedded in the glass matrix!.

The interface influence on the electrons in the quant
dot has to be more complicated if the simple boundary c
dition C50 does not hold. It is well known that band mix
ing exists at the interface in the heterojunctions ofAIIIBV
semiconductors.5,6 However, this is impossible at the plan
interface whereC50. The bound electron states are al
possible at the interface owing to the interband mixing;7 in
these states the electron wave function behaves rough
c}@exp(2g1r)2exp(2g2r)#, i.e., the wave function vanishe
at the interface and far from it, but has an extremum a
certain distance from the interface.

The band mixing arises when the crystal symmetry t
leads to the interband degeneracy in the bulk disappea
the interface. The lattice constant is the size that is cha
teristic for such symmetry. Therefore, the proper bound
conditions for the envelope wave functions should take i
account the real structure of the interface.

In this paper, we propose simplest boundary conditio
that take into account these subtle details of the interf
influence. We find the conditions under which the bound
conditionC50 is applicable at a sharp interface.
PRB 600163-1829/99/60~20!/13970~4!/$15.00
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Let z50 be the plane interface between a semiconduc
(z.0) and an insulator (z,0). Assume the twofold degen
eracy for the electron band of the semiconductor and non
generate electron band in the insulator. Then the bound
conditions for the envelope wave functions of the electro
in these bands can be written as follows:8

C1~t1
0!5b11C l~t11!,

C2~t2
0!5b22C l~t22!, ~1!

b31C1~t31!1b32C2~t32!5C l~t3
0!,

where C1 and C2 are the envelopes that relevant to t
degenerate band of the semiconductor, andC l is the electron
envelope in the insulator. To obtain the parametersbi j and
t i j of the boundary conditions~1!, the Schro¨dinger equation
has to be solved in the narrow~about a few lattice constants!
region at the interface. It is impossible at an arbitrary a
rather imperfect interface. Nevertheless, these parameter
independent of the electron energy; they characterize the
terface, and estimations of their values~the small width of
the interface region is the fact that is important for the
estimations! are bi j ;1 and ut i j u;a, wherea is the lattice
constant. Thus, the boundary conditions~1! take into account
the real structure of the interface.

We assume the effective-mass approximation holds in
bulk of each material, so thatC(t)5C(0)1tC8(0). The
large bands offset at the interface restricts the electron mo
ment. If so, thenC l}exp(glz) andC l85g lC l , where theg l

value can be considered as independent of the electron
ergy. EliminatingC l from the Eqs.~1! yields

C1~ t̃11!1b̃12C2~ t̃12!50, ~2!

b̃21C1~ t̃21!1C2~ t̃22!50,

whereb̃i j ;bi j and t̃ i j ;t i j are known functions ofbi j , t i j ,
and g l . To ensure the probability flux conservation at t
interface, we have to assume

b̃12~ t̃222 t̃12!

m1
5

b̃21~ t̃112 t̃21!

m2
, ~3!
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where m1 and m2 are effective masses of the appropria
bands.

Equations~2! are the general form of the boundary co
ditions that should be written instead ofC50 at a sharp
semiconductor/insulator interface. The most general bou
ary conditions that are applicable at such interface have b
considered in Ref. 7. Ours, shown in Eqs.~2!, hold in the
effective-mass approximation. This approximation has b
used in Ref. 8 to obtain Eqs.~1! and to estimate the param
etersbi j andt i j .

It is important that the boundary conditions~2! are non-
local; they relate the envelopes at the different pointst̃ i j near
the interface. However, the mean width of the ‘‘nonlocal
region’’ is small in comparison with the electron waveleng
l (u t̃ i j u;a!l) . To understand consequences of this non
cality, let us, at first, assumet̃ i j 50. Then Eqs.~2! become
homogeneous inC1,2, and so their nonzero solutions exi
only when

12b̃21b̃1250. ~4!

To be precise, for the parametersb̃i j that do not obey Eq.
~4!, the envelopesC1,2(0) are as small astC8(0), i.e.,
C1,2(0);a/l→0; this is the accuracy under which th
simple boundary conditionsC1,2(0)50 are applicable. They
are not applicable if Eq.~4! holds. It can be shown tha
condition~4! means the proximity of a certain interface lev
to the band edge. The energy position of this level is de
mined by the parametersb̃i j and t̃i j , i.e., by structure of the
interface.

Thus, the simple boundary conditionsC1,2(0)50 can be
used at a sharp interface in the absence of interface le
close to the band edge. Otherwise, the general boundary
ditions ~2! should be used.

