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Flux-pinning-induced stress and strain in superconductors: Case of a long circular cylinder
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The irreversible behavior of the flux-pinning-induced stress and strain in a long circular cylindrical super-
conductor placed in a parallel magnetic field is analyzed. An exact solution of the full three-dimeit3@nal
magnetoelastic problem is found. The solution differs from the previous simplified 2D plane stress treatments
of the same problem. We derive formulas for all stress and strain components, including the magnetostriction
AR/R, in terms of the flux density profile in the cylinder. The results are valid for any critical-state model
ic=]c(B). Based on the Bean mod¢|,= const, an extensive analysis is made of the elastic behavior during
(1) a complete field cycle after zero-field cooling, a2¢ifield descent to the remanent state after field cooling.
Special emphasis is put on the field-sweep stages generating tensile stresses, which tend to create cracking in
the cylinder. A comparison is made between the overall maximum tensile stresses encountered in both pro-
cesseq1) and (2), which one today uses, e.g., to activate superconducting trapped-field or quasipermanent
magnets[S0163-18209)06437-1

[. INTRODUCTION capacitance dilatometry that superconductors can show a gi-
ant magnetostriction, typically of the order of 10-10 4

Bulk high-temperature superconductdidTS'’s) are by  when placed in fields of a few Tesla. The observed hysteretic
increasingly sophisticated preparation methods steadily imdilatation versus applied fieldB, was successfully
proving in their flux pinning properties. Of equal importance modeled® by a formula derived by considering the pinning-
in this development is that now large-size samples can b#duced strain in an infinite slab of half-width,
prepared free from weak links so that high currents can flow
unperturbed throughout the volume, and hence give rise to
very large magnetic moments. The material showing today
the best combination of these qualities &aRE)Ba,Cu;0,
where RE can be one or even several rare-earth elerhénts. Herec is an elastic constant ari{x) the local flux density.
record high critical current density of610* Alcm? at 77 K Later, Johansen and co-workefgave an extended and uni-
and a field of 3 T was recently reported for the ternery com{ied critical-state analysis of the two magnetoelastic phenom-
pound (Nd,Eu,GdBa,Cu;0, (NEG) with Pt additions By  ena for the more realistic geometry of a circular cylinder.
these improvements the potential has grown considerably foklso the case of a square cross section was investigated,
the use of HTS single-domain bulks in a number of applicashowing that the symmetry of the body forces causes here
tions such as trapped-field magnets and levitating bearingsleformations which do not conserve the shape of the cross-
and one sees today an intensive activity in this direction. sectional area.

Because the mere size of the HTS is a crucial parameter In this modeling work the superconductor was assumed to
the magnetic characterization of these materials is oftetvehave magnetically as a long cylinder, so that demagnetiza-
made by recording maps of the field distribution trapped by dion effects can be ignored. At the same time, however, the
full-sized sample. Here one usually measures with a scarelasticity problem was analyzed within the plane-stress ap-
ning Hall sensor the field near the surface in the remanerproximation, which is the scheme normally used to calculate
state after some initial activation field has been removedthe elastic response of thin plates loaded by forces acting
Whereas the figure-of-merit is always the maximum fieldparallel to the plate.
trapped by the bulk, the field maps can also reveal important In a fully consistent magnetoelastic treatment of a thick
information about weak connections between parts of thesample the three-dimensional character of the deformation
sample. Quite frequently one finds that internal disconnecshould be accounted for. For this the plane strain scheme is
tions, and even complete cracking, are indeed resulting frorthe proper approach.Very recently'® the plane strain
the activation process itself. Such damaging effects were firscheme was applied to find an exact solution of the pinning-
studied systematically by Reet al.* who by experiments induced stress/strain problem for a long rectangular slab in a
with field cooling in various fields up to 14 T observed that parallel field. General expressions for all stress and strain
cracks were createduring the ramping down of the field. components in terms of the flux density distribution were
They also explained the cracking tendency by showing thadlerived. In the present paper we use the same approach for
the internal stresses generated by the pinned vortices becorife case of a long circular cylinder. An extensive analysis is
tensile and with a maximum magnitude at some point duringgiven for the various states occurring during a complete
the field reduction. cycle of the applied field. Also the decreasing field stage

A different, but closely related, flux-pinning-induced ef- after field cooling is discussed. Special emphasis is put on
fect was discovered by Ikutat al® They observed using the stress conditions and probability for cracking during field

Aw/w=(2cuow) "t f OW[BZ(X) —B2]dx. (1)
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reductions ending in the remanent state, i.e., in the process of (@) z
energizing the HTS to become a quasipermanent, or trapped-
field, magnet. The paper is organized as follows.

