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Quasiparticle properties near surfaces ofd-wave superconductors are numerically studied based on the
extendedt-J model with Gutzwiller approximation. In order to simulate detailed profiles of the local density
of states, the amplitudes of the transfer integrals are chosen so as to reproduce the Fermi surfaces of high-Tc

superconductors. It is shown that the spatial dependence of the local density of states is sensitive to the
geometry of the surface, the shape of the Fermi surface, and the doping rated. In particular, cleard depen-
dences are obtained in spectral features, i.e., zero-energy peaks and their splitting due to the inducement of an
s-wave component which breaks time-reversal symmetry. The present results suggest that the microscopic
parameters of actual materials can be extracted from a detailed analysis of scanning tunneling spectroscopy
data.@S0163-1829~99!05337-0#
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I. INTRODUCTION

Since the discovery of high-Tc superconductors, there ha
been much evidence from both experimental and theore
studies that the symmetry of pair potentials in high-Tc su-
perconductors isdx22y2 wave.1 The essential difference o
dx22y2-wave symmetry from conventionals-wave symmetry
is the existence of an internal phase of the pair potential
well as its amplitude variation ink space. The internal phas
in actual high-Tc superconductors has been detected a
phase shift in the dc Josephson effect.2–7 Moreover, recent
theoretical and experimental studies have clarified that
internal phase causes a drastic interference effect in qu
particle states near surfaces and interfaces. At a specu
reflecting~110! surface of adx22y2-wave superconductor,
zero-energy state~ZES! is induced due to the sign change
the effective pair potential.8 The formation of a ZES result
in a peak in the surface density of states at zero energy9–12

and manifests itself as a so-called zero-bias conducta
peak ~ZBCP! observed in scanning tunneling spectrosco
~STS!.9,13–24 However, it is also clarified that the ZBCP
strongly influenced by the microscopic geometry and by
quality of surface.25

On the other hand, there is the possibility that an or
parameter with a different symmetry coexists with thedx22y2

wave near the surface where thedx22y2-wave amplitude is
suppressed. Actually, quasiclassical theory11,26 shows that
the induced subdominant pair potential breaks time-reve
symmetry. Recent tunneling experiments show that
ZBCP splits into two peaks even in the absence of an app
magnetic field,20,27 which is consistent with the theory.
PRB 600163-1829/99/60~13!/9817~10!/$15.00
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In spite of a qualitative agreement between theories
experiments, previous theories11,26 have not taken into ac
count two important points peculiar to high-Tc materi-
als: ~i! a short coherence length and~ii ! strong electron
correlation. Moreover, these theories assume the existenc
an s-wave attractive interaction the origin of which is n
clear for actual high-Tc superconductors. Thus, in this pape
we study the local density of states~LDOS! near surfaces
using the two-dimensional~2D! t-J model, which has the
above important features.

The t-J model28 is one of promising models which ex
plains low-energy excitations in high-Tc superconductors
Although an analytic solution of this model has not be
obtained, phase diagrams as a function of doping rated and
a superexchange interactionJ are numerically studied atT
50 for one dimension29 and two dimension.30–33Especially,
in the 2D t-J model, the obtained phase diagram as a fu
tion of doping is consistent with actual high-Tc supercon-
ductors. Although there have been presented a lot of wo
on this model,32 only several studies have been devoted
the quasiparticle properties in nonuniform systems, e
cases with a vortex,34 impurities,35 and surfaces.36–39 In our
previous paper,36 we have shown that the ZBCP on a~110!
surface splits due to the broken time-reversal symmetry
the realistict-J model. Moreover, it is clarified that the split
ting is enhanced as the doping rated and the magnitude o
the superexchange are increased, and that the LDOS is
sitive to microscopic structures near the surface.

In this paper, we extend our previous study to investig
the material dependence and doping dependence. To re
duce the shape of the Fermi surface observed experiment
9817 ©1999 The American Physical Society
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we include the transfer integrals for next-nearest (t8) and the
third-nearest neighbors (t9) in the same way introduced b
Tanamotoet al.41–43The Gutzwiller approximation has bee
applied to treat the constraint in the extendedt-J model.40

The reliability of this approximation has been establish
through comparison between the variational energies of
bulk states in thet-J model and those obtained in the vari
tional Monte Carlo method.33 The spatial dependence of th
pair potential is determined self-consistently as in our pre
ous works.34–36

The organization of this paper is as follows. In Sec. II, t
formulation to calculate the spatial dependence of the
potential, Fermi surfaces, and the LDOS is presented. In
III, the results of the numerical calculation for various su
face geometries are discussed in detail. Section IV is dev
to a summary and future problems.

