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Dissipative tunneling in a bath of two-level systems
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The dynamical behavior of a two-level system coupled linearly to a dissipative bath of two-level systems
whose tunneling splittings and coupling parameters are distributed according to an Ohmic spectrum is studied
using numerical path integral methods as well as the noninteracting blip approximation for an equivalent
harmonic environment characterized by a scaled spectral density. Comparisons with the behaviors of the
conventional spin-boson model of similar coupling strength reveal a weaker quenching of coherence in the
present case. Finally, the boundary in parameter space between coherent and incoherent dynamics is mapped.
[S0163-182699)02426-1

I. INTRODUCTION In the last equatiof(0) is the initial density operator of the
system spin. We are interested in the effects of the TLS bath
The model of a low-dimensional system coupled to a batton the dynamics of the observable system in the thermody-
of harmonic oscillators has been used extensively as thgamic limit wheren—oo.
paradigm for dissipation in condensed phase dynamics. In While the Hamiltonian of Eq(1.1) is of interest in the
the classical limit, the harmonic bath ledds the well-  Study of phenomena observed in spin glasses, its similarity
known generalized Langevin equation of motion where theVith the spin-boson Hamiltonian allows more general ques-
conventional force exerted on the system is supplemented Hf@ to be addressed, such as the differences between the
a “random” component as well as a frictional term. By con- dissipative role of harmonic spectrum vs two-level baths.
trast, the fully quantum mechanical picture is much moreCaldeiraet al.” have treated the TLS bath via second order
complicated and leads to a variety of phenomena governelerturbation theory and obtained an influence functional that
by the interplay among coherence, tunneling, and dephasinéf related to that arising from a harmonic bath via a
The so-called spin-boson model, comprised of a two-levefemperature-dependent factor. In a recent arfidlzkri em-
system interacting with a harmonic bath, is deceptivelyPloyed a cumulant expansion of the influence functhnal to
simple and at the same time extraordinarily rich in dynamicademonstrate that separable baths of the present typércan
behavior. Its early understanding emerged from variationathe n—¢ limit) be mapped on effective harmonic baths
treatment$® and the noninteracting blip approximatitn, gctly_, i.e., the linear response approximation pecomes exact
while more recent studies have employed numerical path inh this case. As a consequence, the perturbative treatment of
tegral techniques based on Monte Carlo integrataritera- Caldeiraet al. is exact foranyvalue of the system-bath cou-

tive procedures. pling strength, reducing the problem to the better understood
The present article explores the tunneling dynamics of &ase of the spin-boson Hamiltonian.
two-level system(TLS) in contact with a bath of two-level ~ The present paper uses numerical path integral methods to
systems as described by the Hamiltonian evaluate the influence functional from a TLS bath and the
ensuing tunneling dynamics of the system. The numerical
nq . n n calculations, along with the mapping to an effective har-
H=—-1%Q0— > = fiwo—02> ¢\/5—o, monic bath and use of the noninteracting blip
=12 =1 20 approximatiorf, are employed to characterize the dynamics
=Ho+Hy+Hi. (1.1) of Eq. (1.1) in most regimes of parameter space and to es-

tablish the boundary between coherent and incoherent behav-
Hereo, ando, are the usual Pauli spin matrices, the tunnel-ior. _ _ _ _
ing splittings are & and 2k w; for the bare system and the Section Il discusses the mapping of the TLS environment

bath spins, respectively, and the parameters of the bath af# an effective bath of harmonic oscillators and the expres-
specified from the spectral density function sions for the system dynamics obtained from the noninteract-

ing blip approximation. In Sec. Ill we describe the dis-
i2 cretized path integral formalism and the numerical
S(w— ;). (1.2 evaluation of the influence functional from a TLS bath. Sec-
i tion IV describes the results and contrasts the behavior of the
dQresent Hamiltonian to that of the spin-boson model. Finally,
Sec. V concludes.

(9]

J(w)=

Throughout this paper we assume that the interaction b
tween system and bath is turned ontatO, such that the

initial density matrix factorizes into its system and bath com-
ponents, and that the bath is initially at thermal equilibrium:

