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Coherent x-ray diffraction imaging of silicon oxide growth
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We have measured the morphology of Si samples as a function of time in air after stripping of the native
oxide. For this purpose we examined the reflectivity of a coherent beam of x rays, which produces a structured
diffraction pattern. We have made further progress in the development of an inversion algorithm for conversion
of these patterns into one-dimensional height images. Nanometer-sized features are found to grow and evolve
in waves across the surface on the time scale of minutes to hours.@S0163-1829~99!05038-9#
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I. INTRODUCTION

Nanostructured layers of semiconductor material poss
many interesting properties arising from the spatial confi
ment of their electronic structure. These properties have
tential applications in the electronics industry, where lith
graphically derived structures are rapidly approaching
nanometer length scale. Nanometer-scale structures can
spontaneously from instabilities in the growth,1–3 which can
be attributed to step-edge barriers that limit the transpor
material from one atomic layer to the next.4,5 There is there-
fore an urgent need to develop microscopic imaging te
niques that are capable of probing these structures bot
real time and under the ambient conditions associated
their formation.

Coherent x-ray diffraction~CXD! is one such technique
X rays interact weakly with matter, so they do not disturb t
delicate balance of diffusion rates that can lead to the gro
instabilities. X rays are sufficiently penetrating that chang
which are internal to the material can be explored. A coh
ent beam is prepared from a partially coherent one by cut
with a small aperture of sized, smaller than the lateral co
herence length of the x-ray source.6,7 When a coherent beam
is used, the diffraction pattern represents thecompleteFou-
rier transform of the entire illuminated object, without th
ensemble averaging that is usually associated with diffr
tion. We previously showed how the morphology of the
luminated region of the surface is connected with the C
pattern.8–10 At each location across the coherent beam p
file, (x,y), the relativephaseof the incoming beam is modi
fied by qzh(x,y), whereqz is the perpendicular momentum
transfer andh(x,y) describes the vertical height of the su
face struck by the beam at position (x,y) within the profile.
The amplitude of the signal seen as a function of posit
~angle! within the detector plane, equivalent to two paral
components of momentum transfer (qx ,qy), is a coherent
superposition of all the reflected waves within the finite ill
PRB 600163-1829/99/60~14!/9965~8!/$15.00
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mination region, taken to extend from2d/2 to 1d/2,

A~qx ,qy!5E
2d/2

d/2

dxdyeiqzh(x,y)eiqxxeiqyy. ~1!

This resembles the Fourier transform of thecomplexden-
sity function, exp„iqzh(x,y)…, which has unit amplitude and
a height-dependent phase. Apart from this complex nat
the other main difference from the crystallographic situat
is that the density function is nonperiodic. Since only t
amplitude of the diffraction can be measured, while its ph
information is lost, and since no suitable x-ray objective le
has yet been developed, one must resort to computati
methods to produce an image.

In recent years, there has been considerable progres
computational methods for inverting these ‘‘noncrystal
graphic’’ diffraction patterns. First proposed by Sayre11 in
1980 as a means of diffraction imaging, soft x-ray diffracti
patterns from individual biological cells were successfu
recorded in 1987 by Yunet al.12 The feasibility of inversion
of model data has since been demonstrated by sev
authors.13–15 This and other methods of x-ray microscop
have been reviewed recently by Sayre and Chapma16

Sayre’s original idea11 depends on the fact that the diffrac
tion pattern can be measured on a substantially finer s
than is attainable in diffraction from an analogous cryst
where a discrete set of Bragg peak intensities represents
entire measurement. As is well known, the direct invers
of crystallographic data is not possible without the use
difference techniques or exploitation of statistical propert
of the entire data set. With sufficientlyoversampledmea-
surements of the continuous diffraction pattern of a nonp
odic object, it is now recognized that the Fourier transform
tion is overdetermined, and so can be inverted uniquely
principle. The mathematical problem is reduced to a com
9965 ©1999 The American Physical Society
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tational one of intelligent searching for the correct solutio
for which successful algorithms have been developed.13–15In
the real situation of experimental diffraction data, contain
statistical and systematic errors, the robustness of these
rithms has yet to be fully explored.