It should be noted that assumption of the large bands
set at the interface is not important for our consideration. T
boundary conditions~1! could be used in that case. Th
means that the simple boundary conditionsC1,250 can be
used at a sharp interface even in the absence of real pote
barrier there, provided that the interface levels are not cl
to the band edge. In that case, the quantum confinem
arises because the resonant tunneling of electrons is
longer possible through the interface.9

It is possible to rewrite Eqs.~2! in a more simple form:

S C1

C18
D 5S t11 t12

t21 t22
D S C2

C28
D , ~5!

where

t115
b̃12b̃21t̃212 t̃11

b̃21~ t̃112 t̃21!
, t125

b̃12b̃21t̃12t̃212 t̃11t̃22

b̃21~ t̃112 t̃21!
,

t215
12b̃12b̃21

b̃21~ t̃112 t̃21!
, t2252

b̃12b̃21t̃122 t̃22

b̃21~ t̃112 t̃21!
.

Then Eq.~4! takes the formt2150.
The interface influence on the electrons is determined

the parameterst i j . They are not independent. It follows from
Eq. ~3! that the determinant of theuut i j uu matrix is equal to
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m1 /m2. Moreover,t12;a, and so it is possible to assum
t1250 by the appropriate choice of the position of the pla
z50 within the unit cell at the interface.

Thus, there are two parameters,t11;1 andt21;a21, that
determine the interface influence on the electron. One
them,t21, is sensitive to the position of the interface level:
vanishes when this level coincides with the band edge.
other one,t11, can be considered as a trial parameter.

To consider the hole states in the spherical quantum
we write the Luttinger Hamiltonian in the spherical approx
mation as follows:10

Ĥ5S g11
5

2
g D p̂2

2m0
2

g

m0
~ p̂J!2, ~6!

wherep̂ is the momentum andJ are the 434 matrices of the
angular moment J53/2; g.0 andg1 are the Luttinger pa-
rameters that are relevant to the light and heavy effec
masses of the holes:ml5m0(g112g)21 and mh5m0(g1
22g)21, m0 is mass of the free electron.

The momentF51/2, 3/2,. . . , and itsprojection M are
good quantum numbers due to the spherical symmetry.
lutions of the Schro¨dinger equation with the Hamiltonian~6!
are of the form11

cEM~r ,u,w!5A2F11 (
l

~21! l 23/21MRFl~r !

3(
mm

S l 3/2 F

m m 2M DYlm~u,w!xm ,

where

S l 3/2 F

m m 2M D
are the Wigner symbols, andxm is the eigenvector of theJz
matrix. The radial functionsRF,F11/2 and RF,F23/2 that are
relevant to the even solutions obey the equations11

~g122g cosaF!PF
1PFRF,F11/2

12g sinaFPF
1P2FRF,F23/2

1
2m0

\2
@E2U~r !#RF,F11/250,

~7!
~g112g cosaF!P2F

1 P2FRF,F23/2

12g sinaFP2F
1 PFRF,F11/2

1
2m0

\2
@E2U~r !#RF,F23/250,

where

cosaF5
2F23

4F
, sinaF>0, PF5

d

dr
1

F13/2

r
,

PF
15

d

dr
2

F21/2

r
.
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Let us, at first, suppose that Eqs.~7! also hold at the
interface where the potentialU(r ) restricts the hole move
ment. Then we can obtain the boundary conditions for
radial wave functions. Two of them arise after integration
Eqs.~7! over the narrow regionur 2r 0u,w/2 (a!w!l) at
the interface. To obtain another two boundary conditions,
e
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have to multiply Eqs.~7! by r 2r 0 before the integration.
After elimination ofRF,F11/2(r 01w/2)}exp(2gF11/2r ) and
RF,F23/2(r 01w/2)}exp(2gF23/2r ) ~where gF11/2.0 and
gF23/2.0 are the decay exponents of the wave functions
the dot boundary! from the derived equations, we obtain
2gF11/2RF,F11/21RF,F11/28 5
~gF11/2W11V1!~g112g cosaF!22g sinlF~gF11/2W21V2!

g1
224g2

,

~8!

2gF23/2RF,F23/21RF,F23/28 5
~gF23/2W21V2!~g122g cosaF!22g sinlF~gF23/2W11V1!

g1
224g2

.
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where V152m0*2w/2
w/2 U(r 2r 0)RF,F11/2dr, V2

52m0*2w/2
w/2 U(r 2r 0)RF,F23/2dr, W1522m0*2w/2

w/2 (r
2r 0)U(r 2r 0)RF,F11/2dr, and W2522m0*2w/2

w/2 (r
2r 0)U(r 2r 0)RF,F23/2dr. These values vanish whenw
→0, if the potentialU(r ) has not any singularity at th
interface. This leads to the simple boundary conditio
RF,F11/2(2\/gF11/2)5RF,F23/2(2\/gF23/2)50.

The values ofV6 andW6 don’t vanish at a sharp inter
face where the potentialU(r ) changes essentially on th
scale of the lattice constant. In particular, this is possible
strain interface due to mismatch of the lattice constants
the bordering materials~e.g., at the Ge/Si interface!. Then
U(r ) can be estimated asU;D(da/a) for ur 2r 0u,a,
whereD;10 eV is the constant of the deformational pote
tial andda is the lattice mismatch. So thatW;da/a;1 and
V;da/a2. The boundary conditions~8! accept the form of
Eqs. ~2! after expansion of the radial wave functions in t
integrands. This is the case even whengF23/2→` and
gF11/2→`.