II.. FORMULATION

The t-J model is written as28

H52(
i,j ,s

t ij ~ c̃is
† c̃js1H.c.!1J (

^ i,j &,s
Si•Sj2m(

i,s
cis

† cis ,

~1!

where c̃is5cis(12ni2s), nis5cis
† cis , andcis (cis

† ) is the
annihilation~creation! operator of an electron with spins at
site i in a 2D square lattice. Herei5( i x , j y) and j5( j x , j y)
are position coordinates in the lattice, and the summa
^i,j & runs over nearest-neighbor pairs. The quantitiesJ, Si,
and m stand for the superexchange interaction, the spin-
operator, and the chemical potential, respectively. The tra
fer integrals up to the third-nearest-neighbor sites are
cluded as the first term of Eq.~1!. These amplitudest ij are
chosen as follows:

t ij 5H t ~.0!, nearest neighbors,
t8 ~,0!, next-nearest neighbors,
t9 ~.0!, third-nearest neighbors.

~2!

We fix J/t50.25 and study the four cases fort ij following
Tanamotoet al.:41–43 ~i! the t-J model (t85t950), ~ii !
LSCO type (t8/t521/6, t9/t50), ~iii ! YBCO type (t8/t5
21/6, t9/t51/5), and ~iv! YBCO ~II ! type (t8/t521/2,
t9/t50). In the following, we call them~i! t-J, ~ii ! LSCO,
~iii ! YBCO, and~iv! YBCO ~II !.

We employ the Gutzwiller approximation40 where the ef-
fect of the projection is taken into account as statisti
weights. The expectation values are estimated as

^cis
† cjs&5gt^cis

† cjs&0 ,

^Si•Sj&5gs^Si•Sj&0 , ~3!

where ^¯& and ^¯&0 represent the expectation values
terms of Gutzwiller-type variational wave functionsPGuF&
and uF&, respectively. HerePG5P i(12ni↑ni↓) is the
Gutzwiller projection operator anduF& is a BCS wave func-
tion. The renormalized coefficients are given by40,33

gt5
2d

11d
, gs5

4

~11d!2 , ~4!
d
e

i-

ir
c.

-
ed

n

/2
s-
-

l

with the hole concentrationd (512n). Using this approxi-
mation, the effective Hamiltonian containing the next- a
third-nearest transfer integrals becomes

Heff52teff (
^ i,j &,s

~cis
† cjs1H.c.!2teff8 (

^ i,j &8,s
~cis

† cjs1H.c.!

2teff9 (
^ i,j &9,s

~cis
† cjs1H.c.!

1Jeff(̂
i,j &

Si•Sj2m(
i,s

cis
† cis , ~5!

teff5gtt, teff8 5gtt8, teff9 5gtt9, Jeff5gsJ, ~6!

where ^ i,j &8 and ^ i,j &9 represent the summations over th
next- and third-nearest neighbor pairs, respectively.

The Fermi surfaces obtained within the Gutzwiller a
proximation for the four cases oft8 andt9 are shown in Fig.
1 as a function of the hole concentrationd. Figure 1~a! shows
those in thet-J model with the transfer integral only be
tween nearest-neighbor sites. The amplitudes oft and t8
~Refs. 41–43! in Figs. 1~b! and 1~c! are chosen to reproduc
the qualitative features of the Fermi surface in LSC
(5La22xSrxCuO4) and YBCO (5YBa2Cu3O72d) obtained
from local density approximation~LDA ! band calculations.
As shown in Fig. 1~d!, the choice of~iv! also gives a quite
similar Fermi surface to those in YBCO~II !. As regards the
reliability of the Gutzwiller approximation, only the total en
ergy of the system is checked to be consistent with that

FIG. 1. The Fermi surfaces in the extendedt-J model in the
Gutzwiller approximation for several doping rates:~a! t-J model
(t85t950), ~b! LSCO type (t8/t521/6, t9/t50), ~c! YBCO type
(t8/t521/6, t9/t51/5), and ~d! YBCO ~II ! type (t8/t521/2,
t9/t50).
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FIG. 2. Schematic illustration correspondin
to a 13m zigzag surface: ~a! a flat ~100! sur-
face (m50), ~b! a flat ~110! surface (m51), ~c!
a 132 zigzag surface (m52), and~d! a 13m
zigzag surface.
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the variational Monte Carlo method. It is not clear wheth
this approximation is really available to obtain the quasip
ticle spectra in nonuniform systems such as the surfac
interface since this approximation does not give an accu
numerical value as regards the magnitude of the super
ducting gap and bandwidth. However, the topology of
Fermi surface, which is consistent with photoemission sp
troscopy, can be reproduced using this approximation.41–43

Since our actual interest is restricted to the qualitative diff
ence between the low-energy excitations of the quasipar
properties near the surface with several materials, it is su
cient to start from the Fermi surface obtained by this
proximation.