We have previously shown8 that the grazing incidence o
the x-ray beam used in the reflectivity geometry illuminate
thin stripe on the sample, and so leads to a coherent diff
tion pattern which is approximately one dimensional~1D!.
The full expression of Eq.~1! can therefore be reduced to
1D expression by omitting the dependence ony andqy and
referring with x and qx to the direction along the beam’
footprint alone. We also demonstrated9,10 that these 1D pat-
terns can be inverted using the Gerchberg-Saxton~GS!
algorithm.17 The computation time involved with invertin
1D data is relatively small, so we have since been able
explore the convergence properties of this particular al
rithm. In the work we present here, we summarize th
results and further explore certain assumptions underly
our model of the coherent diffraction itself.

In the experimental work reported here, we examined
growth of oxide on silicon in air after removal of the nativ
oxide with hydrofluoric acid. A clear time evolution wa
seen in the CXD patterns recorded subsequently. By inv
ing the patterns we could observe the time dependence o
oxidation process in our calculated images. To anticipate
results, the morphology can be described as a series of w
and steps with heights starting at around 5 Å , which evo
laterally across the surface with velocities up to 0.06mm/s.

Previous studies of the formation of the native oxide
silicon in air have been made by several authors using x
photoelectron~XPS! and infrared~IR! spectroscopies.18–22

These serve to quantify the rate of growth under a variety
ambient conditions~e.g., humid vs dry! and also to investi-
gate the chemical reactions involved. None of the previ
measurements have attempted to look for inhomogeneitie
the spatial distribution of oxide. The general conclusions
that the hydrofluoric-acid-treated surface is terminated
Si-H species, with its characteristic IR vibration frequency
2100 cm21. Over a period of several hours, this becom
converted into vibration lines characteristic of SiH(O3) or
SiH(O2). The rate depends somewhat on humidity, wa
orientation, and doping type.18 The XPS measurement
showed an average oxide thickness of 6 Å after 104 min in
humid air and essentially no growth in a dry O2 /N2
mixture.20 The critical rate-limiting reaction18,21 is believed
to be the formation of a surface silanol,

Si2H1H2O→Si2OH1H2↑,

followed by reaction with a second Si-H to form a Si-O-
bridge bond which is the main structural component of
SiO2 structure. The Si-H terminated surface is hydrophob
making the initial reaction very unlikely to occur, and hen
very slow. Once Si-O bonds have started to form, the surf
becomes hydrophilic, and so more reactive towards furt
attack by H2O and/or O2. The data of Niwanoet al.18 clearly
show a faster-than-linear decline of the Si-H vibration inte
sity with time, strongly suggesting that the oxidation react
is autocatalytic. We therefore would expect inhomogeneiti
in the appearance of oxide to arise. Our time-resolved exp
,
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ment was therefore intended to probe the sizes and typ
length scales of those oxide inhomogeneities.

II. EXPERIMENTAL METHODS

Measurements were made at the Troı¨ka beamline~ID-
10A! of the European Synchrotron Radiation Facility
Grenoble. Unfiltered third harmonic undulator radiation
8.8 keV (l51.4 Å ) was reflected horizontally with a
water-cooled polished silicon mirror onto a circular 5mm
aperture manufactured in a gold film lithographically. T
electron-beam source size inside the undulator was s
enough and the working distance large enough that the b
emerging from this aperture was spatially coherent in
transverse direction. The bandwidth of the U26 undula
was measured to be 3.7%, giving a longitudinal cohere
length of 38 Å . With the storage ring operating at 160 m
we obtained an incident flux of 23109 photons per second
passing through this pinhole onto the sample.