We shall use the boundary conditions~2! in the form ~5!
to obtain the hole spectrum of the quantum dot. The ra
wave functions in the free space (U50) are3

RF,F11/2~r !5A jF11/2~kr !1B jF11/2~krAb!,
~9!

RF,F23/2~r !5A1 j F23/2~kr !1B1 j F23/2~krAb!,
s

a
f

-

al

where j l(z) are the spherical Bessel functions,A1
5A tan(aF/2), B15B cot(aF/2), cosaF5(2F23)/(4F),
sinaF>0, b5ml /mh ; A and B are the constants that ar
determined by the boundary conditions atr 5r 0.

By substituting Eq.~9! into the boundary conditions~5!,
we obtain the system of equations which is homogeneou
A andB. Its nonzero solutions exist only when the determ
nant vanishes, i.e.,

F t11j F11/2~kr0!2tan
aF

2
j F23/2~kr0!GF t21j F11/2~kr0Ab!

1t22j F11/28 ~kr0Ab!1cot
aF

2
j F23/28 ~kr0Ab!G

2F t21j F11/2~kr0!1t22j F11/28 ~kr0!2tan
aF

2
j F23/28 ~kr0!G

3F t11j F11/2~kr0Ab!1cot
aF

2
j F23/2~kr0Ab!G50. ~10!

where j 8[d j /dr. Equation~10! determines the hole spec
trum of the quantum dot:En5(g122g)\2kn

2/2m0, wherekn

are the roots of Eq.~10!. Influence of the interface on thi
spectrum is determined by the parameterst i j . To estimate
the energyE0 of the interface hole state, we assumek5 ik,
wherekr 0@1. Then, from the Eq.~10! we obtain
k.
t21S tan

aF

2
1cot

aF

2 D
~ t11t2221!~12Ab!1t11SAb cot

aF

2
1tan

aF

2 D2t22SAb tan
aF

2
1cot

aF

2 D , ~11!
er-

so thatE052\2k2/2mh . The simple case that correspon
to C1,2(0)50 follows from Eq.~10! if we assume thatt21
→`. This is possible whent21@k. The value oft21 can be
estimated from Eq.~11!, t21;k5\21A2mhuE0u. Therefore
the boundary conditionsC1,2(0)50 are applicable at a shar
interface, if uE0u@\2k2/2mh , i.e., when the energy of the
interface level much exceeds the energy of the hole. Oth
wise, the general boundary conditions~5! should be used.

Figure 1 displays the left side of Eq.~10! as a function of
kr0. We assumet1151, mh5m0 , b50.1, and obtaint21
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from Eq.~10!, providedE050.01 eV. The dashed curve pre
sents the similar dependence that follows from the sim
boundary conditionsC1,2(0)50.3 We reveal an essentia
difference between the hole spectra. Apart from an esse
change of the position of the roots of Eq.~10!, we find that
some of them become complex (kr0515.561.3i and kr0
525.360.7i on Fig. 1!, and so the relevant hole states b
come quasistationary and bounded at the interface. T
could be essential for the optical properties of the quant
dot. Moreover, such states affect the electron transport in
array of the quantum dots; they increase the effective cr
section of the quantum dot. Note that the solid curve
comes close to the dashed one whenE0 is about a few eV.

The hole spectrum was found to be sensitive to the ene
position of the interface level; namely, whether or not it
close to the band edge. Such levels really exist at the to

FIG. 1. Left side of Eq.~10! as a function ofkr0 ~bold curve!.
Similar dependence which is relevant to the boundary conditi
C1,2(0)50 ~dashed curve!.
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the valence band in some semiconductor/insulator contac12

they are responsible for the Fermi-level pinning. It see
that the electron interface level should be close to the vale
band, at least in wide-gap semiconductors. If the interf
level is shifted too far off the top of the valence band, then
becomes empty. This results in a large surface charge a
strong band bending that is not favorable from the energ
cal point of view. Nevertheless, the interface level can
shifted as the result of the structure reconstruction of
interface. Such reconstruction does not essentially affect
interatomic spaces or angles, but it makes the interface l
closer to the top of the valence band.

In conclusion, we propose the general boundary con
tions for the envelope wave functions to investigate the h
spectrum of the spherical quantum dot. We show that usu
applicable boundary conditionsC1,2(0)50 can be used at a
smooth interface or at a sharp one, provided that the ene
separation nearest to the band edge interface level much
ceeds the energy of the hole under consideration. Two
parameters are sufficient to determine an interface influe
on the hole spectrum. They could be measured in opt
experiments or estimated theoretically@e.g., from Eq.~8!# for
a certain model of the interface structure. The boundary c
ditions ~5! can be used also to describe the intervalley m
ing of the electron in the conduction band.
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