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Flux noise resulting from vortex avalanches using a simple kinetic model

G. Mohler and D. Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210
(Received 15 April 1999

We have carried out a model calculation of the flux noise produced by vortex avalanches in a type-Il
superconductor, using a simple kinetic model proposed by Bassler and Paczuski. Over a broad range of
frequencies, we find that the flux noiSg(w) has a power-law dependence on frequerSgy(w) ~ w5, with
s~ 1.4 in reasonable agreement with experiment. In addition, for small lattices, the calcBjdie) has a
high-frequency knee, which is seen in some experiments, and which is due to the finite lattice size. Deviations
between calculation and experiment are attributed mostly to uncertainties in the measured critical current
densities and pinning strengths of the experimental samj8€4.63-182809)07037-X

[. INTRODUCTION only a coarse-grained lattice. This choice makes feasible the
simulation of large systems.

Bassler and Paczuskhave recently proposed a model
which simulates the development of the Bean critical state in
a type-ll superconductor, as well as of other types of so-
called self-organized critical behavibrin such a system, In the Bassler-PaczuskBP) model, one considers a dis-
vortices are injected into one edge of an initially emptytribution of vortices on a two-dimensional simple hexagonal
sample, and are free to fall off the opposite edge only. Adattice (see Fig. 1 The scale of the lattice is assumed to be
vortices are driven into the system from the “loading edge,” such that the vortices can be treated as pointlike objects
they push already-present vortices further into the sample/_vhich exist entirely on the lattice sites. Each lattice site is
These existing vortices then pile up in such a way that th&apable of containing multiple vortices, and the number of
vortex density gradient approaches a critical value which igortices per lattice site is a kind of coarse-grained vortex
determined by system parameters such as pinning streng@ensity> Each lattice site is also described by a pinning po-
and density. Once the gradient reaches this critical value, th@ntial, which is chosen at random from a suitable distribu-
system is said to have achieved a “self-organized critication. Periodic boundary conditions are imposed at the top
state.” and bottom of the lattice. Vortices are injected into the left-

Of particular interest in this context, is the development ofhand edge, and removed from the right-hand edge, as de-
“avalanches” from the Bean critical state. When the flux Scribed in more detail below. As more and more vortices are
density gradient exceeds its critical value, the injection ofinjected into the lattice, the repulsion between vortices even-
even a single excess vortex into the system can start a chaifially overcomes the attraction exerted on the vortices by the
reaction of vortex motion, known as an avalanche, whichpinning sites. As a result, the vortices slowly migrate from
may have a very large scale in both space and time and a,
which causes the gradient to relax back to its critical value.  ~——

Vortex avalanches are typically characterized by their dura-
tion, their linear extent in the direction of average vortex a,
motion, and the number of vortices forced from their original
positions(“topplings™) by the avalanche. These and other
avalanche characteristics are expected to obey various sca
ing laws?

In earlier numerical models, the generation of vortex ava-
lanches was typically studied numerically at a “micro-
scopic” scale, i.e., at a length scale where individual vortex
displacements were calculated from certain postulated force
laws? In practice, this type of model imposes severe con-
straints on the size of system which can be studied numeri:
cally; such constraints in turn make it difficult to study the
critical behavior of vortex avalanches. But since an ava-
lanching system is expected eventually to achieve a self-
organized critical state, the large-scale behavior of the sys
tem should be describable without tracking the motion of
individual vortices. The BP model takes advantage of this FIG. 1. Hexagonal lattice, with a rectangular overlay displaying
expectation by focusing attention only on the large-lengththe unit cells used in the calculations. Our “unit cell” is a rectangle
scale behavior of this system, which can be modeled usingnclosing four lattice points as shown.

Il. THE BASSLER-PACZUSKI MODEL: DEFINITION
AND METHOD OF CALCULATION
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left to right across the lattice. When they reach the right-hand TABLE I. Calculated lattice constaret and magnetization den-

edge, in this model, they are assumed to “fall off” the lattice sity m(0) for several lattice sizes and two choices of model param-

and are removed from the system. Vortices are forbidden téters.

exit from the left side of the system, or to re-enter the lattice

from the right-hand side once they fall off. L m(0)(%o) a(10™° cm) slope®
An important parameter in the BP model is the rate of

vortex injection. In the “slow-driving limit,* a vortex is 1282 7500 3.22 1.83
injected into the lattice only after an avalanche has ceased. 64 1900 3.24 1.86
This slow-driving limit is similar to that studied in models 64° 2300 (3.49 2.25
which treat the microscopi6.e., the individual vortex de- 32 510 3.37 1.99

grees of freedom together with explicit force equations for
each vortex. For example, Nogt al,* who have studied
such a model, introduce a new vortex into the lattice only — m(0Y/L J/(L,—0)

