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Flux noise resulting from vortex avalanches using a simple kinetic model

G. Mohler and D. Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 15 April 1999!

We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-II
superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of
frequencies, we find that the flux noiseSF(v) has a power-law dependence on frequency,SF(v);v2s, with
s;1.4 in reasonable agreement with experiment. In addition, for small lattices, the calculatedSF(v) has a
high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations
between calculation and experiment are attributed mostly to uncertainties in the measured critical current
densities and pinning strengths of the experimental samples.@S0163-1829~99!07037-X#
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I. INTRODUCTION

Bassler and Paczuski1 have recently proposed a mod
which simulates the development of the Bean critical stat
a type-II superconductor, as well as of other types of
called self-organized critical behavior.2 In such a system
vortices are injected into one edge of an initially emp
sample, and are free to fall off the opposite edge only.
vortices are driven into the system from the ‘‘loading edge
they push already-present vortices further into the sam
These existing vortices then pile up in such a way that
vortex density gradient approaches a critical value which
determined by system parameters such as pinning stre
and density. Once the gradient reaches this critical value
system is said to have achieved a ‘‘self-organized criti
state.’’

Of particular interest in this context, is the development
‘‘avalanches’’ from the Bean critical state. When the flu
density gradient exceeds its critical value, the injection
even a single excess vortex into the system can start a c
reaction of vortex motion, known as an avalanche, wh
may have a very large scale in both space and time
which causes the gradient to relax back to its critical val
Vortex avalanches are typically characterized by their du
tion, their linear extent in the direction of average vort
motion, and the number of vortices forced from their origin
positions~‘‘topplings’’ ! by the avalanche. These and oth
avalanche characteristics are expected to obey various
ing laws.3

In earlier numerical models, the generation of vortex a
lanches was typically studied numerically at a ‘‘micr
scopic’’ scale, i.e., at a length scale where individual vor
displacements were calculated from certain postulated fo
laws.4 In practice, this type of model imposes severe co
straints on the size of system which can be studied num
cally; such constraints in turn make it difficult to study th
critical behavior of vortex avalanches. But since an a
lanching system is expected eventually to achieve a s
organized critical state, the large-scale behavior of the s
tem should be describable without tracking the motion
individual vortices. The BP model takes advantage of t
expectation by focusing attention only on the large-len
scale behavior of this system, which can be modeled us
PRB 600163-1829/99/60~13!/9738~6!/$15.00
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only a coarse-grained lattice. This choice makes feasible
simulation of large systems.

II. THE BASSLER-PACZUSKI MODEL: DEFINITION
AND METHOD OF CALCULATION

In the Bassler-Paczuski~BP! model, one considers a dis
tribution of vortices on a two-dimensional simple hexagon
lattice ~see Fig. 1!. The scale of the lattice is assumed to
such that the vortices can be treated as pointlike obje
which exist entirely on the lattice sites. Each lattice site
capable of containing multiple vortices, and the number
vortices per lattice site is a kind of coarse-grained vor
density.5 Each lattice site is also described by a pinning p
tential, which is chosen at random from a suitable distrib
tion. Periodic boundary conditions are imposed at the
and bottom of the lattice. Vortices are injected into the le
hand edge, and removed from the right-hand edge, as
scribed in more detail below. As more and more vortices
injected into the lattice, the repulsion between vortices ev
tually overcomes the attraction exerted on the vortices by
pinning sites. As a result, the vortices slowly migrate fro

FIG. 1. Hexagonal lattice, with a rectangular overlay displayi
the unit cells used in the calculations. Our ‘‘unit cell’’ is a rectang
enclosing four lattice points as shown.
9738 ©1999 The American Physical Society
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PRB 60 9739FLUX NOISE RESULTING FROM VORTEX AVALANCHES . . .
left to right across the lattice. When they reach the right-ha
edge, in this model, they are assumed to ‘‘fall off’’ the latti
and are removed from the system. Vortices are forbidde
exit from the left side of the system, or to re-enter the latt
from the right-hand side once they fall off.