In Sec. Il we first define the magnetoelastic plane strain

problem. Then an exact solution is derived for stress and
strain in terms of the flux density and elastic constants. In the B, _
subsequent sections explicit stress-strain expressions are ob- Jo

tained by assuming a Bean model type of magnetic behavior.
Sections Il and IV discuss the various states encountered K>R/
during a complete field cycle. Section V focuses on the ex-
ternal radial magnetostrictiod R/R. In Section VI the b
stress-strain picture for field-cooling conditions is presented. (b) o, 111110
Then, in Sec. VIl the maximum tensile stress occurring for
various field descent routes to the remanent state is dis-
cussed, before we finally give the conclusions in Sec. VIII.

II. MAGNETOELASTIC PROBLEM

A. General approach !

N

L

Consider a type-ll superconductor shaped as a circular lindrical q laced i llel
cylinder and placed in a magnetic field oriented parallel to _F!G: 1. Long cylindrical superconductor placed in a paralle
the cylinder axis(z axis). We seek a solution of the flux- applied magnetic fiel, . The elastic response to the flux-pinning-

R . . _induced body force$=j ,B is considered as a superposition of two
pinning-induced stress-strain problem based on the foIIowm% ; . o
assumptions: eformations.(a) First, the forces create a purely radial displace-

. . . . ment in the cylinder which is thought to be confined between two
.(.') The magnetic behg\_/lor can be de_scnbed by theperfectly smooth and rigid plane) Second, the condition of free
critical-state model. The crmcal c_:.urre.nt density can have any, taces is recovered by letting the averaged axial stregsbuilt
dependence on the local inductiog=jc(B). up in (a) be compensated by adding the opposite stegsdistrib-
(it) Demagnetization effects are neglected, i.e., the samplgeq uniformly over the end faces of the cylinder.
is assumed sufficiently thick to be treated as an infinite cyl-

inder. — —
(iii ) Perpendicular to the cylinder axis the magnetic prop- e=u’(r) and e,=ulr, ©
erties are isotropic. the radial and tangentighoop strain, respectively. The re-
(iv) Elastically, the cylinder is isotropic, and it has a free |ations between the straire ,e,,e, and the corresponding
surface, i.e., all stresses vanish at the surface. stressesr, ,a,,0, are
(v) The deformations are well below the fracture limit
thus allowing linear elasticity theory to be applicable. Ee =0, v(oy+ay),

Under these conditions the sample will in a general mag-
netized state contain an axially symmetric flux density dis-
tribution B(r) and an azimuthal current density satisfying
jo(r)=—=B'(r)/ug. In the critical-state the Lorentz force
j B acting on the vortices is balanced by a distribution of
pinning forces. As the pinning forces react back on the crys-

tal lattice the cylinder experiences a radial body force e ua\f\’hereE andv is the Young's modulus and Poisson’s ratio,
to y P y q respectively. Because of the constragpt 0, there will be a

buildup of axial stressr,, amounting too,= v(o,+ oy),
which may be compressive or tensile.
1 d As step 2, in order to recover the condition of free end
T 2ug E( ) (2) faces, we add a uniform axial stress, see Fi),lof mag-
nitude:

per unit volume. Loaded by this axially symmetric and .
z-independent body force, the free-standing cylinder will de- 5-2
form bpy radial disp%acements as well as s?rai}rll in the longi- (02=R J o(r)2rdr, ®)
tudinal direction. The elastic response is most conveniently
calculated in two steps: which is the cross-sectional average @f(r) found under