. . yJ(L=0).
when the lattice-averaged vortex velocity has fallen below Q’Parametergr, b. G — (0.1, 5.0, 0.1 as defined in text

certain threshold. In the present paper, we inject vortices .
either slowly or quickly, so that we may make predictions for Parame_terzéo.l, 12.0, 0)‘ The lattice constant fop was calcu-
lated using the same critical current as &in actuality, the larger

either a hypothetical slow-driving regime or the high mag- ~ o
netic field ramping rates studied in most experim@nts. pinning strength would call for a larger critical current.

In the BP model, the force acting on a vortex at sit@
the direction of sitey is taken to be

#The slope is calculated from the columnar vortex density versus
distance into the sample, in terms of unit cells; ifen(L,)/L,

lattice size, we carried out simulations of avalanche forma-
tion and evolution for a range of pinning strengths and vor-

Fry=—V(X)+V(y)+[m(x)—m(y)—1] tex Injection rates.
+rim(x1)+m(x2)—m(yl)—m(y2)]. (1) lll. RESULTS
Herex1 andx2 are the two sitegother than sitey) which A. Numerical results obtained from BP model

neighborx on the hexagonal latticg;l andy2 are the two
sites other tharx which are nearest neighbors yoV(2z) is
the strength of the pinning potential on steandm(z) is the

vortex population at site (taken to be a positive integer is steady state of the form predicted by the Bean mé@dlhat
the strength of the repulsion between vortices on neighborin% the magnetic induction gradied8/dx from left to right
sites, in units such that the on-site repulsion strength is norG_’e” in the direction of vortex injectiorrapidly approached

malized to 1. ;
. . constant valugisee Table ). According to the Bean
The BP model is defined by three parameters, denote}, a9 his constant value is related to the critical current

r, p, andq. r is the nearest-neighbor repulsion parameterdensityJ of the superconductdisee below:

mentioned above, which is assumed to be smaller than unity, our g%al in this work is to calculate the flux noise pro-

pis the pinning strength, angiis the probability that a par- duced by vortices falling off the right edge of the sample.

ticular site contains a nonzero pinning potential. Thus, anYrhis goal is similar to that of Jensen, who has also used a

particular site has a pinning strengthpér 0 with probabil- coarse-grained model to study the pO\,/ver spectrum of a self-

ity g and 1-q, respectively. The distribution of pinning sites organized critical stat¥. Jensen’s model, however, differs

is deterr_nined_at randor_n once for the entire lattice, at the stagl 1, the BP model in several respects. For example, the

of the simulation, and is held constant thereafter. Jensen model forbids occupancy of a site by more than one
A vortex move is carried out as follows. First, the force ey and it also allows vortices to fall off both the right

on a vortex is calculated for each of the three possible dlrecénd left edges of the system. Thus, we expect the two models

tions of vortex motion. If exactly one of the three forces is, give different predictions for noise spectra.

greater than zerd.e., acts towards a nearest neighborsite T caiculate the flux noise in the present model, we used
then one vortex is moved by one lattice spacing in the dirécy,q ¢410wing approach. In experiment, the flux noise is mea-
tion of that force. If more than one force is greater than zerog o q by placing a detector coil in the center of a hollow
the direction of motion is chosen randomly from the set Ofsample ring, as shown in Fig. 2. According to Faraday’s
positive forces. This calculation is carried out for each site|awy the volfage generated in the coil is proportional to the
containing at least one vortex, and all the vortex populations . o change of vortex population within the coil area. To

are updated in parallel — that is, each site is examined onCgigy|ay this, we plot in the figures the Fourier transform
in a given time step, and at most one vortex is moved from a

particular site during a time step.