Different sample geometries were tried, but we found t
the mechanical stability problems were reduced when
sample plane was oriented horizontally, and the detector
was inclined in the vertical direction. The sample w
mounted as shown in Fig. 1 at the center of a three-cir
goniometer, at a distance of 70 mm from the entrance p
hole. For the results presented here, the incidence and
angles were fixed atu51.28° to obtain a momentum transfe
qz of 0.20 Å21 perpendicular to the sample surface. Aft
mounting each sample, its orientation angles on the goni
eter were aligned first. Coherent diffraction data were th
measured by scanning the vertical position of a 20mm ~ver-
tical! 3100 mm ~horizontal! detector aperture through th
reflected beam at a distance of 1.3 m from the sample. N
ther the sample nor the incident beam was moved during
acquisition of the subsequent time series.

The samples were fragments of commercial Si~111! wa-
fers, initially bearing a thin grown oxide. They were d
greased and cleaned in a NH3-H2O2 solution at 80 °C. After
each sample was mounted and aligned, a short time se
was collected to ensure that there was no drifting of its
sition or of the beam. The oxide in the center was then ca
fully removed by applying a drop of 50% hydrofluoric ac
for about 30 s, draining it with a piece of filter paper, th
wiping the whole face of the sample with another filter pap
soaked with distilled water. Time-dependent data could
collected during the regrowth of the oxide following th
preparation, typically starting within about 1 min. Each sc
of typically 140 data points then took about 3 min to colle

FIG. 1. Schematic drawing of the experiment installed on I
10A at ESRF with the detector moving in the vertical plane. T
setup employed ad55 mm entrance pinhole atL1570 mm in
front of the sample and a 20mm detector slit atL251.25 m be-
hind the sample.
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III. RESULTS

From a number of experimental runs with qualitative
the same behavior, the most interesting time series is sh
in Fig. 2. Contours of intensity are plotted both as functio
of time running horizontally and of the scanned position
the detector pinhole as the vertical axis, with a typical sc
inset. Scans were taken in repetition, spaced 3 min ap
Because of the 3-min measurement time, some time ev
tion took place during the measurement itself; however,
cause of the relatively slow evolution of the data, regard
each scan as a ‘‘snapshot’’ does not lead to a serious di
tion. For example, there is never an ambiguity concern
how the peaks in one diffraction pattern are connected
those of the next scan. It is immediately obvious that
diffraction pattern evolves more rapidly at the start of t
series than at the end. This can be seen in the center of
of the intensity distribution, superimposed on Fig. 2 as
thick line, which is a fit to an exponential function in time;
can also be seen that the relative intensities of different
fraction features generally change more dramatically at
lier times.

Using the model of the surface coherent diffraction p
cess arising from our earlier work, which is summariz
above, we attempted to invert the data, one scan at a t
Because the data~Fig. 2! are in the form of a time series o
related diffraction patterns, the reliability of the dat
inversion procedure can be assessed from the similarities
tween the inverted images.

IV. INVERSION OF CXD DATA

The most important assumption in our model9 of coherent
diffraction is the definition of the incident radiation that pr
vides the illumination of the sample. We assume that
sample is in the near field of the entrance pinhole~Fig. 1!
(L1<d2/l.180 mm), wherel is the wavelength of radia

FIG. 2. Measurements of coherent x-ray diffraction from
Si~111! sample as a function of time after removal of its oxid
Scans of duration 3 min were measured in immediate succes
The time axis is therefore the serial number of the scan. The
served CXD intensity is plotted as contours with logarithmic sp
ings. The shaded region indicates where no measurements
made because the scan was terminated. The solid line is an e
nential fit to the center-of-mass position of each scan; this mo
ment is attributed to mechanical drift as discussed in the text.
inset shows the raw intensity~in units of thousands of counts pe
0.3 s! as a function of detector-slit position during the fifth scan
n
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tion andL1 is a distance between the pinhole and the sam
The detector is then assumed to be in the far field of
sample (L2@d2/l), where L2 is the distance from the
sample to detector. Under these assumptions, the 1D ver
of Eq. ~1! becomes

