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Quasiparticle properties near surfacesdefvave superconductors are numerically studied based on the
extended-J model with Gutzwiller approximation. In order to simulate detailed profiles of the local density
of states, the amplitudes of the transfer integrals are chosen so as to reproduce the Fermi surfacek;of high-
superconductors. It is shown that the spatial dependence of the local density of states is sensitive to the
geometry of the surface, the shape of the Fermi surface, and the doping fatparticular, clears depen-
dences are obtained in spectral features, i.e., zero-energy peaks and their splitting due to the inducement of an
swave component which breaks time-reversal symmetry. The present results suggest that the microscopic
parameters of actual materials can be extracted from a detailed analysis of scanning tunneling spectroscopy
data.[S0163-182699)05337-0

[. INTRODUCTION In spite of a qualitative agreement between theories and
experiments, previous theorfé$® have not taken into ac-

Since the discovery of high-. superconductors, there has count two important points peculiar to high: materi-
been much evidence from both experimental and theoreticalls: (i) a short coherence length aril) strong electron
studies that the symmetry of pair potentials in highsu-  correlation. Moreover, these theories assume the existence of
perconductors g2 2 wavel The essential difference of an s-wave attractive interaction the origin of which is not
dy2_y2-wave symmetry from conventionaiwave symmetry clear for actual highF. superconductors. Thus, in this paper,
is the existence of an internal phase of the pair potential, aswe study the local density of stat¢ésDOS) near surfaces
well as its amplitude variation ik space. The internal phase using the two-dimensiongD) t-J model, which has the
in actual highT, superconductors has been detected as above important features.
phase shift in the dc Josephson effectMoreover, recent The t-J modef® is one of promising models which ex-
theoretical and experimental studies have clarified that thelains low-energy excitations in highz superconductors.
internal phase causes a drastic interference effect in quasidthough an analytic solution of this model has not been
particle states near surfaces and interfaces. At a specularbbtained, phase diagrams as a function of doping faad
reflecting(110) surface of ad,2_2-wave superconductor, a a superexchange interactidnare numerically studied ak
zero-energy stat€ZES) is induced due to the sign change of =0 for one dimensioff and two dimensiori®~33Especially,
the effective pair potentidl.The formation of a ZES results in the 2Dt-J model, the obtained phase diagram as a func-
in a peak in the surface density of states at zero efet§y tion of doping is consistent with actual high: supercon-
and manifests itself as a so-called zero-bias conductanaductors. Although there have been presented a lot of works
peak (ZBCP) observed in scanning tunneling spectroscopyon this modef? only several studies have been devoted to
(ST9.213-2*However, it is also clarified that the ZBCP is the quasiparticle properties in nonuniform systems, e.g.,
strongly influenced by the microscopic geometry and by thecases with a vorteX! impurities®® and surface®=*°In our
quality of surface® previous papei® we have shown that the ZBCP on(&10)

On the other hand, there is the possibility that an ordesurface splits due to the broken time-reversal symmetry in
parameter with a different symmetry coexists withthe > the realistict-J model. Moreover, it is clarified that the split-
wave near the surface where tig_2-wave amplitude is ting is enhanced as the doping ratend the magnitude of
suppressed. Actually, quasiclassical thébfy shows that the superexchange are increased, and that the LDOS is sen-
the induced subdominant pair potential breaks time-reversalitive to microscopic structures near the surface.
symmetry. Recent tunneling experiments show that the In this paper, we extend our previous study to investigate
ZBCP splits into two peaks even in the absence of an appliethe material dependence and doping dependence. To repro-
magnetic field>?” which is consistent with the theory. duce the shape of the Fermi surface observed experimentally,
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we include the transfer integrals for next-nearesy and the 7
third-nearest neighborg() in the same way introduced by d
Tanamotoet al**~*3The Gutzwiller approximation has been
applied to treat the constraint in the extended model*°
The reliability of this approximation has been established
through comparison between the variational energies of the 0
bulk states in theé-J model and those obtained in the varia-
tional Monte Carlo methodf The spatial dependence of the -
pair potential is determined self-consistently as in our previ-
ous works>*—36 o
The organization of this paper is as follows. In Sec. Il, the z
formulation to calculate the spatial dependence of the pair
potential, Fermi surfaces, and the LDOS is presented. In Sec.
[, the results of the numerical calculation for various sur-
face geometries are discussed in detail. Section IV is devoted ¢
to a summary and future problems.