As step 1, let the cylinder be constrained to a fixed lengthstep 1. The second stress is applied opposite to the built-up
by two rigid and smooth parallel planes allowing the endstress, i.e., if the constraint gave a compressiwg) the
faces to expand and contract freely in the radial direction, seadded stress is tensile, and vice versa. This superposition
Fig. 1(a). In this way an axial displacement is prevented andresults in a zero net axial stress in the cylinder. According to
all cross sections are in the same condition. The deformatio8aint-Venant's principle the procedure gives the correct re-
is then described by a radial displacementu(r), and sultant elastic state except for local deviations close to the
there are only two nonvanishing strain components: cylinder’s end face$.

Eey=0y)—v(o,t0,),

Ee,=0,—v(o,+0y), (4)
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free-surface conditioro,(r=R)=0, and using thau,(0)

=0. From this formula fou(r) one can calculate the com-
= plete stress-strain picture produced by a given flux density
Oirrn) distribution B(r). For the stresses, E(7), we find

Tcz Here two integration constants were determined from the
I

FIG. 2. Volume element of a cylinder loaded by an axially sym- o(p)==
metric body force distributiof When conditions are the same at all
cross sections, as during the deformation stefg-ify. 1(a)], it is N
sufficient to consider only a slice of the cylinder. Indicated are the J prBder _ i Jpp’Bzdp’
0 p° Jo
N 1-2v
1- a 1-v

nonzero stress components.
! 2 1 P 2
p'Bodp’+— | p'Bdp’
0 p°Jo

2v (1
1+v Mo VJOPBzdp)’
[(1=v)oy—vo], (6) (14)

and conversely, wherep=r/R. The stresses are evidently not uniformly dis-
tributed in the cylinder. This applies even for the axial stress,
which in fact has the same spatial variation as thas@f)2.
Ur:m[(l— v)e, + vey], From Eqs.(6), (12), and(13) one finds the straine, ande,
in the constrained state. Note that the last integral term in
Egs. (12) and (13) approaches the valug(0)?/2 asp—0,

. (12

B. Cylinder of fixed length 1

We determine first the elastic response of the cylinder TolP) =5 210
subjected to the body force, E(R), and constrained by the
conditione,= 0. It follows that the stress-strain relations then

X
become

. (13

_l+v and

—voyl,

1 5 ) 1-
op)=5— —B —2vBg+2v

eg:

ogzm[(l— v)eyt+ve ], and that this impliesr,(0)=0,(0).
VE C. Recovering free ends
0221_,,_2,,2(er+90)' () To recover the condition of free end faces the built-up

axial stress, Eq(14), is compensated by applying externally
The stresses acting on a volume element are illustrated ifhe yniform stress, = — (), which from Eq.(5) becomes
Fig. 2. The condition of static equilibrium in the radial di- ‘

rection is 2y (1 5
agz—f p(BZ—B?)dp. (15)
Mo Jo

o+ 22 s, ®)

This modifies the strains as follows. To bathande, the

Using Eqs.(3) and(7) this can be expressed in terms of the (&M — vo2/E is added, or equivalently, the displacement
displacement field as u(r) receives an extra termr vo,r/E. From Eg.(11) one

then obtains the final expression

P it 9) 1 1—p—212
u-r—-u——ur————1=0. -V —v—=2v° (r
r r_z (1—V)E U(p): ZEM pR (1 V)ZPZ J p/Bde/
- 0
The corresponding equation valid for the plane stress ap- 0
proximation deviates only by having a different prefactor in 1-3v+412 5 )
the body force terfi.Since Eq.(9) can be written as + —(1_,,)2 J p'B%dp’—Bj (16)
df1dru] 1-v—24* d 9 2. (10 Of particular interest is the observable external dilatation
drir dr | 2(1-v)Epug dr AR=u(1), which takes the simple form
it allows twice integration, which gives AR 1-v it .
—=- BZ—B“)dp. 1
1_V_2V2 1 _2 R EMO fO p( a ) p ( 7)

u(r)=

r 1
r —zf r'B2dr’ +
r~Jo

2(1-v)Epg Interestingly, this formula is the same as derived edrlier
the plane stress approximation. The expressionufigs),
(12) however, is different, as are the results for strains and

R
xf r'B2dr' —(1—»)B2|.
0 stresses.
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The final formula for the radial strain becomes

1-v—21°
(1-v)?