The geometries of the boundaries used in the follow
calculation are shown in Fig. 2. The indexm in Fig. 2~d!
denotes the period of zigzag structures. The case ofm50
@m51# corresponds to a flat~100! @~110!# surface as shown
in Fig. 2~a! @2~b!#. In the following, we discuss the case
with m50, 1, and 2. In each raw, we haveNL sites.

We perform a mean-field approximation with sit
dependent pair potentialD ij and Hartree-Fock paramete
j ij s ,

D ij 5
3

4
Jeff^ci↑cj↓&, j ij s5^cis

† cjs&. ~7!

Here we have assumedj ij ↑5j ij ↓5j ij . For simplicity,j ij and
m are fixed to the valuesj0 andm0 determined in the bulk
without boundaries. In this sense, the possibility of an os
lating order parameter found in the bulkt-J model near
half-filling44 is not considered in this paper.

We assume thatD ij is translationally invariant in the tan
gential direction along the surface. Thus our unit cell isNL
sites in thex direction and a single site in they direction. To
representD ij , we introduce a new coordinatej along thex
direction. The original position coordinatej is represented a
j5(2m jy1 j , j y) with j 51, . . . ,NL andD ij is rewritten by
D i j ,x andD i j ,y . In the y direction, we assumeNy unit cells
and the electrons are Fourier transformed as

Cj↑~ky!5 (
j y51

Ny

cj↑e2 iky j ya, Cj↓~2ky!5 (
j y51

Ny

cj↓eikyj ya,

~8!
r
-
or
te
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wherea is the lattice constant and

2
p

a
,ky<

p

a
, ky5

2p

Ny
n ~n: interger!.

After the Fourier transformation, the mean-field Hamiltoni
becomes

HMF~m!5 (
ky ,i , j

@Ci↑
† ~ky!Ci↓~2ky!#

3S Ĥ i j ~ky ,m!

D̂ j i
† ~ky ,m!

D̂ i j ~ky ,m!

2Ĥ j i ~2ky ,m!
D S Cj↑~ky!

Cj↓
† ~2ky! D ,

~9!

with

Ĥ i j ~ky ,m!52(
6

F S teff1
3

4
Jeffj0D ~d i , j 611e7 ikyad i , j 6m!

1teff8 e7 ikyad i , j 6~m11!1teff8 e6 ikyad i , j 6~m21!

1teff9 ~d i , j 621e72ikyad i , j 62m!G2m0d i , j , ~10!

D̂ i j ~ky ,m!5(
6

@D i j ,x~m!d i , j 611D i j ,y~m!e7 ikyad i , j 6m#.

~11!

The form of the 2NL32NL matrix elements changes ac
cording to the numberm of zigzag structures shown in Fig
2. For example, in the case of a flat~110! surface for thet-J
model, the elements of theNL3NL small matrix are written
as
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Ĥ i j ~ky,1!5S 2m0 2tx2ty 0 ... ... 0

2tx* 2ty* 2m0 2tx2ty 0 ... 0

0 2tx* 2ty* 2m0 2tx2ty ... 0

... ... ... ... ... ...

0 ... ... 0 2tx* 2tx* 2m0

D , ~12!

with tx5teff13/4Jeff j0, ty5(teff13/4Jeff j0)e
2ikya, and

D̂ i j ~ky,1!5S 0
D21,x1D21,ye

ikya

0
...
0

D12,x1D12,ye
2 ikya

0
D32,x1D32,ye

ikya

...

...

...
D23,x1D23,ye

2 ikya

0
...
...

...

...

...

...
DNL2,x1DNL2,ye

ikya

0
0
0
...
0

D . ~13!

Similarly, for a 132 zigzag surface, we use

Ĥ i j ~ky,2!5S 2m0

2tx*

2ty*
...
0

2tx

2m0

2tx*
...
...

2ty

2tx

2m0

...

...

0
2ty

2tx

...
0

0
0

2ty

...
2ty*

...

...

...

...
2tx*

0
0
0
...

2m0

D , ~14!

D̂ i j ~ky,2!5S 0
D21,x

D31,ye
ikya

...
0

D12,x

0
D32,x

...

...

D13,ye
2 ikya

D23,x

0
...
...

0
D24,ye

2 ikya

D34,x

...
0

0
0

D35,ye
2 ikya

...
DNLNL22,ye

2 ikya

...

...

...

...
DNLNL21,x

0
0
0
...
0

D . ~15!
il
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We choose the total site numberNL5401 andNy580 to
calculate pair potentials in the unit cell. The above Ham
tonian is diagonalized by a Bogoliubov transformation45,46

given by

Cj↑
† ~ky!5(

n
gn

†~ky!Uj ,n* , Ci↓~2ky!5(
n

gn
†~ky!UNL1 i ,n* ,

Cj↑~ky!5(
n

Uj ,ngn~ky!, Ci↓
† ~2ky!5(

n
UNL1 i ,ngn~ky!,

~16!

wheren is the index which specifies the eigenstates. Then
mean-field Hamiltonian described in Eq.~9! is rewritten as

HMF5 (
ky ,n

En~ky!gn
†~ky!gn~ky!, ~17!

where the operatorgn(ky) satisfies the anticommutation re
lations

$ga
†~ky!,gb~ky8!%5dabdkyk

y8
,

$ga
†~ky!,gb

†~ky8!%5$ga~ky!,gb~ky8!%50. ~18!