Il.. FORMULATION

The t-J model is written a&

kx

H=—2 ;& G, +HC)+I X
(

ij,o ihj),o

S : % - IU‘IE CiT(rCi(r '
) ——— 5020
1

where®,,=c;,(1-ni_,), hi,=¢c{ ci,, andc;, (c|) is the
annihilation(creation operator of an electron with spin at FIG. 1. The Fermi surfaces in the extended model in the
sitei in a 2D square lattice. Herie=(iy.j,) andj=(j.jy) Gutzwiller approximation for several doping ratega) t-J model
are position coordinates in the lattice, and the summatioft’ =t"=0), (b) LSCO type ¢'/t=—1/6,t"/t=0), (c) YBCO type
(i,j) runs over nearest-neighbor pairs. The quantifies,  ({'/t=—1/6, t'/t=1/5), and(d) YBCO (Il) type (t'/t=-1/2,
and u stand for the superexchange interaction, the spin-l/é [t=0).

operator, and the chemical potential, respectively. The trans-

fer integrals up to the third-nearest-neighbor sites are inWith the hole concentratioa (=1—n). Using this approxi-
cluded as the first term of Eq1). These amplitudes; are mation, the effective Hamiltonian containing the next- and

chosen as follows:

t (>0), nearest neighbors,
ty= t" (<0), next-nearest neighbors, (2)
t” (>0), third-nearest neighbors.

We fix J/t=0.25 and study the four cases figr following
Tanamotoet al:*=** (i) the t-J model ¢'=t"=0), (i)
LSCO type ('/t=—1/6,t"/t=0), (iii) YBCO type ('/t=
—1/6, t"/t=1/5), and(iv) YBCO (ll) type (t'/t=—1/2,
t"/t=0). In the following, we call thenti) t-J, (ii) LSCO,
(iii) YBCO, and(iv) YBCO (lI).

We employ the Gutzwiller approximatiéhwhere the ef-

third-nearest transfer integrals becomes

Heor= —teﬁ<_§>‘, (cl et HC)—tly > (clc,+H.c)
ihj),o i,y o

—tly > (clcjptH.c)
(ij)" o

+Jeﬁ<2> S-S—uX clci, (5)
ij l,o

terr=0t, téff:gtt/a tgff:gtt”: Jeii=0sJ, (6)

fect of the projection is taken into account as statisticawhere(i,j)" and (i,j)" represent the summations over the

weights. The expectation values are estimated as
t _ T
(CivCio) = 9t(CiyCjo )0

(S:§)=9«S- S)o. ©)

next- and third-nearest neighbor pairs, respectively.

The Fermi surfaces obtained within the Gutzwiller ap-
proximation for the four cases of andt” are shown in Fig.
1 as a function of the hole concentratiérFigure Xa) shows
those in thet-J model with the transfer integral only be-
tween nearest-neighbor sites. The amplitudes afhd t’

where (---) and (:--)o represent the expectation values in (Refs. 41-43in Figs. 1b) and Xc) are chosen to reproduce

terms of Gutzwiller-type variational wave functioifg|®)
and |®), respectively. HerePg=II;(1—nyn;) is the
Gutzwiller projection operator and) is a BCS wave func-
tion. The renormalized coefficients are giverfbi