A~qx!5E dxre f f~x!eiqxx, ~2!

where

re f f~x!5B~x!eiqzh(x) ~3!

is a complex density function. In Eqs.~2! and ~3! we have
used the definitionsqz52k sinu and qx5kh/L2, where k
52p/l is the wave vector, 2u is the scattering angle, th
coordinatex is taken across the beam at the position of
sample, andh is the position of the detector slit. Due to th
grazing incident angle conditions the illuminated area is s
stantially elongated along the beam direction. We theref
define a coordinatex85x/sinu along the sample surface it
self ~see Fig. 1!. This fiftyfold elongation betweenx andx8
also allows us to make the approximation that isotropic f
tures in the height of the surface will predominately affe
the diffraction in the direction of elongation. In other word
we can assume a one-dimensional rather than t
dimensional scattering process.

A reciprocal-space view of this elongation effect was d
cussed in an earlier paper we published on coherent x
diffraction from a GaAs/AlAs multilayer sample.23 In that
case also, one-dimensional speckle was obtained usin
symmetric beam. The reciprocal-space direction scanned
the detector is also inclined at an angleu with respect to the
surface plane, so the component of momentum transfer
allel to the surface becomescontractedby qx85qxsinu. The
two factors of sinu then cancel each other when the Four
transform is evaluated in the primed coordinates.23

The functionB(x) in Eq. ~2! is called the illumination
function because it accounts for the propagation of the w
front of the incoming coherent beam from the entrance
erture to the sample. In the simplest approximationB(x)
would be just a box function or spatial cutoff as in Eq.~1!.
More generally, it will account for Fresnel diffraction by th
aperture defining the incoming beam, when it becomes
complex function24

B~x!5uB~x!ueifF(x). ~4!

We have shown in our previous paper9 examples of the
illumination function uB(x)u for the case of ideal slits with
sharp edges. Then it depends on the slit sized, the distance
from the slits to the sampleL1, and the wavelength of radia
tion in the form of a Fresnel integral.24 We have estimated
the illumination functionB(x) for the conditions used in this
experiment~Fig. 1! which gives a strong maximum in th
center and has pronounced side fringes, whilefF(x) is rela-
tively constant over the central part of the illuminatio
However, the functionB(x) also accounts for any interna
phase structure in the beam due to the conditioning optics
addition, it can partially compensate for such effects as n
sharpness of the slit edges, partial coherence of the beam
convolution with the detector slits. While it can be estimat
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from the geometry of the entrance aperture, it must stric
be regarded as an experimental unknown. It is desirabl
know the ‘‘exact’’ shape of the illumination function be
cause it is centrally incorporated in the reconstruction pro
dure. In principle we should be able to optimize the shape
B(x) by investigating its effect on the convergence of t
reconstruction algorithm or on the ultimate agreement w
data. However, we would not expect the resulting ph
structures to depend sensitively on the exact details ofB(x).

The amplitude ofB(x) defines the magnitude of the illu
mination of the sample and the phasefF(x) gives an addi-
tional phase shift. This phase combines with that of
sample to give a final expression for the speckle amplit
~2! seen at the detector

A~qx!5E dxuB~x!ueiF(x)eiqxx, ~5!

where the total phaseF(x) is equal to the sum of the phase

F~x!5fF~x!1qzh~x!. ~6!

Equation ~5! is precisely the Fourier transform of th
complex quantityre f f(x)5uB(x)ueiF(x) with the amplitude
uB(x)u and the phaseF(x). What is measured corresponds
uA(qx)u2. It is therefore the combined density functio
re f f(x) that we seek to derive from the data analysis pro
dure. We have some prior knowledge ofuB(x)u and fF(x)
from the sample geometry, whileh(x) is the image of the
sample morphology we wish to know.