NE

g

II. THEORETICAL ANALYSIS

Recent work showed the influence functional from a gen-
p(0)=p(0)e A, (1.3 eral anharmonic bath of independent degrees of freedom is
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identicalto that from a harmonic bath of fictitious degrees of P(t)=Tr(p(t)o?)), (2.9

freedom bilinearly coupled to the system
whose Laplace transform

1 1
Hb,eff:E EpizJr Ewizxi% Hing eff= _(Tin CiX;,

i oo
(2.9) ﬁo\)=J P(t)e Mdt (2.6
0
whose spectral density is specified by the relation
2 1 » is given within the NIBA by the relation
Jeif(w,B) = %tan Eﬁwﬁ f ReCg(t)coswt dt.
0 = _
(2.2 P(N)~(\+1(N\)) 11 2.7
Here C4(t) is the (quantum force autocorrelation function where
of the actual anharmonic bath at the given temperature. This - 4 4
mapping of a nonlinear medium onto a Gaussian bath is f()\):492f cos(—th(t) ex;{—)\t——ﬁQz(t))dt
0 ™ 77

exact for baths of the type described by Et.1), irrespec-
tive of the magnitude of the overall coupling strength. The 2.9
above equivalence, whose classical analog is often justifiegnq the function®, andQ, are given by the relations
in the spirit of the central limit theoref'? is meaningful
only in the context of modulating the dynamics of the ob- o
servable system. Notice that the parameters of the equivalent Qi(H)= f
effective bath are, in general, temperature dependent. 0
In the particular case where the bath is composed of in- 2 3ol @) 1
dependent two-level systems, the force autocorrelation func- Qz(t):f i, (1_C05wt)cot)-<_ﬁwﬁ)dw_
tion is equal to 0o 2

Je( @
eﬁ(z )Sinwt do,
®

(2.9

52 In the case of a harmonic bath with Ohmic spectral density

Cﬁ(t)=2 2—|<0"Z(t)0"2(0)>,3 and for weak coupling and low temperatuR{\) possesses
boewi a pair of complex conjugate poles with negative real part

which lead to underdamped dynamfc$he transition from
coherent to incoherent dynamics is signified by the coalesc-

2

h Ci
_Ezi il

1
CoSw;t—i tanr(ihwiﬂ) Sinw;t

Wi
2.3 S
Use of Eq.(2.2) directly leads to the relation
2.57]
3 .7 1 " 2 Ciz 5
e @,f)= 5 tanh s hwp o (0—wj)
o
1
=tan|‘(§ﬁw,8)J(w). (2.9

This is the result obtained by Caldeie4 al.” using second 187

order perturbation theory. According to the analysis pre-

sented in Ref. 8 the above result is exact, i.e., the effects of &'

the TLS bath on the dynamics of the observable system are 17

identical to those induced by an effective harmonic bath

whose spectral density is given by E@.4), even in the

strong coupling regime. 0.5
Assuming that the frequencias are distributed in a con-

tinuous interval that includes the tunneling splitting of the

system spin, one expects dephasing effects to damp the co-

herent tunneling oscillations of the bare system and, at strong

coupling, completely quench coherence. The above mapping

on a harmonic bath invites use of the noninteracting blip @/

approximation (NIBA) to study the tunneling of a spin

coupled to a reservoir of two-level systems. Of particular FiG. 1. The spectral densities discussed in Sec. IV. Solid line:

interest is the transition from coherent to incoherent dynameonmic spectral density describing the TLS bath. Chain-dotted line:

ics following preparation of the system in the “right” state. spectral density of the effective harmonic bath at a high temperature

The average position of the system spin is given in terms of# 8=0.05). The effective spectral density at very low tempera-

the time-evolved density operator by the expression tures is indistinguishable from the solid line.

ectral density
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ing of these poles on the negative real axis, and incoherent Ill. NUMERICAL PATH INTEGRAL TREATMENT
behavior is characterized by distinct poles that lie on the real
axis and which are responsible for the observed exponential

decay. _ ~ 0
To map the coherent-incoherent boundary in the case of PO=Trydp(V) o), @

the TLS bath, we locate numerically the polesRf). Spe- Where
cifically, for a given temperature we decrease the Kondo e Mt HiA
parameter gradually until the zeros of this function on the p(t)=Try(e p(0)e™) (3.2
negative real axis coalesce and subsequently acquire @fhe reduced density operator of the system. It is convenient
imaginary part. We have also inverted the Laplace transfornyy oy ajuate the latter in the left-right basis,

to obtain the average system position:

Tracing out the bath first brings E(R.5) into the form

’[3(3”,5, ,t) — Trb<srr|e*iH’[/ﬁp(o)eth/ﬁ|Sr>, (32b)