25 4 .
gt_1+51 gS_(1+5)21 ( )

the qualitative features of the Fermi surface in LSCO
(=La,_,Sr,CuQ,) and YBCO (=YBa,Cu;0O;_5) obtained
from local density approximatiofLDA) band calculations.
As shown in Fig. 1d), the choice of(iv) also gives a quite
similar Fermi surface to those in YBC(QI). As regards the
reliability of the Gutzwiller approximation, only the total en-
ergy of the system is checked to be consistent with that by
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FIG. 2. Schematic illustration corresponding
to a 1Xm zigzag surface: (a) a flat (100 sur-
(@) (®) © face (m=0), (b) a flat(110 surface (=1), (c)
y a 1X2 zigzag surfaceng=2), and(d) a 1Xm
zigzag surface.
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the variational Monte Carlo method. It is not clear whetherwherea is the lattice constant and

this approximation is really available to obtain the quasipar-

ticle spectra in nonuniform systems such as the surface or

interface since this approximation does not give an accurate T T 2 )
numerical value as regards the magnitude of the supercon- k=7 k=gxn (n: interge).
ducting gap and bandwidth. However, the topology of the y

Fermi surface, which is consistent with photoemission spec-

troscopy, can be reproduced using this approximadtof?.  After the Fourier transformation, the mean-field Hamiltonian
Since our actual interest is restricted to the qualitative differyecomes

ence between the low-energy excitations of the quasiparticle

properties near the surface with several materials, it is suffi-

cient to start from the Fermi surface obtained by this ap-

proximation. Hye(m) = E [Cﬁ(ky)Cw(—ky)]
The geometries of the boundaries used in the following Ky 1]
calculation are shown in Fig. 2. The index in Fig. 2(d) . “
denotes the period of zigzag structures. The casms0 (':'ii(ky’m) éii(ky*m) )( ?JT(ky) )
[m=1] corresponds to a fld.00) [(110)] surface as shown AjTi(ky,m) —H;i(—k,,m)/\ Cj(—ky)

in Fig. 2@ [2(b)]. In the following, we discuss the cases
with m=0, 1, and 2. In each raw, we hatg sites.

We perform a mean-field approximation with site-
dependent pair potentiah; and Hartree-Fock parameter with

©)

Sijo

AA.:§\] (cic ), & :(CT Cio) 7) N 3 _

g e S A e ol Fij(ky,my=—2 et 7 Jeiéo | (8 21+ €728 )

Here we have assumeg, = §;, = &; . For simplicity, &; and ik , iika
w are fixed to the values, and u, determined in the bulk g€ V6 jr(men) T le€ V0 j+(m-1)
without boundaries. In this sense, the possibility of an oscil-
Iating_ prdﬁr.parameter. found_ in t_he butkJ model near +tgﬁ(5i'ji2+e12ikya5iyjt2m) —podij, (10
half-filling™ is not considered in this paper.

We assume thak is translationally invariant in the tan-
gential direction along the surface. Thus our unit celNjs
sites in thex direction and a single site in thedirection. To A B ~ik.a
represent\;;, we introduce a new coordinajealong thex Aii(ky’m)_z [Aijx(M) 8 1+ Ajj y(M)ETTVES ]
direction. The original position coordinajes represented as (1)
j=(=mj,+j,jy) with j=1,... N_ andAj is rewritten by
Ajj x andAj; . In they direction, we assumbl, unit cells

and the electrons are Fourier transformed as The form of the N, X 2N, matrix elements changes ac-
Ny Ny cording to the numbem of zigzag structures shown in Fig.
Cii (k)= c.e A G (—k)= c. elkyiya 2. For example, in the case of a flatL0) surfage for theF-J
i1(ky) jyzzl 1 il(=ky) ijzl I model, the elements of tH¢, X N, small matrix are written