There are trivial ambiguities in any situation where on
the amplitude of a Fourier transform is measured. In
case, the following three quantities are indistinguishab
re f f(x), re f f8 (x)5uB(x)ueiF(x)1F0, and re f f9 (x)5re f f* (2x),
whereF0 is an arbitrary real constant and* denotes complex
conjugation. The quantityre f f9 (x) is called the ‘‘dual’’ solu-
tion. In the following, we study only nontrivial characteri
tics of the phase problem forre f f(x).

Up to now we have been considering the static spec
pattern. We now consider what happens when the he
function becomes time dependent. It follows from the sup
position properties of the Fourier transform that a hei
function with a component that islinear in position just leads
to the same diffraction amplitude as the height function wi
out the linear component, but with an origin shift in recipr
cal space. Such a time drift of the centering of the data w
indeed observed in the experiment and is shown in Fig. 2
a solid line. This behavior can easily arise from mechan
drift in the experiment. We are interested instead in high
order variations of the height function, so we systematica
remove the linear term by recentering the data. A sim
‘‘flattening’’ procedure is used in scanning probe techniqu
~scanning tunneling microscopy or atomic force microsco!
for measuring surfaces. For this reason, we have centere
experimental scans to the position of the numerical cente
mass of the data.

For the reconstruction of the phaseF(x) ~6! from the
measured speckle pattern intensity we use the algorithm
posed by Gerchberg and Saxton,17 which we have employed
before.9 The idea of this algorithm is to iterate back and for
between real and reciprocal space using the direct@Eq. ~5!#
and inverse Fourier transforms. After each step of the
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algorithm the amplitudes are updated. In real space, the
plitude is changed to the calculated value ofuB(x)u; in recip-
rocal space,uA(q)u is changed to the observed valu
AI obs(q). In both cases, the obtained value of the phase
maintained. After a number of iterations, the algorithm co
verges to a value of the phase that satisfies our constrai
both real and reciprocal space. The detailed discussion o
algorithm and results of its testing on simulated as well
real experimental data were given in our previo
publications.9,10 Here we will concentrate on the results
the reconstruction of the phase in the time-dependent se
of Fig. 2 by application of the GS algorithm.

Direct ~5! and inverse Fourier integrals in the iteratio
algorithm were calculated using the discrete fast Fou
transform~FFT!. This requires that the continuous function
of x and q be replaced by arraysxi and qj , sampled at
uniformly spaced discrete points in the real and recipro
spaces. In our calculations, typically 140 data points w
zero padded toN51024. This gave sufficient definition o
real space features that they appeared to be continuous
tions.

While using iterative algorithms, it is desirable that th
obtained result should not depend on the choice of the s
ing phases and should always converge to the same solu
reproducibly. The number of iterations necessary for the p
cedure to converge can also depend on the choice of
starting phases. Examples of the convergence of the GS
gorithm are shown in Fig. 3. Our experience is that the c
vergence is usually very fast for the first 50 iterations, b
then, depending on the choice of the starting phases, it
either continue to converge or can develop long stagna
periods, as shown in Fig. 3. This stagnation behavior of
GS algorithm is well known and there have been propo
different ways to overcome it.25

Taking into account that the computation time for such
fitting procedure based on FFT’s in one dimension is re
tively small, we developed the following strategy. A set
random starting phases was generated and the GS algo
was applied to it with several thousands of iterations. A s
ond set of random phases was generated and the pro
repeated. To ascertain the reproducibility we made 100
each with a different choice of random phases. This rep
sents a rather crude way to avoid the problem of stagna

FIG. 3. Convergence trajectories of thex2 defined in Eq.~7! as
a function of number of iterations of the GS algorithm. The tw
dashed curves are representiative of the conditions used in Fig.~a!,
while the two solid curves correspond to Fig. 4~b!.
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at the expense of computation time. At the end of ev
iteration the quantity

x25(
j

$AI obs~qj !2uA~qj !u%2/(
j

I obs~qj ! ~7!

was calculated and the results of all fits were sorted in or
of ascendingx2 to keep the ten ‘‘best’’ fits out of 100. The
x2 in Eq. ~7! represents thefidelity of the fitting procedure.
Because of the uncertainties of choosing random star
phases, a separate assessment ofreproducibility was made,

DF5 max
$1<k,l<10%

$uFk~xi !2F l~xi !u%uxi56d/2 . ~8!