To carry out the calculations, we constructed a simple So(f)=Limr_..
hexagonal lattice using the unit cell shown in Fig. 1, with
cell lengtha, and cell heighta,= J3a,. The total lattice whereN’(t) represents the rate of change of vortex popula-
size was chosen so as to have dimensiogs X Lya,, as tion in the region to the right of the sample at tiragOur
shown in the figure, witi.,=4L, andL, integer. For this transverse periodic boundary conditions correspond to a ring
choice of dimensions, and fow,> 32, the rectangular sample geometry). In our calculationsN’(t) is taken as the number
was found to be wide enough to prevent individual avalanchef vortices which fall off the right-hand edge of the sample
events from overlapping one another in space. For a givein a single time step at time We evaluate the Fourier trans-

All of the runs were carried out using®- 10° time steps.
For most choices of parameters and vortex injection rates, it
was found that the vortex population quickly reached a

T 2
fN'(t)exp(—izwft)dt G
0
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Power Spectra, Smaller Lattices

r=0.1,p=5.0,q=0.1 for all spectra
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FIG. 2. Schematic of experimental arrangement for noise mea-
surements, as viewed from above. The arrows denote the average

logm(s@(f))’ S(p(f) (VZ/HZ )

direction of vortex motion, under the influence of an increasing W) M‘”’M«
external magnetic field applied to the outside of the torus. The coll | 55l ) ) ) ) s
is used to measure the flux noise. 2.0 0 20 3.0

0.0 10
log,,(), f(Hz)

form using the integral given above, then smooth the result- FIG. 4. Additional calculated vortex noise spectra, primarily for

ing power spectrum using a Savitzky-Golay filter as de-smaller lattices. These results show a possible “knee” in cave

scribed in Ref. 11. We used first order smoothing overThis curve represents an injection rate of one vortex per time step,

twenty points on either side of the data point. which would correspond to experimental data taken at a high rate of
Our results are shown in Figs. 3 and 4. In general, for a”vor.tex injection. This curve should be con.tra.sted to cutlvasdc,

the spectra shown, the power spectrum exhibits a power-la\X‘/h'Ch are taken at lower rates of magnetic field rampibgortex

dependence on frequency, over a portion of the frequenclie’ 100 times stepand show no such knee.

range, i.e.Se(f)~f°, resembling that seen in the experi- o the relatively small lattices <32, we often see a

. 6 . . N i N . . g i
mental results of Fielet al” In Fig. 3, s~1.0 for spectra  cparacteristic feature in the power spectrum which is missing
a, b, andc. s~1.4 ford. In generals is found to increase 4 |arger sizes. Namely, for an injection rate of one vortex
from 1.0 to 1.4 when the injection rate is reduced below ON&er time step, where the vortex can enter anywhere along the

vortex per time step across the entire left-hand edge. HOWgfhand edge, the power spectrum exhibits a plateau; see
evers never achieves the experimentally observed value of:ig. 4a). This plateau disappears as the injection rate is de-

~1.5, as seen, for example, in the results of Ref. 6. creased. For example, at an injection rate of 1 vortex per 100
time stepgsee Fig. 4b)], no plateau is apparent. The plateau
Power Spectra, Larger Lattices is due to the emergence of a new length scale in the lattice
r=0.1, g=0.1 for all spectra for small lattices and large injection rates, namely, the small-
180 N T T est linear dimension of the lattice itself. Under such condi-
tions, the lattice size limits the avalanche dimensions. This
new length scale in turn produces the high-frequency
“knee” in the noise spectrum. Specifically, at these frequen-
| cies, lattice-wide avalanches dominate, drowning out the
high-frequency noise produced by sporadic independent ava-
lanches. As in the other power spectra generated by the
model, the calculated slope=—dIn[S,(w)]/dIn(w) for
frequenciesw above the knee of Fig. 4 is smaller than the
experimental valud,,,; our calculated value in this regime

-1.32

-18.0 |
Fast Inj.

(11)

a: p=5.0, Lx=64

loglo(sq;(f)), S,b(f) (V2/HZ)

2}2:;%%2::; ' is b~—1 compared to the experimental valuetrgf<p~—2.6
d: p=5.0, Lx=64 e A vortex injection rate greater than 1(le., greater than
one vortex per lattice site per time sjepas also attempted,
220 n : : - A so that multiple vortices were randomly injected into the

1§gf0(f),f(H2')° lattice simultaneously. The goal of this test was to check if a

“knee” could be created at larger length scales at suffi-

FIG. 3. Calculated voltage noise spectra due to flux motion intociently high injection rates. But this test resulted in a power
the interior of the torus, for several choices of parameters and prispectrum with nearly white noise, i.d~0. It is possible
marily for larger latticesr andq are 0.1 for all spectra. The legend that, with the rather limited lattice size af=32, the size of

indicates the pinning strengh and the lattice width(in units of  ayajanches is inevitably restricted purely by size limitations,

ay.) The injection rate is one vortex injected per time st@&st \,hereas in the larger lattices, the vortices exhibit a different
injection) for spectraa, b, andc, and one vortex injected per 100 avalanche pattern, unconstrained by lattice size.
time stepdslow injection for spectrund. The numerical data were '

collected for a run of 2 time steps, using a Savitzky-Golay B. Connection to experiment

smoothing filter of order 1, using 40 points. The translation into real ' P

frequency is made assuming the estimates of time constant and In order to compare our model results with the experi-
lattice constant as described in the text. ments of Fieldet al, we need to estimate the lattice constant
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solid solution with precipitates which constitute the pinning
Z center$. Experiments suggest a value in the range of 3
X 10'° statamperes/chi? from which we can estimata
from