(8 as
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— Mo — Ty Ty 0 0
—T:—T; — o — T~ Ty 0 0
Hij(ky, D)= 0  —7—7 ko Ty . o |, (12)
0 0 —T =T, — Mo

with Tx:teﬁ+3/4‘]eff go, Ty:(teﬁ+3/4‘]eff go)eiikya, and

0 ApputAgp e 2 0
AgyytApye™y? 0 Aggyt Agg ey - 0
Ak, )= 0 Aggy+ Az e'y? 0 0. (13
0 Ay 2xt ANLz,yeikyal 0
Similarly, for a 1X 2 zigzag surface, we use
Mo —Tx —Ty 0 0 0
_T; Mo T Tx T Ty 0 0
Aijkyd=| =75 —7% —wo —7 —Ty .. 0 | (14)
0 0 —7'; -7y — Mo
0 AlZ,X Algye_ikya 0 0 0
AZl!X 0 AZ?’X A24yeilkya 0 ) 0
Ajj(ky,2)=| Agry™?  Agy, 0 Asax Agsye " 0. (15
0 0 Ann, 2y "% Ann-1x O
|
We choose the total site numbif =401 andN, =80 to Ajjemy(mM)
calculate pair potentials in the unit cell. The above H%mil- 3
tonian is diagonalized by a Bogoliubov transformatits .
gven by Y@ =g =20t 2 U g (7oK Vi ))e= e
t —EJ DU 1—f[E,(k,)]}e*ka
Cli(ky)= E VKU, Ciy(—ky) =2 yIK)U i, = g et Upem iy A1 TIEL(ky) 1},
14 Y

(19

Cjj(ky) =2 U, yulky),  Cli(=ky) =2 U, 1i7ulky), .
16 A= g e 2 Uien 1 A1 TR T}
ald

wherev is the index which specifies the eigenstates. Then the (20)

mean-field Hamiltonian described in E®) is rewritten as o .
wheref[E,(k,)] denotes the Fermi distribution function:

Huwe= 2 Eulky) 73(Ky) vi(ky), (17 I
a [E.(ky1= exp(E,(k,)/kgT)+ 1" @)
where the operatoy,(k,) satisfies the anticommutation re-
lations We solve the effective Hamiltonian, E), by numerical
: ) diagonalization and carry out an iteration until the pair po-
{7a(ky), va(ky)} = OupOk k) tentials Aj; ,(m) and A;; ,(m) satisfy the self-consistency

. . ) conditions, Egs(19) and (20) The temperature is fixed at
{7a(Ky) 75k} ={valky), vp(ky)}=0. (18  T/t=10"7. Using the pair potential determined self-
consistently, we calculate the LDOS at every site. In order to
The spatial dependence of the pair potential is determinedompare our theory with STS experiments, we assume that
self-consistently as the scanning tunnel microscof®TM) tip is metallic with a
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flat density of states and that the tunneling probability is o (-J
finite only for the nearest site from the tip. The LDOS at the o LSCO
ith site is given b§/’ = 002— & YBCO
0 o YBCO®D I
o w—E <
pi~j dw pi(w)sech m), (22 o o
- B § 0.015} ) 8 1
o ®
with g v
2 .
2 S
_ R 01+ i
pi(0)==—Im 2 Gi(ky,0) § .
=2 U |?8{w—E,(ky)}, 23 . . . .
Ek: ZV |t | 8lo—E,(ky)} (23 0.005, v o
where GiR(ky,w) is the Fourier component of the retarded Hole concentration &

Green’s function with energw. In the actual STM experi-

: : o . FIG. 3. The hole concentration dependence of the initial value
ments, since the tunneling probability between the tip andOf the bulk superconducting pair potentialec/t within the

surface is small, the tunneling conductance spectrum COE ipwiller approximation for four types of parametersit(
verges to the normalized LDOS y

=0.25).
w—
JZodw Pi,s(w)sed?f —2kBT) does not change for any Fermi surface we studied. The real
p(E)= oA (24 part of the pair potentiahg ; (y)(0) approaches 1 and1 in
[* dw pN(w)secH( @ 0) the middle of the superconductor which corresponds to the
2kgT bulk d-wave state. Near the surface, therave component is

at low temperature where p; () denotes the LDOS in mixed since translational symmetry is broken. The calculated
] i, . . . .
the superconducting state apg(w) denotes the LDOS in LDOS at the surface site of tH&00) surface is shown in Fig.