This represents the maximum deviation of the phases o
the width of the illuminated area for the ten best fits with t
lowestx2 value. It is an empirical quantity that may be r
lated to the mathematical ‘‘uniqueness’’ of the reconstruc
phase. Of course, the most desirable situation would be
multaneously to obtain low values of bothx2 and DF. In
optimizing the performance of the algorithm, we conside
different forms of the illumination function,B(x), while
trackingx2 andDF. We note that these two parameters a
essentially complimentary to each other, so we might ant
pate opposing trends as we systematically vary the illum
tion function.

The problem of uniqueness of the GS algorithm has b
widely discussed and has been proven for the class of
lytical functions.26 In the numerical procedure we are loo
ing for a solution of a set of nonlinear equations

uA~qj !u5U (
i 50

N21

re f f~xi !exp~ iq jxi !U,
uB~xi !u5U 1

2pN (
j 50

N21

A~qj !exp~2 iq jxi !U, ~9!

with known amplitudesuA(qj )u and uB(xi)u and unknown
phaseF(xi). The phase of the Fourier amplitudeA(qj ) is
also an unknown parameter, although we are not intere
in that explicitly. The mathematical problem is fully dete
mined by these equations for which we hope to find a uni
solution. In the simplest 1D case for FFT’s of sizeN, Eq. ~9!
provides 2N equations (N in real space andN in reciprocal
space! for 2N unknown phases. However, the real situati
is that there are fewer thanN data points and fewer thanN
nonzero points for the real space amplitude,B(x). Errors in
the data would technically count as inequalities, rather t
exact equations, so the situation of assessing whether o
the problem is overdetermined becomes more complicat

We have selected one of the typical scans from the t
series~scan 5 of Fig. 2, also shown in the inset! for a detailed
investigation of the problem of convergence, agreement,
reproducibility. First, we made simulations with the illum
nation filter function expected for the experiment, provid
by the Fresnel integrals withd55 mm andL15100 mm.
The results were quite encouraging and gave good agree
for the amplitude functions in both the real and recipro
domains as shown in Fig. 4~a!. Good agreement is seen eve
for the low intensity tails. However, the poor reproducibili
of the phase among the ten best fits is clearly seen in
y
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4~a!. Note that, because of the arbitrary choice of the ph
offset, F0, all phases have been set to zero at the cen
point of the plot.

In our investigation of the reproducibility of repeated fi
ting of the same data, we noticed a very interesting gen
characteristic. When theB(x) function was confined to be

FIG. 4. Results of fitting the data of scan 5 of Fig. 2 usi
different illumination functions. The GS algorithm has been us
with 100 attempts of 2000 iterations each, as described in the
with FFT’s of sizeN51024. The top panels of each part show t
reciprocal-space data with the ten best fits out of 100 superimpo
The middle panels denote the real-space amplitude fits to the
mination function. The bottom panels show the ten best real-sp
phase functions derived.~a! top panels, using the ‘‘open’’ illumina-
tion function given by the theoretical Fresnel form and the appro
mate parameter values used in the experiment.~b! bottom panels,
using the cutoff illumination function, as in~a! except smoothly
truncated on both sides.
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different from zero only over narrow domain inxi , the spec-
trum of the resultingx2 values became discrete, withidenti-
cal values of x2 occurring multiple times each. For eac
discretex2, the solutions for the phase, allowing for dua
were also identical over the central illuminated region. T
lowest of thesex2 values was naturally taken to correspo
to the ‘‘correct’’ solution. We assume this result arose b
cause the inversion problem of Eq.~9! becomes overdeter
mined when the domain ofxi is sufficiently small: there are
more data points, each representing a simultaneous nonl
equation in Eq.~9!, than variables, each being the phase
one point in the domain ofxi .