AN

1/3
m(0)<1>0c> | ®

97L2J,

Some representative values af as calculated from our
simulations, are shown in Table I.
T Oncea is determined, the simulation time constan§,
can be estimated by equating the Lorentz force per unit
length on a vortex to the pinning force per unit length, i.e.,

\‘
7

X foin=fL. 9

FIG. 5. Cross section of the vortex population in the sampl

®We assume thdt,, can be interpreted as a vortex drag force
(schematically indicated by the length of the vertical arrpafser aﬁp'” P g

eproportional to the average vortex velocity i.e., f = 7v,

the vortex density has relaxed to the steady-state vortex profil Wheren is an effective friction coefficient. Then writing out

showing the linear decrease in magnetic induction with distanc%] L tr f il th of inal " i
into the sample, as predicted by the Bean model. The path of thltI;giS(raesn Z force on a unit fength of a singie vortex explic-

line integral used to integrate Ampere’s law is shown in boldface.
and time step of the simulation. To obtain the lattice con- W= 1o
stant, we look at a cross-section of the lattice, as seen in Fig. c

5. Then integrating Ampere’s law

(10

Now a vortex can move only one lattice constant per time
A step, so that ~a/r,. Furthermore,y=B®d,/pc?, whereB
VXB=—1] (3) s the local magnetic inductiom, is the flux flow resistivity,

¢ andc is the speed of light. Combining these relations gives

along the path in Fig. 5, and assuming a constant current
density equal to the critical current density=J. (as ex-
pected in the Bean critical stateve find

B Ba
_PC‘JC.

To (11)
If we assume a magnetic induction of 5 kG, a lattice constant
X. (4) of 3.22x10°° cm as suggested by the estimates in Table I,
a critical current of 3 10'° statamps/crhas is typical for the
If we multiply this expression by the area of a narrow verti- experiments of Fieldet al, and a flux flow resistivity of
cal strip of the lattice, [(/4)a,a,, we obtain the flux through 1.11x10" 3 sec, as suggested by experiments on NbTi
the vertical strip centered atand of widtha, as alloys;'* then one obtains a time constant-2x10*s.
It is of some interest to compare the valueaafalculated
here with some other characteristic lengths in the supercon-
ductor. For a field of around 5 kG, the intervortex spacgg

; ; idn U4 [H TR — —6
To proceed further, we writg=n,a,, wherea, is the dis- of the undistorted lattice is3)™"y®,/B=6.80<10"" cm.

tance between two opposite sides of the hexagonal(se Thus, each lattice point in the kinetic model would corre-

Fig. D, and we denote byn(x) the total flux through a spond to 25 or more vErtlges,thas 'Sh app[[oprlte_ltelfor tthh|_s
column parallel toy, of width a,, and centered an,a, . ::r:)arse-gtral?mg daptg))hroac - Ano efrthc arac e”?.'ct engt IS
Then it follows from Eq. 5 that e penetration deptk, a measure of the range of intervortex

interaction; for NR,;Tigss3, the zero-temperaturen is

~1.83x10° % cm!! This is somewhat smaller than the lat-
Ny. (6) tice constant of the simulation grid, 3.220°° cm. Finally,

a third length of interest is the so-called Larkin length %3
Finally, if the cells are equilateral hexagons of side a, therwhich is the length beyond which the vortex crystalline order
a,=ay3 anda,=3a, and hence is disrupted by pinning. In the two-dimensional collective
pinning modef:*1* R, can be written as

Ny (7 A a2c
_ clavC
R.= 167J.¢ (12)

We can use this equation to interpret our numerical results
for the vortex densities and flux noise spectrum. We alsavhereH_; is estimated to be 200 G at zero temperature and
need an estimate af., the critical current density for the the zero temperature coherence lendgths estimated at
sample studied experimentally. In this case, the sample is th&16x10"7 cm! This yields a Larkin length of 7.63
composite material NjTig sz (typically in the form of a X 10 ° cm. Taken together, these estimates suggest that the