1 -~
P(t)= 2mi LGMPO‘)' (2.10 wheres’,s"=+1 are the values of the system spin and the
trace is evaluated with respect to the TLS bath. Employing
where the contou€ runs from—i to +ic lying entirely to  the discretized path integral representation of the time evo-
the right of all singularities of°(\). The results of this lution operators in Eq3.1), the reduced density matrix takes

treatment are presented in Sec. IV. the form
Bsnsni= 2 X o X s 2 (shanle Mg sy g (syarle” ™M ag sg )
sp=*ls =+1 sy ,=xlgy==1gy==1 OIN-17*1
X(sgdg |p(0)]do So )(So G €' *" [y sy )+ +(sy_ 1Ayl ansy)- (33

Here the vectorg), contain the coordinates of the bath spins along the given forward or backward path defined by the
coordinates{qy ,...,0n_1.0n; @and At=t/N is the time step employed in the discretization of the path integral. Next, we
employ a symmetric splitting of the time evolution operator

@ IHAUA _ g=i(Hp+ Hin) Ati2h g = iH oAt g =i (Hp+ Hin) At/26 3.4

which becomes exact as the time stepapproaches zero. Performing the sum over the bath spins for each realization of the
system coordinates, the reduced density matrix takes the form

Blsysyi)= X X o 2 (syle MoAVsl ). (s]|e oA |sEy (st e Mo s
kg=+1ky=+1 ky_,=+1
X(sg |eHoAh|s ). - (sy_,|eHoAVA S VF(sS ,S) 1. \S5 1S »---»SN AL, (3.5
where
P siah= 3 5 o ST (aule U I g e Mo Hatsi-ysua

qutl qli:tl qﬁflztl an=*1
—i[Hp+Hin(sp_»)JAt2A] 4 — +1 a—i[Hp+Hin(s7 ) JAU2% o~ i[Hp+ Hind(Sg ) JAY2E |y +\ / 4+ | @= BHp| 4 —
@ M Hinds IV ) LM Hind s A1l Hnd 5 28| ) i~ b g )

X <q0_ |ei[Hb+ Him(sa)]At/Zﬁe—i[Hb+Him(SI)]At/2h|qI>, . -<q§,1|ei[Hb+ Him(s,;)]At/Zﬁ| qN> (36)

Notice that the operators in the last equation are sums dDhmic spectral density with exponential cutoff,
independent bath spins, and thus the influence functional be-
comes a product of one-dimensional factors. Exploiting this
feature, we evaluate the influence functional numerically by
using the matrix multiplication methdd-*°

Jw)= ;Wﬁgwe_‘”/‘”c, 4.2
where the Kondo parametéris a measure of the system-
bath coupling strength. This parameter is proportional to the
friction coefficient in the classical Langevin description and
provides a measure of the dissipation strength. This spectral
The results presented below were performed with a diséensity is depicted in Fig. 1, along with that of the effective
crete bath whose parameters correspond to the conventiorfarmonic bath at two temperatures. Note that the presence of

IV. RESULTS AND DISCUSSION
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FIG. 2. Expectation value of the system position, Ef5), for 1
nQ B=2. Solid circles: numerical path integral results for the TLS
bath. Solid line: numerical path integral results for the effective
harmonic bath characterized by a temperature-dependent spectral 0.5
density. Dashed line: bath of harmonic oscillatq@. £=0.1. (b)
£=0.5.
/\N 0 ]
v
the hyperbolic tangent factor decreases appreciably the mag-
nitude of the effective bath spectral density at high tempera- 054
tures and thus the resulting damping is expected to be
weaker compared to that observed in the case of the spin-
boson model. » _ - o
For the purpose of performing the numerical path integral 0 g é 12 16
calculation the bath is discretized imadiscrete modes. The (¢ Ot

bath parameters are chosen such that the integrated density

of states up to a frequenay, equals the numbek of bath cclat _ _

modes, while the couplings are determined from qu).g hQB=0.5. So_hd_cnrcles: ngmerlcal path integral results for the

This particular discretization of the bath leads to rapid con-T-S Path. Solid line: numerical path integral results for the effec-

vergence with respect to the number of discrete spins enfve harmpmc bath Ch.araCte”ZEd by a temperatgre-dependent spec-

ployed. The results presented below were obtained with 5 al density. Dashed line: bath of harmonic oscillatdes. £=0.1.

bath degrees of freedom distributed in a frequency interva ) £=0.5.(0) £=08.

that extends up to 1., but we have verified that the ob-

served behaviors are insensitive to the particular type of bathnd an effective harmonic bath whose spectral dedsiffyw)

discretization. The cutoff frequency is chosenaas=6 (). is given by Eq.(2.4). The harmonic bath calculations were
Figures 2—-4 present results for the given bath of two-leveperformed using a combination of full spin summation and

systems, a harmonic bath of the same spectral deh&ity, the tensor multiplication procedure developed earlier in our