We illustrate this by comparing fits to the same data w
the confined illumination function in Fig. 4~b!: the domain of
illumination has been smoothly suppressed beyond a sep
tion, dcut , wider than the intrinsic width,d, by a factor of
1.3. This time the best ten phase solutions, corrected
duals, are identical, but the finalx2 value is somewha
higher. The convergence behavior for the two cases is c
pared in Fig. 3. The solid curves are two of the ten bestx2

trajectories for the cutoff version of the illumination fun
tion, for different starting phases. Though not identical at
start, they both fall quickly to the same finalx2 value. Con-
versely, the two dashed curves in Fig. 3 are examples of
of the ten bestx2 convergences for the full, wide-openB(x)
function used in Fig. 4~a!; notable stagnation periods occu
but both examples do ultimately reach betterx2 values.

This property was analyzed systematically for these
perimental data as a function ofdcut /d in Fig. 5. Thex2 and
DF values can clearly be seen to trade off. A large illum
nation region leads to good fidelity, represented by sm
values ofx2, but bad reproducibility, meaning largeDF. A
small illumination region does the opposite. This is cons
tent with the idea mentioned above that the same solu

FIG. 5. Variation of the reproducibility,DF ~top! and ‘‘best’’
x2 ~bottom! as a function of the cutoff parameterdcut . Each point
represents 100 GS fits to the same data with different random s
ing values for the phases. The assumed value of the width of
incident beam, corresponding to the pinhole sized, was fixed at 73
points and the FFT’s were all of sizeN51024.
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will occur most frequently, i.e.,DF50, when the problem is
sufficiently overdetermined. However, the smallestx2 will
occur when there are the greatest number of degrees of
dom, regardless of whether the solutions are uniquely
fined.

In the phase retrieval problem of nonperiodic objects l
the central theoretical concept ofsupport for the real space
domain,27–29 which for a 3D real object is simply the shap
of the boundary of the object. For our 1D case, the supp
can be defined as the illuminated length of the sample.
decreasing the size of the support, we are effectively decr
ing the number of variables in the set of nonlinear equati
of Eq. ~9! for unknown phases in the real-space domain. W
know from the literature that the uniqueness of the solut
to this general problem essentially depends upon the sp
dimension, on the type of the object~real, phase, or complex!
and upon the available reciprocal-space information. T
work of Miao, Sayre, and Chapman29 defines a ratiosMSC

between the total array size,N, and the number of points in
the support. In their tests with simulated data, they saw c
vergence to the correct solution wheneversMSC.2.5 ap-
proximately, in both two and three dimensions.

We have carried out further tests to check the depende
on the support, noting that this corresponds precisely to
relative width of our illumination function, given bydcut .
For our case,sMSC5N/Nx

cut , whereNx
cut is the number of

nonzeroB(xi) sampling points within thedcut window. The
value of d55 mm used for the tests corresponds to 1
sampling points, whileN51024. Thus our critical cutoff at
which irreproducibility starts to occur in Fig. 5 correspon
to sMSC.4. When we changed toN5512 with the same
data, we found this led to the samesMSC, but when we
interpolated the experimental data to artificially generate 2
data points instead of 140, we found thatNx

cut had to be
reduced by the same factor so thatsMSC.8 gave the thresh-
old behavior. We therefore conclude that the number
~nonzero! data points is also relevant to the argument.
further tests, we found that cutting down the total number
data points directly led to better reproducibility for the sam
Nx

cut .
Once we had found the maximum illuminated leng

dcut56.6 mm, that permitted reproducible fitting, we varie
the internal shape ofB(x) using the size of the pinhole,d,
and the sample-pinhole distance,L1, as parameters. We
found d54.8 mm andL15100 mm gave the smallestx2,
so describing the best-fitting functional form forB(x). These
parameters were then used for the fitting of the whole ti
series to generate the real-spaceimagesin Fig. 6. The per-
formance of the GS algorithm did vary somewhat across
series with five scans in the middle having slightly wor
reproducibility. An additional problem was caused by t
missing experimental data in some of the scans, shade
Fig. 2. Here we simply appended the missing tail from t
next ~full ! scan and reconstructed the modified data.