The spatial dependence of the pair potential is determi
self-consistently as
-

e

d

D j , j 6m,y~m!

5
3

4
Jeff (

ky ,h,n
Uj 6m,hUNL1 j ,n* ^gh~ky!gn

†~ky!&e6 ikya

5
3

4
Jeff(

ky ,n
Uj 6m,nUNL1 j ,n* $12 f @En~ky!#%e6 ikya,

~19!

D j , j 61,x~m!5
3

4
Jeff(

ky ,n
Uj 61,nUNL1 j ,n* $12 f @En~ky!#%,

~20!

where f @En(ky)# denotes the Fermi distribution function:

f @En~ky!#5
1

exp„En~ky!/kBT…11
. ~21!

We solve the effective Hamiltonian, Eq.~9!, by numerical
diagonalization and carry out an iteration until the pair p
tentials D i j ,x(m) and D i j ,y(m) satisfy the self-consistenc
conditions, Eqs.~19! and ~20!. The temperature is fixed a
T/t51027. Using the pair potential determined sel
consistently, we calculate the LDOS at every site. In orde
compare our theory with STS experiments, we assume
the scanning tunnel microscope~STM! tip is metallic with a
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flat density of states and that the tunneling probability
finite only for the nearest site from the tip. The LDOS at t
i th site is given by47

r i;E
2`

`

dv r i~v!sech2S v2E

2kBT D , ~22!

with

r i~v!52
2

p
Im (

k
Gi

R~ky ,v!

52(
k

(
n

uUi ,nu2d$v2En~ky!%, ~23!

whereGi
R(ky ,v) is the Fourier component of the retarde

Green’s function with energyv. In the actual STM experi-
ments, since the tunneling probability between the tip a
surface is small, the tunneling conductance spectrum c
verges to the normalized LDOS

r̄~E!5

*2`
` dv r i ,S~v!sech2S v2E

2kBT D
*2`

` dv rN~v!sech2S v22D0

2kBT D , ~24!

at low temperatures,18 wherer i ,S(v) denotes the LDOS in
the superconducting state andrN(v) denotes the LDOS in
the normal state. In this paper,rN(v) is obtained from the
LDOS at the@(NL21)/2#th site far away from the boundary

III. RESULTS OF NUMERICAL CALCULATIONS

In this section, we study the local density of states and
spatial dependence of the pair potential for various type
surface geometry shown in Fig. 2. To avoid fictitious osc
lation of the LDOS due to the small number in the sum
ky , we have applied a higher temperatureT/t55.031023

for the LDOS than that used in the self-consistent equat
However, this choice ofT does not alter the results. First, th
hole doping dependence of the superconducting pair po
tial DSC/t5gtD0 ~Ref. 40! without the boundary is shown in
Fig. 3. The pair potentialDSC/t is suppressed at the low
doping region. As the doping rate increases, the differe
between the four cases becomes clear.

A. Flat „100… surface „m50…

First, we discuss the case of a flat~100! surface, i.e., the
m50 case shown in Fig. 2~a!. Since the pair potentials ar
complex, we show in Fig. 4~a! their real and imaginary parts

DR, j ,x~m![Re@D j 11,j ,x~m!#/D0 ,

D I , j ,x~m![Im@D j 11,j ,x~m!#/D0 , ~25!

DR, j ,y~m![Re@D j 1m, j ,y~m!#/D0 ,

D I , j ,y~m![Im@D j 1m, j ,y~m!#/D0 , ~26!

as a function of the sitej. Figure 4~a! is the result for the
YBCO-type model withd50.05. It is readily seen that ther
is no imaginary part, which means that the time-rever
symmetry is not broken in the~100! surface. This situation
s

d
n-

e
of
-
f

n.

n-

e

l

does not change for any Fermi surface we studied. The
part of the pair potentialDR, j ,x(y)(0) approaches 1 and21 in
the middle of the superconductor which corresponds to
bulk d-wave state. Near the surface, thes-wave component is
mixed since translational symmetry is broken. The calcula
LDOS at the surface site of the~100! surface is shown in Fig.

FIG. 3. The hole concentration dependence of the initial va
of the bulk superconducting pair potentialDSC/t within the
Gutzwiller approximation for four types of parameters (J/t
50.25).