FIG. 3. Expectation value of the system position, Eq5), for
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FIG. 4. Expectation value of the system position, E45), for 2 8=0.05. Solid circles: numerical path integral results for the TLS
bath. Solid line: numerical path integral results for the effective harmonic bath characterized by a temperature-dependent spectral density.
Dashed line: bath of harmonic oscillatofa) £=0.1.(b) £=0.5.(c) £=0.8.(d) £=1.2.

group® The agreement between the numerical results ob©hmic spin-boson critical valué= . Specifically, the TLS
tained from a TLS bath and those of the effective harmonidath leads to underdamped oscillations of the tunneling sys-
one is generally excellent. The small discrepancies observei@m even ag= 0.8, which are replaced by incoherent decay
at some of the longer time points are due to inadequate corat larger values of the dissipation parameter. As the tempera-
vergence of the full path sum due to the use of time steps thatre is raisedsee Figs. 3 and)4he effective harmonic spec-
are too large. We have verified that the TLS influence func+ral density begins to deviate more from that of the TLS bath,
tional obtained via the numerical matrix multiplication resu|ting in more coherent dynamics Compared to that of the
methOd is indeed |dentlcal to the harmonic one with the ef-spin_boson Hamiltonian of Ohmic Spectra| densityl Specifi_
fective spectral density of E¢2.2). cally, the latter is known to display incoherent dynamics at
At zero temperature, tanif{wpB)—1 (see also Fig.land  all temperatures when the dimensionless dissipation param-
the dynamics in the presence of a TLS bath are expected t&ter exceeds, and the boundary is shifted to much weaker
agree well with those of the conventional spin-boson modelfriction at higher temperatures; by contrast, coherences are
At low but finite temperature the effective spectral densityseen to persist well beyond that value in the present case
also reverts to the Ohmic form, except for low frequencieswhere the bath is composed of two-level systems. Finally, at
Behavior distinct from the spin-boson model arises when thdiigh temperatures the TLS and bosonic baths lead to mark-
temperature-dependent factor differs appreciably from unityedly different behaviors, dominated in the present case by
at frequencies around the tunneling splitting of the systemunderdamped oscillations at weak or moderate friction which
i.e., whenzQ 8~ 1. Expansion of the hyperbolic tangent at are absent from the spin-boson dynamics. These findings are
these low frequencies produces an additional poweb of  in qualitative agreement with the conclusions reached by
the spectral density, which leads to coherent behavior thaBhao and Haggi in an article that appeared after the present
persists up to values of the Kondo parameter that exceed thEaper was submitted. The calculations presented here em-
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o of bosons. Also shown as a shaded area in Fig. 5 is the
region of parameter space in which the decay is almost in-
coherent, corresponding to parameters for which the mini-
mum value reached bl (t) lies between 0 and-0.01. The
width of this area is considerable at moderate or high tem-
peratures, indicating that the transition from coherent to in-
coherent dynamics is much more gradual than in the spin-
boson case. Lastly, we note that the decay rate in the
incoherent regime is an increasing function of temperature.

207 ®

157

ksT/hQ2

107

Incoherent

V. SUMMARY

We have explored the influence of a reservoir of two-level
systems on the tunneling dynamics of a single TLS using
L5 numerical path integral methods and the noninteracting blip

approximation. The main conclusions of our study are sum-
. . . . marized below
FIG. 5. Phase diagram for the tunneling system in contact with : L
9 gsy (1) In the macroscopic limit where the number of bath

a TLS bath. The solid squares and hollow circles indicate param-

eters at which the numerical path integral results exhibit under-degre(':‘S of freedom approaches infinity the effects of a cho-

damped oscillations and incoherent decay, respectively. The soligen TLS bath are eqL_uvaI_ent to ’_[hose of a harmonic one
line shows the coherent-incoherent boundary predicted by thd/hose spectral density is modified by a temperature-
NIBA for an effective harmonic bath of temperature-dependentdependent factor.
spectral density fow,=20Q. The shaded area indicates the region  (2) The average position of the system undergoes under-
of parameter space in whicR(t) has a small negative lobe that damped tunneling oscillations at small to moderate dissipa-
does not fall below—0.01 (see the text tion strengths. Coherent effects generally persist at much
higher friction than in the case of a bosonic bath. At large
values of the Kondo parameter the system exhibits incoher-
phasize the very gradual nature of the transition in the casgnt decay.
of a TLS bath, showing that some coherence persists even if (3) The coherent-incoherent boundary is diffuse. It exhib-
the Kondo parameter significantly exceeds &ez bound-  its a non-negligible dependence on the cut-off frequency and
ary established by these authors. The weaker ability of thg weak dependence on temperature. In particular, the onset
TLS bath to damp the tunneling oscillations of the system isf incoherent dynamics shifts to stronger friction as the tem-
due to the availability of only two energy levels for each bathperature is raised, in contrast to the behavior induced by
degree of freedom, in contrast to harmonic baths where afgsonic environments.