the normal state. In this papesy(w) is obtained from the

LDOS at thef (N — 1)/2]th site far away from the boundary. A 120
3 i 2
Ill. RESULTS OF NUMERICAL CALCULATIONS g (100) surface

In this section, we study the local density of states and the E‘ ______ ALjay O
spatial dependence of the pair potential for various types of § 0\\ ______________________ 1
surface geometry shown in Fig. 2. To avoid fictitious oscil- E
lation of the LDOS due to the small number in the sum of '§ S AR,jy©@
k,, we have applied a higher temperatird=5.0x 10" S A
fgr the LDOS than that used in the self-consistent equation. P () YBCO (5=005) | s
However, this choice of does not alter the results. First, the 0 3 o B
hole doping dependence of the superconducting pair poten- @ Number of lattice sites
tial Agc/t=0;A (Ref. 40 without the boundary is shown in :
Fig. 3. The pair potential s/t is suppressed at the low- ] s
doping region. As the doping rate increases, the difference | il\‘\:"‘\ ------- LSCO
between the four cases becomes clear. oo ST o N

(100) surface

A. Flat (100 surface (m=0)

First, we discuss the case of a fla0D0) surface, i.e., the
m=0 case shown in Fig.(8). Since the pair potentials are
complex, we show in Fig.(4) their real and imaginary parts:

Arjx(M=RgA;1jx(M)]/Ao,

)

Normalized Local Density Of States P (E)

Apjx(M=ImLA; 4, (m)]/Ag, (25 L 8=0.10 . .
-1 0 1

Ari v(mM=RdA ,,: v(M]/Ag,

R,],y( ) d Hm'J’y( )] 0 (b) Normalized Energy E/2A)

Apjy(M=IMLAj,p; y(M]/A, (26)

_ o ) FIG. 4. (a) Spatial dependence of the pair potential
as a function of the sit¢. Figure 4a) is the result for the A, (0) andA, ) on the (100 surface N =401) for a
YBCO-type model witho=0.05. It is readily seen that there YBCO-type model §=0.05) and(b) normalized local density of
is no imaginary part, which means that the time-reversaktates at the topmost site of the surfaceder0.10 and four choices
symmetry is not broken in th€l00) surface. This situation of the Fermi surface.
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FIG. 6. The doping dependence of the indusaglave compo-
nent relative to the bulkd-wave component at thd 10 surface site.
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FIG. 5. Spatial dependence of the pair
Agjxy)(1) and(b) A, j x)(1) on the(110 surface N, =401) for

a doping rate5=0.20.

Fig. 5(b). However, thesswave component extends into the
middle of the lattice for thé-J model, because the suppres-
sion of thed-wave component also does. These results mean
that the difference of shape of the Fermi surface leads to
quite different features of the spatial dependence of the pair
potentials.

We focus on the magnitude of the inducgevave com-

4(b) for a doping rate5=0.10 and four choices of Fermi ponent. For a typical value of the inducedvave compo-
surface. Since the quasiparticles do not feel the sign changeent, we usej, ; ,(1) at the second sitej £ 1) from the
of the pair potential at th€100) surface®® the zero-energy surface. Its doping dependence is shown in Fig. 6 for the four

peak(ZEP) does not appear.

cases we studied. The magnitude of the indueagve com-
ponent depends on the shape of the Fermi surface, but it is
enhanced for all the cases as the hole concentration in-

B. Flat (110 surface (m=1) creases. The-wave component for YBCQ@I) is large, but if
Next, we study the case of a flét10 surface, them  we use the Fermi surface, YBCO, the indusagave com-
=1 case. Figure 5 shows the obtained pair potential for th@gonent is half compared with that in YBC@). This is the
three parameters farJ model, LSCO type, and YBC@I)  main difference between YBCO and YBC@). We will
type with 6=0.20. For this(110 surface, we find that the
real part of the obtained pair potential always satisfies a re- B
lation Ag;j«(1)=—Ag;y(1). Simultaneously, the imagi- @ /y/