FIG. 4. ~a! Spatial dependence of the pair potent
DR, j ,x(y)(0) andD I , j ,x(y)(0) on the ~100! surface (NL5401) for a
YBCO-type model (d50.05) and~b! normalized local density of
states at the topmost site of the surface ford50.10 and four choices
of the Fermi surface.
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4~b! for a doping rated50.10 and four choices of Ferm
surface. Since the quasiparticles do not feel the sign cha
of the pair potential at the~100! surface,8,9 the zero-energy
peak~ZEP! does not appear.

B. Flat „110… surface „m51…

Next, we study the case of a flat~110! surface, them
51 case. Figure 5 shows the obtained pair potential for
three parameters fort-J model, LSCO type, and YBCO~II !
type with d50.20. For this~110! surface, we find that the
real part of the obtained pair potential always satisfies a
lation DR, j ,x(1)52DR, j ,y(1). Simultaneously, the imagi
nary part has a relationD I , j ,x(1)5D I , j ,y(1). Thus the
d-wave component of the pair potential is real and the
tendeds-wave component is pure imaginary. The latter
induced near the surface as shown in Fig. 5~b!. The quantity
DR, j ,x(1) is suppressed near the surface and increases m
tonically toward the middle of the lattice for thet-J and
LSCO-type models. These behaviors are consistent w
those obtained in the quasiclassical theory.48 However, the
atomic-scale spatial oscillation of theD I , j ,x(1) is completely
neglected in the quasiclassical approximation. On the o
hand,DR, j ,x(1) for the YBCO~II !-type model has a comple
spatial dependence ford50.20. Although the reason for thi
complex behavior is not clear, there is an apparent tende
that the suppression of thed-wave component in the vicinity
of the ~110! surface is the largest for thet-J model and the
smallest for the YBCO~II ! model. The LSCO-type model i
intermediate between the former and latter cases. Co
spondingly, the amplitude of the induced extendeds-wave
component is the largest for the YBCO~II ! model and the
smallest for thet-J model near the surface, as is observed

FIG. 5. Spatial dependence of the pair potential~a!
DR, j ,x(y)(1) and~b! D I , j ,x(y)(1) on the~110! surface (NL5401) for
a doping rated50.20.
ge

e

e-

-

no-

th

er

cy

e-

n

Fig. 5~b!. However, thes-wave component extends into th
middle of the lattice for thet-J model, because the suppre
sion of thed-wave component also does. These results m
that the difference of shape of the Fermi surface leads
quite different features of the spatial dependence of the
potentials.

We focus on the magnitude of the induceds-wave com-
ponent. For a typical value of the induceds-wave compo-
nent, we useD I , j ,x(1) at the second site (j 51) from the
surface. Its doping dependence is shown in Fig. 6 for the f
cases we studied. The magnitude of the induceds-wave com-
ponent depends on the shape of the Fermi surface, but
enhanced for all the cases as the hole concentration
creases. Thes-wave component for YBCO~II ! is large, but if
we use the Fermi surface, YBCO, the induceds-wave com-
ponent is half compared with that in YBCO~II !. This is the
main difference between YBCO and YBCO~II !. We will

FIG. 6. The doping dependence of the induceds-wave compo-
nent relative to the bulkd-wave component at the~110! surface site.

FIG. 7. ~a! Schematic illustration of a flat~110! surface and the
site dependence of the normalized local density of states with~b!
LSCO- and~c! YBCO-type parameters ford50.15. The sitesA, B,
andC are indicated in~a!.
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return to this point shortly. Figures 7~b! and 7~c! show the
calculated LDOS for various sites in LSCO- and YBCO-ty
models, respectively. Apparently, there is a ZBCP and als
has a splitting. In a specularly reflecting~110! surface, a ZES
is created because the injected and reflected quasipartic
the surface feel the sign change of thedx22y2-wave pair po-
tential. If the pure imaginarys-wave component is induce
near the surface, it blocks the motion of quasiparticles n
the ~110! surface and as a result the bound-state level sh
from zero. This leads to the splitting of the ZBCP. Since
amplitude of the induceds-wave component is similar fo
LSCO and YBCO~Fig. 6!, the splitting of the ZBCP is also
of the same order for both cases.

The splitting is also obtained in the quasiclassi
approximation.11,26 A remarkable difference between th
present results and those based on the quasiclassical the
seen in the oscillatory behaviors of the LDOS.10 The ZEP is
the largest at siteA, but it is relatively small at siteB. Then
at siteC, the ZEP is again enhanced. This oscillation can
regarded as the Friedel oscillation, the period of which is
inverse of the Fermi momentum.