An important parameter in the BP model is the rate
vortex injection. In the ‘‘slow-driving limit,’’1 a vortex is
injected into the lattice only after an avalanche has cea
This slow-driving limit is similar to that studied in mode
which treat the microscopic~i.e., the individual vortex! de-
grees of freedom together with explicit force equations
each vortex. For example, Noriet al.,4 who have studied
such a model, introduce a new vortex into the lattice o
when the lattice-averaged vortex velocity has fallen below
certain threshold. In the present paper, we inject vorti
either slowly or quickly, so that we may make predictions
either a hypothetical slow-driving regime or the high ma
netic field ramping rates studied in most experiments.6

In the BP model, the force acting on a vortex at sitex in
the direction of sitey is taken to be

Fx→y52V~x!1V~y!1@m~x!2m~y!21#

1r @m~x1!1m~x2!2m~y1!2m~y2!#. ~1!

Here x1 andx2 are the two sites~other than sitey) which
neighborx on the hexagonal lattice,y1 andy2 are the two
sites other thanx which are nearest neighbors toy,V(z) is
the strength of the pinning potential on sitez, andm(z) is the
vortex population at sitez ~taken to be a positive integer!. r is
the strength of the repulsion between vortices on neighbo
sites, in units such that the on-site repulsion strength is n
malized to 1.

The BP model is defined by three parameters, deno
r , p, and q. r is the nearest-neighbor repulsion parame
mentioned above, which is assumed to be smaller than u
p is the pinning strength, andq is the probability that a par
ticular site contains a nonzero pinning potential. Thus, a
particular site has a pinning strength ofp or 0 with probabil-
ity q and 12q, respectively. The distribution of pinning site
is determined at random once for the entire lattice, at the s
of the simulation, and is held constant thereafter.

A vortex move is carried out as follows. First, the for
on a vortex is calculated for each of the three possible di
tions of vortex motion. If exactly one of the three forces
greater than zero~i.e., acts towards a nearest neighbor sit!,
then one vortex is moved by one lattice spacing in the dir
tion of that force. If more than one force is greater than ze
the direction of motion is chosen randomly from the set
positive forces. This calculation is carried out for each s
containing at least one vortex, and all the vortex populati
are updated in parallel — that is, each site is examined o
in a given time step, and at most one vortex is moved from
particular site during a time step.

To carry out the calculations, we constructed a sim
hexagonal lattice using the unit cell shown in Fig. 1, w
cell length ax and cell heightay5A3ax . The total lattice
size was chosen so as to have dimensionsLxax3Lyay , as
shown in the figure, withLx54Ly , andLy integer. For this
choice of dimensions, and forLx.32, the rectangular sampl
was found to be wide enough to prevent individual avalan
events from overlapping one another in space. For a gi
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lattice size, we carried out simulations of avalanche form
tion and evolution for a range of pinning strengths and v
tex injection rates.

III. RESULTS

A. Numerical results obtained from BP model

All of the runs were carried out using 220;106 time steps.
For most choices of parameters and vortex injection rate
was found that the vortex population quickly reached
steady state of the form predicted by the Bean model.7,8 That
is, the magnetic induction gradientdB/dx from left to right
~i.e., in the direction of vortex injection! rapidly approached
a constant value~see Table I!. According to the Bean
model,9 this constant value is related to the critical curre
densityJc of the superconductor~see below!.

Our goal in this work is to calculate the flux noise pr
duced by vortices falling off the right edge of the samp
This goal is similar to that of Jensen, who has also use
coarse-grained model to study the power spectrum of a s
organized critical state.10 Jensen’s model, however, differ
from the BP model in several respects. For example,
Jensen model forbids occupancy of a site by more than
vortex, and it also allows vortices to fall off both the righ
and left edges of the system. Thus, we expect the two mo
to give different predictions for noise spectra.

To calculate the flux noise in the present model, we u
the following approach. In experiment, the flux noise is me
sured by placing a detector coil in the center of a hollo
sample ring,6 as shown in Fig. 2. According to Faraday
law, the voltage generated in the coil is proportional to t
rate of change of vortex population within the coil area.
display this, we plot in the figures the Fourier transform

SF~ f !5LimT→`U E
0

T

N8~ t !exp~2 i2p f t !dtU2

, ~2!

whereN8(t) represents the rate of change of vortex popu
tion in the region to the right of the sample at timet. ~Our
transverse periodic boundary conditions correspond to a
geometry.! In our calculations,N8(t) is taken as the numbe
of vortices which fall off the right-hand edge of the samp
in a single time step at timet. We evaluate the Fourier trans

TABLE I. Calculated lattice constanta and magnetization den
sity m(0) for several lattice sizes and two choices of model para
eters.

