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Consistent model for the screening of slow muons in metals
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By using a sum rule for scattering phase shifts at the Fermi level, a consistent screened potential of a slow
positive muon in an electron gas is constructed. This consistent model potential is applied in the theoretical
characterizations of the overlap parameter in muon quantum diffusion, the retarding force of the electron gas,
and the Knight shift. Comparisons with available experimental results are made, and a good agreement is
found.[S0163-182@09)50542-7

The motion of light particles in metals is a topic of fun- A
damental interest since it involves the interaction of simple, o (pg)=— > (I+D)si[8(pe)— 8+ 1(pe)], (3)
singly charged unit§positive muons;u™), with electrons Fol
and nuclei belonging to the metals. The goal of the theoret-
ical investigation to be described here is to provide a consisthusK(pra<1) is related to the dissipative behavior of the
tent model for the screening @f* which is the basic input electron gas as we shall discuss below.
in the following three(i—iii ) important areas of the topic. ii. A charged particle with mass>m,, moving slowly

i. At low temperatures, where these light particles,(  with a given velocityv in the electron system, experiences a
=m,/9 in proton massmay still be mobile, their diffusion is longitudinal force(F) arising from the response of the sys-
dominated by quantum tunneling between lattice Sit®pe-  tem:
cifically, copper and aluminum fcc metals are well suited for
detection of muon diffusion because of the large nuclear mo-
ments of target atoms, which give rise to strong depolariza-

tion effects when the muons move slowly enodgh.1984, . . _ 3 o\ .
Kondo recognized the crucial role of conduction electrons in. | which no=p/(377) is the electron densityThe energy

the diffusion process.t turns out that one should take into dissipation is due to electron-hole excitations at the Fermi

account the overlap of two many-body ground states with th(leevel' This so-called stopping powefenergy loss per unit

same local, screened potential at different dithsracterized path length is a measurable quantity by standard transmis-
) ’ +p_ 46 sion and backscattering methods for normal particles, i.e., for
by a distancea) Qf £~ in the electron g9as. The ovgrlap protons. Very recently, a muon spin resonangeSR)
parametefK(a)] is related to the scattering phase shiitg) ( method for directly imaging the implantation depth of posi-
of electrons, caused by this screened potential, at the Ferrﬂ{/e muons in metals was presenfedoolication of this
energypﬁlz (we use atomic unit€?=m,=%=1 through- P bp

Th Il-di 1) behavior i q method for epithermal muon beatfisvith tunable kinetic
gggt')é e small-distance pra<<1) behavior is expresse energies (10— 10 eV) provides a source of experimental fa-

cilities to be used in condensed matter physics. Clearly, the
knowledge of theoretical stopping powers of low-energy
1(pFa)2 p2 muons should have relevance in detailed studies of solid-

F=vno Pr oy (PE), (4)

Ka)=3 2,77(Pe)- (D) state excitations.

iii. The third important area is the measurement of Knight
shifts in metals. The electron spins are polarized under the
action of a magnetic fieldH). The polarization generates an
extra field which acts on the spin of the muon. This effect
leads to a shift of the magnetic resonance frequency of the

o

The long-distance gza>1) behavior(denoted ak..) is
expressed directly in terms of the scattering phase &fifts

2 “nucleus.” The extra AH) magnetic field is given 52
Ko=— > (21+1)[tan Y(tans) ]2 2 @H) mag g
T |
AH= 8
In Eq. (1) oy (pg) is the usual transport cross section: H=3"HxpE(Pe), ®
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TABLE I. In this table we present theoretical results obtainedshifts are used to calculate the long-distance overlap param-
for the screening parameter([see Eq.(6)], for the transport cross  eterK., of Eq. (2) and o, (pg) of Egs.(3) and (4). These
sectionay,(pe) [see Eq(3)], for the long-distance overlap param- results are given in the relevant columns of Table I.
eter K., [see Eq.(2)], for the reduced enchancement factor of a  \\/e compared our values for the transport cross section
scattered wave at the impurity positiéit (pe) [see Eq(8), and the  ith results obtained by a standard calculation performed
text after if, and for the susceptibility enchancem&i(pe), as a  \jthin the ground-state density-functional thed®FT). In
function of the density parameteg of the electron system. this latter treatmenf the complete shielding is satisfied via
an explicit construction of the induced charge, using auxil-

fs A 7w (Pr) Ke E* (pr) Er(pr) iary Kohn-Sham stationary-state representation for the one-
1 2.51 0.78 0.103 0.984 1.15 electron wave functions whose occupation is prescribed by
2 1.71 9.43 0.291 1.054 1.31 the whole Fermi distribution function. The comparison
3 1.23 33.13 0.487 1.038 1.46 shows an essentially perfect agreement at the lowealues

4 0.97 63.82 0.301 0.947 1.62 and differences about 10-15% at the low-density range,
5 0.82 9531 0.221 0.901 1.79 where the present values faer, (pg) are slightly higher.