41
Bz(x) = Bz(o) - (?‘]c

D (x)=D(0)— X. 5

mJ.L
—aya
c I

mL
m(nx)zm(O)— (D—Ocax ay

9ml.Lad

m(n)=m(0)— | ==
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present kinetic approach may be adequate for the systegument holds when the pinning strength is increased at con-
studied experimentally by Fieldt al, since the simulation stant lattice size. In this case, there are once again more
lattice does have a lattice constant substantially larger thawortices in the system than at weaker pinning, and hence, a
that of the undistorted vortex lattice, while the Larkin length stronger low-frequency flux noise signal. Finally, at high in-
is on the same scale as the simulation lattice constant.  jection rateqe.qg., in theL,=32 lattice at an injection rate of
one vortex per time stepthe vortex system is in a state of
IV. DISCUSSION continual avalanche motion, since this rate is very large for
) ) o ~such a small lattice. As a result, the power spectrum, which
If the value ofr, found in the previous section is substi- reflects that of the avalanches, is relatively flat as a function
tuted into our calculated frequency spectrum, we find that the frequency.
spectrum has a power-law frequency dependence over a Finally, we comment briefly on the relation of our calcu-
slightly different frequency range than that in which power-|ation to a similar study done by Nori and collaboratbtén
law behavior is seen by Fielet alin Nbo 47Tios3 (Cf. Figs. 3 contrast to our work, their calculations were carried out us-
and 4. Furthermore, the strength of the model flux noisejng dgynamical equations for individual vorticéassuming
power is smaller than the experimental values by a factopyerdamped motion and a particular force law to describe
ranging from two(at high frequencies, for high injection yortex-vortex interactions; the equations were solved using
rate) to five (at low frequencies, for low injection raterders  molecular dynamics methods. Their calculations were car-
of magmtugie. ried out solely in the slow-driving limit; the resulting noise
These differences between our calculated power spectrughectra, similar to those presented here in the slow-driving
and the measured spectrum are not surprising. The model fignjt, exhibited a power law in agreement with experiments
a only a rough approximation to a real material, since it usegarried out in that slow-driving regime. But our calculations
an artificial kinetics rather than a more realistand more (o have the advantage of speed: a realistic MD model using
computer intensivedynamics for the calculation. Further- oyerdamped dynamics of individual vortices requires ap-
more, because of the finite size of the simulation samplesyroximately 16 hours on a machine with parallel processing.
they produce significantly less flux noise than would be gengy contrast, our power spectra were calculated using a single
erated by a real material. Neve_rthe_less, the model does gi‘@igital Alphastation 255 for only 10 h. This speed allows
the quahtanvgly correct behavior: it leads to a power-law g tq vary the parameters extensively, in particular examin-
exponent which seems to approach the observed value forigq the effects of different driving rates, which in turn per-
suff|C|entIy low vortex injection rate and a sufficiently large mits investigation of the shoulders in the power spectra men-
lattice. _ _ tioned above. Of course, the kinetic approach does have the
The noise spectra deviate from power-law behavior at low.ompensating disadvantage of invoking a drastic simplifica-
frequencies. Specifically, they all show a weak peak at lowon to the true equations of motion; but it still appears to
frequencies, followed by a further decrease with dlmlnlshmgpreserve much of the relevant physics.
frequency and finally an increase at still lower frequencies. T, summarize, we have shown that a relatively simple
We believe that this peak occurs near the frequency of &jnetic model of vortex avalanches near the Bean critical
characteristic “lattice resonance.” Qualitatively, this fre- siatd gives rise to flux noise which qualitatively resembles
quency is the ratio of a characteristic length, i.e., the lineagyperiment, without using computer-intensive dynamical
dimension of the lattice, and a characteristic time, which issquations for individual vortices. Specifically, the model pre-
the time required for the lattice to “reload” to its Bean criti- icts a power law flux noise spectrum with approximately
cal state between avalanches. For a lattice of kize64,  the correct power-law exponents, as well as a length-scale-
having pinning parameters (0.1,5.0,0.1) and an injection ratgqyced knee in the power spectrum for a sufficiently small
of one vortex per time step, the resonant frequency occurs ittice at high frequencies. Although the model calculations
about 3 Hz(using our estimates for lattice constant and timegiffer in detail from experimental results, they do show many

step. For the same parameters but slower injection (at®  qyajitative similarities and trends in the context of rather
vortex per 10@y), the noise spectrum still shows a peak butgimple kinetic equations.

now at a lower resonance frequency of 0.3 Hz. For other
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