The curves plotted in Fig. 6 have been screened for ‘‘d
als’’ and reversed where necessary to align with their nei
bors. Because of similarities from one scan to the next, th
was never any ambiguity in the choice of duals. The dist
tion of the results shown in Fig. 6 due to the addition
Fresnel phase,fF(x), was found to be negligible.
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V. DISCUSSION

The phase structures plotted in Fig. 6 have been conve
into units of height using the fixed value of perpendicu
momentum transfer, 0.2 Å21, applicable to all the measure
ments. The horizontal axis has also been converted into u
of distance across the sample,x8, as defined above. As such
they represent a series of images of the sample as a fun
of time after the initiation of oxidation, with time runnin
from the bottom of the figure to the top.

The first image~bottom of Fig. 6! is fairly featureless,
with a single bump of 7 Å in height located near the cent
Its lateral extent is about 25mm and its edges are rounde
The total data range that was measured was60.35 mm mo-
tion of the pinhole, corresponding toqx561.21
31023 Å21 range of lateral momentum transfer. Th
should provide an effective lateral resolution of 0.26mm in
x, or 12 mm in x8, beyond which features should not b

FIG. 6. Final height profiles resulting in the reconstruction
the whole time series. Each profile was reconstructed independ
using random starting phases, following the procedure describe
the text. Time runs from the bottom of the figure to the top and e
profile has an arbitrary vertical offset. The fifth curve up is the sa
fit as shown in Fig. 4; however, both axes have been converte
physical units.
.
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distinguishable. This initial bump is therefore slight
broader than our resolution limit. In the following scan, t
bump has become taller with a slightly sharper edge whic
closer to the resolution limit.

In subsequent scans~3!–~10!, the initial bump spreads
laterally across the sample at a significant rate, with its rig
hand edge moving at 0.06mm/s and becoming taller as
moves, reaching 20 Å by the time it starts to disappear fr
view on the extreme right-hand side. Again the width of t
edge remains constant at around 15mm, limited by the lat-
eral resolution. We presume that the material to the righ
this migrating edge remains bare silicon~hydrogen termi-
nated!, so we can use the trend to make a crude estimat
the initial growth rate: 20 Å of oxide has covered half
the surface within view in 30 min, implying 0.3 Å /min
This in rough agreement with the oxidation rates obser
spectroscopically.20,21

The steplike feature discussed above is the most appa
but there are smaller waves that also slide across the su
in both directions at speeds nearer to 0.01mm/s. The fastest
rate of 0.06 mm/s corresponds to a growth front consumi
100 unit cells of Si per second. While the growth rates
reasonable, it is remarkable that nucleation of oxide is app
ently such a rare event that it occurred just once within
5 mm3230 mm field of view during the course of our ex
periment. It is possible that this is not just a coincidence
due to some beam-induced effects as ozone creation, w
would of course be greatest in the center of the beam.

In conclusion, we have developed the inversion te
niques for coherent x-ray diffraction to such an extent t
we have imaged credible changes on silicon due to the in
stages of oxidation. The oxidation we observed proceed
distinct waves, a few monolayers in height that migra
across the sample at rates of up to 0.06mm/s. We believe
the GS inversion method to be reliable because of
smooth connection between the members of the time se
of related images that emerges, even though random sta
phases were assumed. In order to ensure reproducible re
it was found to be necessary to restrict the assumed illu
nation of the sample within a window about 1.3 times t
size of the entrance aperture.
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