The doping dependence of the LDOS at siteA is shown in
Fig. 8 for the four cases we studied. Comparing with
amplitude of thes-wave component shown in Fig. 6, we ca
easily see that the splitting for each case is roughly prop
tional to the s-wave amplitude. Again, the doping depe
dences for LSCO and YBCO types are quite similar beca
thes-wave component is similar for both cases. For all cas
the splitting is small for the low doping rated50.05, so that
the LDOS have a ZEP. On the other hand, for the high d
ing rate, the splitting becomes larger. This is because
bulk d-wave pair potential is reduced in magnitude with t
increase ofd, while the induceds-wave component is insen
sitive to the change ofd.

FIG. 8. The doping dependence of the normalized local den
of states at the topmost site of a flat~110! surface for four types of
parameters for several doping rates.
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Here let us remark on the big difference between YBC
and YBCO ~II !-type models. Although the shapes of th
Fermi surface resemble each other, the LDOS near the
face has an obvious difference. This is because the ma
tude of thes-wave component has a big difference as sho
in Fig. 6. Recently, experimental observations of the pe
splitting have been reported in the tunneling spectroscop
high-Tc superconductors.20,27 Experimentally, the explicit
splitting of the ZEP like that of the YBCO~II !-type model is
not reported.20,27 Therefore, we suggest that the YBCO-typ
model is much more plausible than that of the YBCO~II !
type.

C. 132 zigzag surface„m52…

In this subsection, we discuss the case of a 132 zigzag
surface shown in Fig. 9~a!. The obtained pair potential is
shown in Fig. 9~b!, which has a complex spatial dependen
as compared to those of~100! and ~110! surfaces. The rea
part of the pair potentialDR, j ,x(y)(2) has an oscillation nea
the surface, which cannot be interpreted as a simpled-wave
component. Since the rotational symmetry is broken,
symmetry other thand wave is mixed. We studied the idea
t-J model in the previous paper.36 For that model, the imagi-
nary partD I , j ,x(y)(2) is not induced for a 132 zigzag sur-
face. However, by adding the next-or third-neighbor trans

ty

FIG. 9. ~a! Schematic illustration of a 132 zigzag surface,~b!
spatial dependence of the pair potentialDR, j ,x(y)(2) and
D I , j ,x(y)(2) on the zigzag surface (NL5401), and~c! the site de-
pendence of the normalized local density of states with YBCO-t
(d50.15) parameters. The sitesD, E, andF are indicated in~a!.
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to the t-J model, the quantityD I , j ,x(y)(2) is induced as
shown in Fig. 9~b!. Furthermore, we find that the magnitud
of D I , j ,x(y)(2) is enhanced with the increase of the dopi
concentration.

The complex spatial dependences of the pair potentia
flect on the LDOS as an anomalous structure with many d
and peaks as shown in Fig. 9~c!. Apart from these anomalou
structures, the LDOS has the ZEP at every site near the
face. This is in contrast with our previous results36 for the
ideal t-J model, where the ZES’s are not formed near h
filling. The reason we considered is as follows. The wa
function of the ZES spatially oscillates with the period of t
inverse of the Fermi momentum~Friedel oscillation!. In the
low-doping region, since the Fermi surface is nearly squ
the period of the oscillation of the wave function is rough
coincident with 2a. Consequently, the node and antino
appear alternatively. However, for the 132 zigzag structure,
the phases of the node and antinode do not coincide. Th
the origin of the disappearance of the ZEP for thet-J model.
This disappearance can be regarded as an interference
of the standing wave, which cannot be explained by me
of the quasiclassical theory. Compared to this idealt-J
model, because of thet8 and t9 hopping integral, LSCO-,
YBCO-, and YBCO~II !-type models do not have these i
terference effects.

In Fig. 10, we show the LDOS for the YBCO~II ! case for
the 132 zigzag surface at the siteD. In addition to the ZEP,
the splitting of the ZEP is found ford50.20. Since the mag
nitude of the imaginary part~s-wave component! for the
YBCO ~II !-type model is larger than the other cases, splitt
can be seen for a larger doping rate when the relative am
tude ofD I , j ,x(y)(2) becomes larger.

Finally, with the increase ofm, e.g., m53,4, . . . , the
magnitude of the ZEP in the LDOS is reduced as compa
to that of the~110! surface, since the system approaches
~100! surface.

D. „100… surface with step structures

In the previous subsection, Sec. III A, we have shown
absence of the ZES in the LDOS for the~100! surface. Since

FIG. 10. The doping dependence of the normalized local den
of states at the topmost site of a 132 zigzag surface for YBCO
~II !-type parameter.
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the appearance of the zero-bias conductance peak in the
neling spectroscopy is due to the existence of the ZES,
cannot expect the ZBCP for a flat~100! surface. However, in
actual experiments, the ZBCP is reported for the~100!
surface.24 One of the possibilities for this inconsistency is th
atomic-scale roughness of the surface which inevitably ex
in actual samples.24 To clarify this point, we calculate the
LDOS for a ~100! surface with defects as shown in Fig. 1
For this geometry, we choose aNL3NL unit cell with an
open boundary condition in thex direction and Bloch’s
boundary condition in they direction as in Eq.~8!, with NL
539 andNy510. At the position of the step,t ij , j ij , and
D ij , are set to be zero. We choose a higher tempera
T/t58.031023 than that used in the above subsectio
since the numerical diagonalization takes a longer time
this case. However, this choice of temperatureT does not
alter the results.