Considering the statement of Mann and Brandn the re-
markable accuracy of DFT-based restiitor slow protons
in an electron system with spitPauli susceptibility yp . in comparison with collected experimental déteeviations
This form is due to the dominant contact interaction. In Eq.within +15%), we can conclude that our results are also
(5), E(pg) is the enchancement factor ferwave (=0) very reasonable ones. The agreement may give a firm base in
scattering of electrons on the Fermi surface at'asite. We the planned stopping-range measurements using epithermal
note at this point that experiments desigtetb look for ~ Positive muon beans.
bound electron states around a positive muon have been un- Now, we turn to the application of out.. values, shown
succesful(see, also Ref. 14; for muoniums in insulators, sedn Table |. Well-established experimental results for the
Ref. 2. overlap parameter are available for aluminum and copper.
After these clarifications of the topic we satisfy the mainFor the lighter metalAl, rs=2.07) the recommende@ee
physical requirement that must be satisfied in our prob|emRef. 2 for further detailsvalue is about 0.32. Our prediction
i.e., that the charge be completely shielded, in the followings in good agreement with this. For copper the experiments
way. Within the framework of an electron-gas description ofgive results in the 0.16—0.22 rang#.we use(as it is ususal
a real solid we shall use a physically motivated one-in stopping measurements by ignthe value of about g

parametric ) model potentidf =1.5, we can also establish a very satisfactory agreement
with our theoretical result. This choice of value mimics

A the role ofd-band electrons of a real Cu target, in an average
V(r)= _Ze“ 1 (6)  manner. Note, that the nonmonotonic behavioKofr,) is

due to the theoretichf prescription: 5 =tan (tans))

in order to represent the screening @low) muons ¢  Which results in 5" |< /2.

=1). To achieve an internatonsistency[the measurable We continue the representation and discussion of our the-

quantities in Eqs(1)—(5) are tied to the Fermi momerjtave ~ Oretical results by considering the third important area of

fix the screening parameteh) via a nontrivial constraint application of positive muons in metal physics: the problem

published recently by Zwergé?. of Knight shift. One key quantity to calculateH/H is the
Around a slowly moving massive impurity there is a Scaftering wave-function enchanceméip), as discussed

backflow in the electron system. For a charged impurityat EQ.(5). For our Hulthe-like potential the enchancement

(with chargeZ) the dipolar backflow identically cancels the IS given in a closed analytical forrfa physical motivation

longitudinal part of the impurity current due to the perfect for the use of this modglas follows:™

shielding. Using this dynamical requirement Zwerger ex-

tended the well-known linear response reSudind thus ob- 2mZ et—g @
tained the following sum rule: E(pr) = Pr e'te “—2cosap) (8
1 4
Z=—2, (21+1)sin28+— >, (I1+1)2 In this equation we have introduced, as short-hand notations,
Tl 1 a=(2mpg/\), and B2=[(2Z\/pZ)—1], respectively. The
X SiNS| SINS| 11 SIS — 8+1). 7 so-called reduced enchancements, defined E&Ypg)

=(pg/27)E(pg), are given in Table | for our casé=1.

Note, that the derivation of this rule needed scattering charOur screened potential, optimized for scatterings at the Fermi
acteristicssolelyat the Fermi level 6,(pg)]. level via a nontrivial sum rule, produces almost exactly

We have determined the phase-shift values from the nu€oulomb-like enchancements. For scatterings in an attractive
merical solutions of the Schdinger equation WithD,Z:/Z scat- (bare Coulomb field: Eg(pF)z[l—e*Z”’pF]*l, as it is
tering energy usiny/(r) of Eq.(6). By forcing this to satisfy  well known.
the sum rule of Eq(7) we obtained the consistent screening The second key quantity in calculatidgd/H is the mag-
parameters as a function of the density parameteiThese netic susceptibilityyp. The measurable shifts are propor-
results are given in Table | for the importanbetallic range  tional to a productE(pg) xp , Where both quantities are to be
of our problenmrge[1,5]. The consistently determined phase determined. In the present model calculation we use the the-
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oretical results foip from Ref. 21, where the enchancement practical framework of DFT, the important relative spin-
factors for the Pauli susceptibility were determined for andensity enchancement is directly related to B{@g) factor
interacting electron system, as a functiorr of We apply the  of Eq. (5). A more general model for the mentioned problem
results of Ref. 21 by writingyp asxszp(pF)Xg, where in ferromagnetic metals is based on the combination of a
x2 refers to the ideal-gas valdt.The theoretical suscepti- spin-dependent potential arising from the exchange scatter-

bility enchancementE&p(pg) are given in the last column of ing of conduction electrons at localized magnetic moments
Table I. Using the above-introduced notations, we rewriteof the host and a common screened potential of the positive

Eq. (5) into a transparent form:

AH .
= /IXEpR(Pr)E*(PR), €)

in ppm (parts per million units. Experimental predictions

(see Ref. 22; for further discussions, see Refs. 14 ando?20
AH/H are in the range of 79-88 ppm for CWIid/H
=81; rg=1.5), Mg (AH/H=87; rg=2.7), Na (AH/H
=79; rg=3.9), and K AH/H=88; rs=4.9). The prod-

uct, E* (pg) Ep(pg), is a moderately growing function in our

muon?*?°The investigation of the capability of our screened
potential along this linéwith incorporation of lattice dynam-
ics) by calculating spin-density enchancement factors for
electron scattering in a combined field is left for future work.
In conclusion, we have applied a sum rule to determine
the screening of slow positive muons in an electron gas. We
used this consistent model in three experimentally important
areas(overlap parameter in quantum diffusion, longitudinal
retarding force, and Knight shjfof muon interactions with
metals. The obtained theoretical results are in nice agreement
with different experimental predictions. The main physical

description. This is due to the interesting behavior of the,onclusion is the following: our screened potential, opti-

presentE* (pg) function. Earlier theoretical calculatiofs?

mized via a nontrivial sum rule, results in an almost perfect

re*sulted in_higher, by 50-60% in the low-density range,coulombic enchancement of scattered waves at the muon
E*(pe) factors, and thus in essentially overestimatedsite for electron scattering at the Fermi level of metallic

Knight-shift values.

We conclude with an outlook on the applicability of the

electron gases.
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