infinite number of levels can be populated. (4) The decay rate in the incoherent regime increases with
In order to gain further insight into the tunneling dynam- increasing temperature.
ics of a spin coupled to a TLS bath we examine the behavior (5) At very low temperatures the TLS bath reverts to the
of the average system position as given by the NIBA. Figure:onventional harmonic bath of the same spectral density.
5 shows the onset of purely exponential decay, correspond- \We stress that the above findings apply only to a bath of
ing to the relation between temperature and friction Strengthhdependent two-level Systems whose Coup”ng Strength de-
for which P(t), obtained numerically from Egs(2.7)-  pends on the frequency alone. In most physical models of
(2.10, decays to zero without turning negative. These resultgpin glasses the coupling strength is a function of distance as
are shown fow.=20(}, since NIBA is not reliable for small  well. Such models have been studied recently by @rthl
values of the cutoff frequency. The coherent-incoherentt would be highly desirable to extend the above studies by
boundary shifts to higher friction if the cutoff frequency is including interactions among the two-level systems compris-
lowered. Examination of the Laplace transfoFr\) reveals ing the bath in order to mimic an Ising model of large scale
multiple pairs of complex conjugate poles in the complexlattices of spin glass€S.However, we are presently impeded
plane (with negative real parjswhich persist even to the by the nature of the available path-integral methodology, as
right of the boundary deduced from the behaviorRqt). its feasibility hinges on the separability of the bath. In light
Although such poles are generally associated with oscillatorgf the unusual dynamics identified in this article which dealt
behavior of the system position, interference among residuewith the simplest of these baths, the above more complicated
and/or dominance of poles with very small imaginary partsmodels are expected to reveal interesting behaviors and will
leads to a decay dP(t) which is for all practical purposes undoubtedly continue to attract much theoretical attention.
exponential for parameters in the incoherent regime shown
in Fig. 5. Eventually, as the friction is increased further at

any given temperature, the poles®f\) move to the nega- ACKNOWLEDGMENT

tive real axis. Our simulations, as well as solution of the

NIBA equations, indicate that the coherent-incoherent This material is based upon work supported by the Na-
boundary shifts to stronger friction as the temperature igional Science Foundation under Grant Nos. 93-57102 and
raised, in contrast to the known behavior of an Ohmic bat96-12194.




978 KELSEY M. FORSYTHE AND NANCY MAKRI PRB 60

IR. Zwanzig, J. Stat. Phy$, 215(1973. 113, N. Onuchic and P. G. Wolynes, J. Chem. Phg8. 2218
2R. A. Harris and L. Stodolsky, J. Chem. Phyg, 2145(1981). (1993.
SR, Silbey and R. A. Harris, J. Chem. Phygg), 2615(1983. 2R, A. Marcus, Angew. Chem. Int. Ed. Engl32, 1111
4A. . Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. (1993.

Garg, and M. Zwerger, Rev. Mod. Phy&9, 1 (1987. 13D, Thirumalai, E. J. Bruskin, and B. J. Berne, J. Chem. PHgs.
°C. H. Mak and D. Chandler, Phys. Rev.4¥, 2352(1992. 5063 (1983.

6N Makri and D. E. Makarov, J. Chem. Phyﬂ)z 4600(1995 14R. D. Coalson. J. Chem th 995 (198D
7 . . . 1 : : 1 .
A. O. Caldelra, A. H. Castro Neto, and T. Oliveira de Carvalho,lse_ Ik and N. Makri, J. Chem. Phyﬂ_Ol, 6708(1994)

. Phys. Rev. B48, 13 974(1993. 16N. Makri, J. Math. Phys36, 2430(1995.

oN- Makri, J. Phys. Cheml03 2823(1999. _ 173, Shao and P. Hanggi, Phys. Rev. L&t, 5710(1998.

R. P. Feynman and A. R. HibbQuantum Mechanics and Path 185 | Orth. R. J. Mashl. and J. L. Skinner. J Phys.: Condens
Integrals (McGraw-Hill, New York, 19635. l\'/lat.ter5 ’253'3('1993 ' T " N '

103, N. Onuchic and P. G. Wolynes, J. Phys. Ch&8,. 6495

(1989 193, F. Edwards and P. W. Anderson, J. Phy&, B65 (1975.