L m(0)(F0) a(1025 cm) slopea

128b 7500 3.22 1.83
64b 1900 3.24 1.86
64c 2300 ~3.45! 2.25
32b 510 3.37 1.99

aThe slope is calculated from the columnar vortex density ver
distance into the sample, in terms of unit cells; i.e.,@m(Lx)/Ly

2m(0)/Ly#/(Lx20).
bParameters~r, p, q! 5 ~0.1, 5.0, 0.1! as defined in text.
cParameters~0.1, 12.0, 0.1!. The lattice constant forb was calcu-
lated using the same critical current as fora. In actuality, the larger
pinning strength would call for a larger critical current.
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9740 PRB 60G. MOHLER AND D. STROUD
form using the integral given above, then smooth the res
ing power spectrum using a Savitzky-Golay filter as d
scribed in Ref. 11. We used first order smoothing o
twenty points on either side of the data point.

Our results are shown in Figs. 3 and 4. In general, for
the spectra shown, the power spectrum exhibits a power
dependence on frequency, over a portion of the freque
range, i.e.,SF( f ); f 2s, resembling that seen in the expe
mental results of Fieldet al.6 In Fig. 3, s;1.0 for spectra
a, b, andc. s;1.4 for d. In general,s is found to increase
from 1.0 to 1.4 when the injection rate is reduced below o
vortex per time step across the entire left-hand edge. H
ever s never achieves the experimentally observed value
;1.5, as seen, for example, in the results of Ref. 6.

FIG. 2. Schematic of experimental arrangement for noise m
surements, as viewed from above. The arrows denote the ave
direction of vortex motion, under the influence of an increas
external magnetic field applied to the outside of the torus. The
is used to measure the flux noise.

FIG. 3. Calculated voltage noise spectra due to flux motion i
the interior of the torus, for several choices of parameters and
marily for larger lattices.r andq are 0.1 for all spectra. The legen
indicates the pinning strengthp and the lattice width~in units of
ax .) The injection rate is one vortex injected per time step~fast
injection! for spectraa, b, andc, and one vortex injected per 10
time steps~slow injection! for spectrumd. The numerical data were
collected for a run of 220 time steps, using a Savitzky-Gola
smoothing filter of order 1, using 40 points. The translation into r
frequency is made assuming the estimates of time constant
lattice constant as described in the text.
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For the relatively small latticesL<32, we often see a
characteristic feature in the power spectrum which is miss
at larger sizes. Namely, for an injection rate of one vor
per time step, where the vortex can enter anywhere along
left-hand edge, the power spectrum exhibits a plateau;
Fig. 4~a!. This plateau disappears as the injection rate is
creased. For example, at an injection rate of 1 vortex per
time steps@see Fig. 4~b!#, no plateau is apparent. The plate
is due to the emergence of a new length scale in the lat
for small lattices and large injection rates, namely, the sm
est linear dimension of the lattice itself. Under such con
tions, the lattice size limits the avalanche dimensions. T
new length scale in turn produces the high-frequen
‘‘knee’’ in the noise spectrum. Specifically, at these freque
cies, lattice-wide avalanches dominate, drowning out
high-frequency noise produced by sporadic independent
lanches. As in the other power spectra generated by
model, the calculated slopeb[2d ln@Sv(v)#/d ln(v) for
frequenciesv above the knee of Fig. 4 is smaller than th
experimental valuebexp; our calculated value in this regim
is b;21 compared to the experimental value ofbexp;22.6

A vortex injection rate greater than 1/1~i.e., greater than
one vortex per lattice site per time step! was also attempted
so that multiple vortices were randomly injected into t
lattice simultaneously. The goal of this test was to check
‘‘knee’’ could be created at larger length scales at su
ciently high injection rates. But this test resulted in a pow
spectrum with nearly white noise, i.e.,b;0. It is possible
that, with the rather limited lattice size ofL532, the size of
avalanches is inevitably restricted purely by size limitatio
whereas in the larger lattices, the vortices exhibit a differ
avalanche pattern, unconstrained by lattice size.

B. Connection to experiment

In order to compare our model results with the expe
ments of Fieldet al., we need to estimate the lattice consta
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FIG. 4. Additional calculated vortex noise spectra, primarily f
smaller lattices. These results show a possible ‘‘knee’’ in curvea.
This curve represents an injection rate of one vortex per time s
which would correspond to experimental data taken at a high rat
vortex injection. This curve should be contrasted to curvesb andc,
which are taken at lower rates of magnetic field ramping~1 vortex
per 100 times steps! and show no such knee.
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and time step of the simulation. To obtain the lattice co
stant, we look at a cross-section of the lattice, as seen in
5. Then integrating Ampere’s law

¹3B5
4p

c
J ~3!

along the path in Fig. 5, and assuming a constant cur
density equal to the critical current density,J5Jc ~as ex-
pected in the Bean critical state!, we find

Bz~x!5Bz~0!2S 4p

c
JcD x. ~4!