We find that the imaginary part of the pair potential is n
induced for four types of parameters. The absence of
imaginary part of the pair potential is similar to that in th
case around a single impurity.35 The LDOS in thet-J and
LSCO-type models is shown in Figs. 11~b! and 11~c!, re-
spectively. Since the imaginary part is not induced, there
no splitting of the ZEP. The ZEP shows up at corner siteP
and R near the 132 step structure, and these features
consistent with those of previous results based on the
tended Hubbard model.25 The origin of the ZEP is due to the
sign change of the pair potentials felt by quasiparticles at
corner sites. The line shapes of the LDOS are different fr
those near the~110! surface~see Figs. 7 and 8! and are rather
similar to those around the single impurity.35

IV. SUMMARY

In this paper, we investigated the local density of sta
near the surface based on the extendedt-J model within the
Gutzwiller approximation, where several material paramet

ty

FIG. 11. ~a! Schematic illustration of a~100! surface with
132 step structure and the site dependence of the normalized
density of states with the~b! t-J model and~c! LSCO-type param-
eters ford50.05. The sitesP, Q, andR are indicated in~a!.
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are chosen to reproduce the actual Fermi surface of highTc
superconductors. In the present calculation, the nonlocal
ture of the pair potential and the atomic-scale geometry
the surface are explicitly taken into account. Various featu
of the LDOS are obtained depending on the shape of
Fermi surface and the geometries of the surfaces. Our m
results in this paper are summarized as follows.

~i! The LDOS has no ZEP near the flat~100! surface.
~ii ! Near the~110! surface, the LDOS has a ZEP and

splitting depending on the magnitude of the induceds-wave
component. As the doping increases, the splitting beco
larger for any case. The present result serves as the m
scopic basis for spontaneous time-reversal symmetry br
ing where thes-wave component of the pair potential is in
duced as the imaginary part near the surface. The ampli
of the induceds-wave component near the surface is t
largest for YBCO~II ! and the smallest for thet-J model.
Those for LSCO and YBCO are in between and almost h
of that for YBCO ~II !. Comparing to the recent tunnelin
experiments of YBCO, the material parameters used in
YBCO-type model are much more reasonable than thos
the YBCO ~II !-type model.
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~iii ! For the 132 zigzag surface, our results are differe
from those of the idealt-J model where the ZEP is absen
The appearance of the ZEP depends on the doping con
tration.

~iv! For the~100! surface with defects, there is the case
the formation of the ZES. This is due to the sign change
the pair potential felt by the quasiparticle due to the atom
scale roughness.

Recently, since the experimental situation is grea
improved,24 we can reveal the microscopic parameters
high-Tc superconductors through a detailed comparison
the present results with experimental data by STS.

ACKNOWLEDGMENTS

This work was supported by the Core Research for E
lutional Science and Technology~CREST! of the Japan Sci-
ence and Technology Corporation~JST!. The computational
aspect of this work has been performed at the facilities of
Supercomputer Center, Institute for Solid State Physics, U
versity of Tokyo and the Computer Center, Institute for M
lecular Science, Okazaki National Research Institute.
oc.

s.

gi,

ys.

L.
s.

ett.

tt.

ys.

ys.

ys.

Sci.
1D. J. Scalapino, Phys. Rep.250, 329 ~1995!.
2M. Sigrist and T. M. Rice, J. Phys. Soc. Jpn.61, 4283 ~1992!;

Rev. Mod. Phys.67, 503 ~1995!.
3D. A. Wollman, D. J. Van Harlingen, W. C. Lee, D. M. Ginsber

and A. J. Leggett, Phys. Rev. Lett.71, 2134 ~1993!; D. J. Van
Harlingen, Rev. Mod. Phys.67, 515 ~1995!.

4I. Iguchi and Z. Wen, Phys. Rev. B49, 12 388~1994!.
5C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-jahnes, A. Gup

T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett.73, 593
~1994!.