Y
nary part has a relatiom\,;,(1)=A,;,(1). Thus the X ;é‘é %
d-wave component of the pair potential is real and the ex- ‘,/5 /'X/X #
tendeds-wave component is pure imaginary. The latter is /X VA
induced near the surface as shown in Figp) 5The quantity A . -
AR x(1) is suppressed near the surface and increases mon@ _(b()g.}[S)CI? A | L1 Yoco
tonically toward the middle of the lattice for theJd and | (110 surface :‘:_":g 1 110y surface
LSCO-type models. These behaviors are consistent witl

those obtained in the quasiclassical theBrHowever, the
atomic-scale spatial oscillation of th ; ,(1) is completely
neglected in the quasiclassical approximation. On the othe
hand,Ag ; «(1) for the YBCO(Il)-type model has a complex
spatial dependence f@r=0.20. Although the reason for this
complex behavior is not clear, there is an apparent tendenc
that the suppression of tltewave component in the vicinity
of the (110 surface is the largest for theJ model and the
smallest for the YBCQIl) model. The LSCO-type model is
intermediate between the former and latter cases. Corre- F|G. 7. (a) Schematic illustration of a flatL10) surface and the
spondingly, the amplitude of the induced extendedave site dependence of the normalized local density of states (bjth
component is the largest for the YBC@) model and the LSCO- and(c) YBCO-type parameters faf=0.15. The sited\, B,
smallest for the-J model near the surface, as is observed inandC are indicated ir(a).

(&
T

=

Normalized Local Density of States  p

=l

Normalized Energy
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FIG. 8. The doping dependence of the normalized local density

Normalized Local Density of States

of states at the topmost site of a flatl0) surface for four types of SHEE ¥ Ly
parameters for several doping rates. 0 - : \f(.)v . ;
Normalized Energy E/2A

return to this point shortly. Figures(y) and 7c) show the
calculated LDOS for various sites in LSCO- and YBCO-type . i :
models, respectively. Apparently, there is a ZBCP and a?g% it FG.9 (&) Schematic |IIustrat|on_ ofax2 Z19zag surfacetb)
has a splitting. In a specularly réflectifil0) surface, a ZES SPatal dependence of the pair potentidlg,,(2) and
is created because the injected and reflected quasiparticles= ’é(y)(z) ofnhthe 2|gza|1g s du|rface|!\é¢—4_01) ’ and(c) thi ?;tBeCdoe-
the surface feel the sign change of the ,.-wave pair po- p;i Oe;ge ofthe normaT'zhe oca Eens(;t)';o statz; wit qi “ype
tential. If the pure imaginarg-wave component is induced (9= 0-15) parameters. The site E, andF are indicated ina).
near the surface, it blocks the motion of quasiparticles near o
the (110 surface and as a result the bound-state level shifts Here let us remark on the big difference between YBCO-
from zero. This leads to the splitting of the ZBCP. Since theand YBCO (Il)-type models. Although the shapes of the
amplitude of the induced-wave component is similar for Fermi surface resemble each other, the LDOS near the sur-
LSCO and YBCO(Fig. 6), the splitting of the ZBCP is also face has an obvious difference. This is because the magni-
of the same order for both cases. tude of thesswave component has a big difference as shown

The splitting is also obtained in the quasiclassicalin Fig. 6. Recently, experimental observations of the peak
approximationt?® A remarkable difference between the splitting have been reported in the tunneling spectroscopy of
present results and those based on the quasiclassical theonyhigh-T, superconductor®?’ Experimentally, the explicit
seen in the oscillatory behaviors of the LD&SThe ZEP is  splitting of the ZEP like that of the YBC@I)-type model is
the largest at sité, but it is relatively small at sit®. Then  not reported®?’ Therefore, we suggest that the YBCO-type
at siteC, the ZEP is again enhanced. This oscillation can benodel is much more plausible than that of the YBTO
regarded as the Friedel oscillation, the period of which is theype.
inverse of the Fermi momentum.