If we multiply this expression by the area of a narrow ver
cal strip of the lattice, (L/4)ayax , we obtain the flux through
the vertical strip centered atx and of widthax as

F~x!5F~0!2S pJcL

c
ayaxD x. ~5!

To proceed further, we writex5nxax , whereax is the dis-
tance between two opposite sides of the hexagonal cell~see
Fig. 1!, and we denote bym(x) the total flux through a
column parallel toy, of width ax , and centered atnxax .
Then it follows from Eq. 5 that

m~nx!5m~0!2S pJcL

F0c
ax

2ayDnx . ~6!

Finally, if the cells are equilateral hexagons of side a, th
ax5aA3 anday53a, and hence

m~nx!5m~0!2S 9pJcLa3

F0c Dnx . ~7!

We can use this equation to interpret our numerical res
for the vortex densities and flux noise spectrum. We a
need an estimate ofJc , the critical current density for the
sample studied experimentally. In this case, the sample is
composite material Nb0.47Ti0.53 ~typically in the form of a

FIG. 5. Cross section of the vortex population in the sam
~schematically indicated by the length of the vertical arrows! after
the vortex density has relaxed to the steady-state vortex pro
showing the linear decrease in magnetic induction with dista
into the sample, as predicted by the Bean model. The path of
line integral used to integrate Ampere’s law is shown in boldfa
-
ig.
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solid solution with precipitates which constitute the pinni
centers!. Experiments suggest a value in the range of
31015 statamperes/cm2,12 from which we can estimatea
from

a5S m~0!F0c

9pL2Jc
D 1/3

. ~8!

Some representative values ofa, as calculated from our
simulations, are shown in Table I.

Once a is determined, the simulation time constant,t0,
can be estimated by equating the Lorentz force per u
length on a vortex to the pinning force per unit length, i.e

f pin5 f L. ~9!

We assume thatf pin can be interpreted as a vortex drag for
proportional to the average vortex velocityv, i.e., f pin5hv,
whereh is an effective friction coefficient. Then writing ou
the Lorentz force on a unit length of a single vortex expl
itly gives

hv5
JF0

c
. ~10!

Now a vortex can move only one lattice constant per ti
step, so thatv;a/t0. Furthermore,h5BF0 /rc2, whereB
is the local magnetic induction,r is the flux flow resistivity,
andc is the speed of light. Combining these relations giv

t05
Ba

rcJc
. ~11!

If we assume a magnetic induction of 5 kG, a lattice const
of 3.2231025 cm as suggested by the estimates in Table
a critical current of 331015 statamps/cm2 as is typical for the
experiments of Fieldet al, and a flux flow resistivity of
1.11310223 sec, as suggested by experiments on Nb
alloys,11 then one obtains a time constantt0;231024 s.

It is of some interest to compare the value ofa calculated
here with some other characteristic lengths in the superc
ductor. For a field of around 5 kG, the intervortex spacingav

of the undistorted lattice is (4
3 )1/4AF0 /B56.8031026 cm.

Thus, each lattice point in the kinetic model would corr
spond to 25 or more vortices, as is appropriate for t
coarse-graining approach. Another characteristic length
the penetration depthl, a measure of the range of intervorte
interaction; for Nb0.47Ti0.53, the zero-temperaturel is
;1.8331025 cm.11 This is somewhat smaller than the la
tice constant of the simulation grid, 3.2231025 cm. Finally,
a third length of interest is the so-called Larkin lengthRc ,9,13

which is the length beyond which the vortex crystalline ord
is disrupted by pinning. In the two-dimensional collectiv
pinning model,13,14 Rc can be written as

Rc5AHc1av
2c

16pJcj
, ~12!

whereHc1 is estimated to be 200 G at zero temperature a
the zero temperature coherence lengthj is estimated at
3.1631027 cm.11 This yields a Larkin length of 7.63
31025 cm. Taken together, these estimates suggest tha
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9742 PRB 60G. MOHLER AND D. STROUD
present kinetic approach may be adequate for the sys
studied experimentally by Fieldet al, since the simulation
lattice does have a lattice constant substantially larger t
that of the undistorted vortex lattice, while the Larkin leng
is on the same scale as the simulation lattice constant.