6Y. Tanaka, Phys. Rev. Lett.72, 3871~1994!.
7A. Mathai, Y. Gim, R. C. Black, A. Amar, and F. C. Wellstood

Phys. Rev. Lett.74, 4523~1995!.
8C. R. Hu, Phys. Rev. Lett.72, 1526~1994!.
9Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett.74, 3451 ~1995!;

Phys. Rev. B53, 9371~1996!.
10M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn.64, 1703~1995!.
11M. Fogelström, D. Rainer, and J. A. Sauls, Phys. Rev. Lett.79,

281 ~1997!.
12Yu. S. Barash, A. A. Svidzinsky, and H. Burkhardt, Phys. Rev

55, 15 282~1997!.
13J. Geerk, X. X. Xi, and G. Linker, Z. Phys. B73, 329 ~1988!.
14I. Iguchi, Physica C185-196, 241 ~1991!.
15T. Walsh, Int. J. Mod. Phys. A6, 125 ~1992!.
16S. Kashiwaya, M. Koyanagi, M. Matsuda, and K. Kajimur

Physica B194-196, 2119~1994!.
17S. Kashiwaya, Y. Tanaka, M. Koyanagi, H. Takashima, and

Kajimura, Phys. Rev. B51, 1350~1995!.
18S. Kashiwaya, Y. Tanaka, M. Koyanagi, and K. Kajimura, Ph

Rev. B53, 2667~1996!.
19L. Alff, H. Takashima, S. Kashiwaya, N. Terada, H. Ihara,

Tanaka, M. Koyanagi, and K. Kajimura, Phys. Rev. B55,
14 757~1997!.

20M. Covington, M. Aprili, L. H. Greene, F. Xu, and C. A. Mirkin
Phys. Rev. Lett.79, 277 ~1997!.
.

.

21S. Sinha and K.-W. Ng, Phys. Rev. Lett.80, 1296~1998!.
22M. Taira, M. Suzuki, X.-G. Zheng, and T. Hoshino, J. Phys. S

Jpn.67, 1732~1998!.
23J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasik, Phy

Rev. Lett.81, 2542~1998!.
24S. Ueno, S. Kashiwaya, N. Terada, K. Kajimura, M. Koyana

and Y. Tanaka, J. Phys. Chem. Solids59, 2081~1998!.
25Y. Tanuma, Y. Tanaka, M. Yamashiro, and S. Kashiwaya, Ph

Rev. B57, 7997~1998!.
26M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn.65, 3384~1995!;

65, 4867~1995!.
27S. Kashiwaya, Y. Tanaka, N. Terada, M. Koyanagi, S. Ueno,

Alff, H. Takashima, Y. Tanuma, and K. Kajimura, J. Phy
Chem. Solids59, 2034~1998!.

28F. C. Zhang and T. M. Rice, Phys. Rev. B37, 3759~1988!.
29M. Ogata, M. Luchini, S. Sorella, and F. Assad, Phys. Rev. L

66, 2388~1991!.
30W. O. Putikka, M. U. Luchini, and T. M. Rice, Phys. Rev. Le

68, 538 ~1992!.
31E. Dagotto and J. Riera, Phys. Rev. Lett.70, 682 ~1993!.
32E. Daggoto, Rev. Mod. Phys.66, 763 ~1994!.
33H. Yokoyama and M. Ogata, J. Phys. Soc. Jpn.65, 3615~1996!.
34A. Himeda, M. Ogata, Y. Tanaka, and S. Kashiwaya, J. Ph

Soc. Jpn.66, 3367~1997!.
35H. Tsuchiura, Y. Tanaka, M. Ogata, and S. Kashiwaya, J. Ph

Soc. Jpn.67, 2510~1999!.
36Y. Tanuma, Y. Tanaka, M. Ogata, and S. Kashiwaya, J. Ph

Soc. Jpn.67, 1118~1998!.
37K. Kuboki and M. Sigrist, J. Phys. Soc. Jpn.67, 2873~1998!.
38C. Honerkamp and M. Sigrist, Physica C317–318, 489 ~1999!.
39Jian-Xin Zhu, B. Friedman, and C. S. Ting, Phys. Rev. B59,

3353 ~1999!.
40F. C. Zhang, C. Gross, T. M. Rice, and H. Shiba, Supercond.

Technol.1, 36 ~1988!.



.

.

.

. B

9826 PRB 60Y. TANUMA, Y. TANAKA, M. OGATA, AND S. KASHIWAYA
41T. Tanamoto, H. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn61,
1886 ~1992!.

42T. Tanamoto, H. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn62,
717 ~1993!.

43T. Tanamoto, H. Kohno, and H. Fukuyama, J. Phys. Soc. Jpn62,
1455 ~1993!.

44M. Ogata, J. Phys. Soc. Jpn.66, 3375~1997!.
45M. Tachiki, S. Takahashi, F. Steglich, and H. Adrian, Z. Phys
80, 161 ~1990!.

46O. Sato, Y. Tanaka, and A. Hasegawa, J. Phys. Soc. Jpn.61, 2640
~1992!.

47M. Tinkham, Introduction to Superconductivity~McGraw-Hill,
New York, 1975!.

48Y. Nagato and K. Nagai, Phys. Rev. B51, 16 254~1995!.