The doping dependence of the LDOS at gitess shown in
Fig. 8 for the four cases we studied. Comparing with the
amplitude of thes-wave component shown in Fig. 6, we can  In this subsection, we discuss the case ofa2lzigzag
easily see that the splitting for each case is roughly proporsurface shown in Fig. (8. The obtained pair potential is
tional to thes-wave amplitude. Again, the doping depen- shown in Fig. 9b), which has a complex spatial dependence
dences for LSCO and YBCO types are quite similar becauses compared to those ¢£00) and (110 surfaces. The real
thes-wave component is similar for both cases. For all casespart of the pair potentiaAg ; x,)(2) has an oscillation near
the splitting is small for the low doping rat@=0.05, so that the surface, which cannot be interpreted as a sirdplave
the LDOS have a ZEP. On the other hand, for the high dopeomponent. Since the rotational symmetry is broken, the
ing rate, the splitting becomes larger. This is because theymmetry other thad wave is mixed. We studied the ideal
bulk d-wave pair potential is reduced in magnitude with thet-J model in the previous papét For that model, the imagi-
increase ofs, while the induced-wave component is insen- nary partA, ; ,,(2) is not induced for a X2 zigzag sur-
sitive to the change oé. face. However, by adding the next-or third-neighbor transfer

C. 1x2 zigzag surface(m=2)
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FIG. 10. The doping dependence of the normalized local density
of states at the topmost site of ax2 zigzag surface for YBCO

(Il)-type parameter. FIG. 11. (a) Schematic illustration of g100) surface with

) o 1X 2 step structure and the site dependence of the normalized local
to the t-J model, the quantityd, ; ,)(2) is induced as density of states with thé) t-J model and(c) LSCO-type param-
shown in Flg Qb) Furthermore, we find that the magnitude eters for5=0.05. The site®, Q, andR are indicated in(a).
of A} j x)(2) is enhanced with the increase of the doping

concentration. , . . the appearance of the zero-bias conductance peak in the tun-

The complex spatial dependences of the pair potential %eling spectroscopy is due to the existence of the ZES, we
flect on the LDOS as an _anomalous structure with many dIIO%annot expect the ZBCP for a fl&it00) surface. However, in
and peaks as shown in Figc®. Apart from thesg anomalous actual experiments, the ZBCP is reported for tH®0)
fStI’UCtL_JrI’r(]a'S, .th? LDOS has t.hﬁ ZEP at every sﬂgﬂnﬁe}ar rt1he SUE{rface?® One of the possibilities for this inconsistency is the
_gcel. 'S |sd|r|1 cor?trasthwn our prewousf res (tj rt eh Ifatomic—scale roughness of the surface which inevitably exists
Iaea t-J model, where the ZESS are not formed near hall, oy sample$’ To clarify this point, we calculate the
filing. The reason we considered is as follows. The wave pos for a(100 surface with defects as shown in Fig. 11.
function of the ZES spatially oscillates with the period of the For this geometry, we chooseNy XN, unit cell with an
inverse .Of the I_:ermi_momentu(ﬁrie_zdel OSCi"_atiO')" In the open boundary cé)ndition in th& direction and Bloch’s
low-doping region, since the Fermi surface is nearly Squareooundary condition in thg direction as in Eq(8), with N,
the period of the oscillation of the wave function is roughly _ 29 o048 Z10. At the position of the steft; ’ &, and
coincident With_ A. Consequently, the nqde and antinodeAi., are seyt to be sero. We choose a higﬁje’r tue,mperature
appear alternatively. However, fpr the<P zigzag structure, .T/Jt=8.0>< 10"2 than that used in the above subsections,
the pha_ses of the_ node and antinode do not coincide. This Kince the numerical diagonalization takes a longer time in
the origin of the disappearance of the ZEP for thi:model. this case. However, this choice of temperatilireloes not
This disappearance can be regarded as an interference eff%(ﬁter the results '