IV. DISCUSSION

If the value oft0 found in the previous section is subs
tuted into our calculated frequency spectrum, we find that
spectrum has a power-law frequency dependence ov
slightly different frequency range than that in which powe
law behavior is seen by Fieldet al in Nb0.47Ti0.53 ~cf. Figs. 3
and 4!. Furthermore, the strength of the model flux no
power is smaller than the experimental values by a fac
ranging from two ~at high frequencies, for high injectio
rate! to five ~at low frequencies, for low injection rate! orders
of magnitude.

These differences between our calculated power spec
and the measured spectrum are not surprising. The mod
a only a rough approximation to a real material, since it u
an artificial kinetics rather than a more realistic~and more
computer intensive! dynamics for the calculation. Furthe
more, because of the finite size of the simulation samp
they produce significantly less flux noise than would be g
erated by a real material. Nevertheless, the model does
the qualitatively correct behavior: it leads to a power-la
exponent which seems to approach the observed value
sufficiently low vortex injection rate and a sufficiently larg
lattice.

The noise spectra deviate from power-law behavior at
frequencies. Specifically, they all show a weak peak at
frequencies, followed by a further decrease with diminish
frequency and finally an increase at still lower frequenci
We believe that this peak occurs near the frequency o
characteristic ‘‘lattice resonance.’’ Qualitatively, this fr
quency is the ratio of a characteristic length, i.e., the lin
dimension of the lattice, and a characteristic time, which
the time required for the lattice to ‘‘reload’’ to its Bean crit
cal state between avalanches. For a lattice of sizeLx564,
having pinning parameters (0.1,5.0,0.1) and an injection
of one vortex per time step, the resonant frequency occu
about 3 Hz~using our estimates for lattice constant and tim
step!. For the same parameters but slower injection rate~one
vortex per 100t0), the noise spectrum still shows a peak b
now at a lower resonance frequency of 0.3 Hz. For ot
values of the pinning parameters and injection rates,
resonance becomes less conspicuous. The resonant pea
becomes much less conspicuous in a larger lattice. In
case, the lattice simply contains more vortices. Since som
these may not join the primary avalanche, they tend to m
separately, reducing the apparent reload time and hence
ducing a stronger low-frequency noise signal. The same
m
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gument holds when the pinning strength is increased at c
stant lattice size. In this case, there are once again m
vortices in the system than at weaker pinning, and henc
stronger low-frequency flux noise signal. Finally, at high i
jection rates~e.g., in theLx532 lattice at an injection rate o
one vortex per time step!, the vortex system is in a state o
continual avalanche motion, since this rate is very large
such a small lattice. As a result, the power spectrum, wh
reflects that of the avalanches, is relatively flat as a funct
of frequency.

Finally, we comment briefly on the relation of our calc
lation to a similar study done by Nori and collaborators.15 In
contrast to our work, their calculations were carried out
ing dynamical equations for individual vortices~assuming
overdamped motion and a particular force law to descr
vortex-vortex interactions; the equations were solved us
molecular dynamics methods. Their calculations were c
ried out solely in the slow-driving limit; the resulting nois
spectra, similar to those presented here in the slow-driv
limit, exhibited a power law in agreement with experimen
carried out in that slow-driving regime. But our calculatio
do have the advantage of speed: a realistic MD model us
overdamped dynamics of individual vortices requires a
proximately 104 hours on a machine with parallel processin
By contrast, our power spectra were calculated using a sin
Digital Alphastation 255 for only 102 h. This speed allows
us to vary the parameters extensively, in particular exam
ing the effects of different driving rates, which in turn pe
mits investigation of the shoulders in the power spectra m
tioned above. Of course, the kinetic approach does have
compensating disadvantage of invoking a drastic simplifi
tion to the true equations of motion; but it still appears
preserve much of the relevant physics.

To summarize, we have shown that a relatively sim
kinetic model of vortex avalanches near the Bean criti
state1 gives rise to flux noise which qualitatively resembl
experiment, without using computer-intensive dynami
equations for individual vortices. Specifically, the model p
dicts a power law flux noise spectrum with approximate
the correct power-law exponents, as well as a length-sc
induced knee in the power spectrum for a sufficiently sm
lattice at high frequencies. Although the model calculatio
differ in detail from experimental results, they do show ma
qualitative similarities and trends in the context of rath
simple kinetic equations.
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