0; tr;]e stand|'niq w:;}vel, Vﬁh'Ch cacnnot be gxplalr;?d %geans We find that the imaginary part of the pair potential is not
0 ;[je| guasm asswahé eo(rjy.” hompare_ o tl's ! induced for four types of parameters. The absence of an
model, because of th& andt” hopping integral, LSCO-, imaginary part of the pair potential is similar to that in the
YBfCO" andﬁYBCO(II)—type models do not have these in- ., qe around a single impurity.The LDOS in thet-J and
terference effects. . I

: LSCO-type models is shown in Figs. (bl and 1Xc), re-

In Fig. ;0’ we show the LDO.S for the YBCG’) case for spectively. Since the imaginary part is not induced, there is
the 1x 2 zigzag surface at the sil In addition to the ZEP, -, ¢jitting of the ZEP. The ZEP shows up at corner sRes
the gplltnfnghof the ZEP is found fos=0.20. Since tfhe rr;]ag- and R near the X2 step structure, and these features are
nitude of the imaginary parswave componeptfor the — ,histent with those of previous results based on the ex-
YBCO (Il)-type model is 'afg?f than the other cases, SIOIIttIr‘gtended Hubbard modé%.The origin of the ZEP is due to the
can be seen for a larger doping rate when the relative amplls'ign change of the pair potentials felt by quasiparticles at the
tude of A j xy)(2) becomes larger. corner sites. The line shapes of the LDOS are different from

Finglly, with the inqrease o, €g, m=34,..., the those near th€l10) surface(see Figs. 7 and)@&nd are rather
magnitude of the ZEP in the LDOS is reduced as comparediniiar to those around the single impurity.

to that of the(110) surface, since the system approaches the
(100 surface.

Normalized Energy E/24,

IV. SUMMARY

D. (100) surface with step structures In this paper, we investigated the local density of states
In the previous subsection, Sec. Il A, we have shown thenear the surface based on the extendddmodel within the
absence of the ZES in the LDOS for tfi00) surface. Since Gutzwiller approximation, where several material parameters
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are chosen to reproduce the actual Fermi surface of fiigh- (i) For the 1X2 zigzag surface, our results are different
superconductors. In the present calculation, the nonlocal fedrom those of the ideal-J model where the ZEP is absent.
ture of the pair potential and the atomic-scale geometry off he appearance of the ZEP depends on the doping concen-
the surface are explicitly taken into account. Various featuregation.

of the LDOS are obtained depending on the shape of the (iv) For the(100 surface with defects, there is the case of
Fermi surface and the geometries of the surfaces. Our maiie formation of the ZES. This is due to the sign change of
results in this paper are summarized as follows. the pair potential felt by the quasiparticle due to the atomic-

(i) The LDOS has no ZEP near the fld00) surface. scale roughness.

(i) Near the(110) surface, the LDOS has a ZEP and its  Recently, since the experimental situation is greatly
splitting depending on the magnitude of the indusaglave ~ improved;* we can reveal the microscopic parameters of
component. As the doping increases, the splitting becoméiigh-T. superconductors through a detailed comparison of
larger for any case. The present result serves as the micrée present results with experimental data by STS.
scopic basis for spontaneous time-reversal symmetry break-
ing where thesswave component of the pair potential is in-
duced as the imaginary part near the surface. The amplitude
of the induceds-wave component near the surface is the This work was supported by the Core Research for Evo-
largest for YBCO(Il) and the smallest for the-J model. lutional Science and TechnologZREST) of the Japan Sci-
Those for LSCO and YBCO are in between and almost halence and Technology Corporati¢#ST). The computational
of that for YBCO (Il). Comparing to the recent tunneling aspect of this work has been performed at the facilities of the
experiments of YBCO, the material parameters used in th&upercomputer Center, Institute for Solid State Physics, Uni-
YBCO-type model are much more reasonable than those iwersity of Tokyo and the Computer Center, Institute for Mo-
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