1-v
2Epmo

1 ’ rp2 ’
e(p)= ——zf p'Bdp
p-Jo

1-3v+412

+W p Bde - (18)

while the final hoop strain

ey(p)=u(p)/pR (19

follows directly from Eq.(16). The compensating stress, Eq.
(15), generates also a longitudinal deformation of the cylin-

der. This is described by a uniform axial strain equakjo
= o,/E, which can be expressed as

2v AR
1-v R

€,=— (20

The superposition of the uniform axial stresg,does not

influence the other two stress components. Hence the expres-

sions Eqs(12) and(13) for o, and o, remain valid.

D. Flux density profiles and notation

FLUX-PINNING-INDUCED STRESS AND STRAIN IN . ..

9693

[1l. INCREASING FIELD
A. Stage 1,B,<B,

Starting with a flux free superconductor an increasing ap-
plied field causes flux to penetrate into the cylinder in an
outer shell of thicknesb,, i.e., the flux front is located at
p=a where

a=1-bh,. (23

During this virgin magnetization the flux density is given by
b=b,+p—1 fora<p<1, and byb=0 for p<a. The two
regions require separate calculations, and E@g), (13),
(18), and(19) yield for O=<p<a:

2, 172v b4
0= 0=~ 0| b+ T (24)
1-v 1-3v+4v? b,—4 3
e =e,=—¢€ 5 b;+ 1= oZ bz |,
(29
and forasp<1:
Or _ 22 v
7o (ba+P 1) ba+ 1—
b,—3p—1 3 3
[T(b -1 b (26)

In order to calculate explicit expressions for stress and
strain one needs first to determine the flux density profiles
B(p) for the various stages of a magnetization process.

Given the appropriate functiof.(B) this can be done by
integrating

1 dB

" aoR1,B) @1

wherej,(B) has the magnitude gf,(B), and a sign in ac-

cordance with the magnetic history as prescribed by the

critical-state model. In this paper we restrict the calculations

to the Bean model, i.ej.(B)=const, which leads to linear
or piecewise linear profileB(p).

We consider first a superconductor initially zero-field

cooled belowT,, followed by a complete cycle of the ap-

plied fieldB,. The maximum applied field, which we denote
by B,, is assumed larger than, or equal to, the full penetra-

tion field, which for the Bean model equaB,= wojcR.
WhenB,

gy V. 2 2_1—21/
00__1—v(bd+p D)7=bg 1-v
b,—3p—1 —4
X[alT(baﬂLp—l)er a12 bg} (27)
e 1-v—2v%[4p-3 3p2=2 (b,—1)*
e 1-v g (Pam D+ —g—+ 552
1-3v+412 b3i—4b,+6
BT 24a b 29
e 1-v—2v23p—b,+1 .
e_O_ 1— v 241)2 (ba+p_1)
1-3v+4v°b,—4 . 1-v ,
1 24 Pam 5 ba (29

Figure 3 shows the stress distributions in the cylinder for

= 2B, the magnetization process is one that gives dour values of the increasing applied field. Both stress com-

maximum trapped field in the subsequent remanent state. Iponents are negative, i.e., compressive, and increase in mag-

the sections below both of the cas%, larger and smaller
than 2B, will be discussed in detail. To simplify notation,
we normalize all magnetic fields bg,, and write b

=B/B,,b,=B,/B,, etc. The parameters defined by
BZ 2
0o==1 and ey=——, (22)
2o Euo

nitude towards the center. In the nonpenetrated inner region
p<a, where the body forces are zero, the stresses are uni-
form. The position of the flux front for varioul, is indi-
cated in the graphs as a dashed line. For small applied fields
the stresses grow relatively slowly, proportionalbli) Note

that the two stress components differ in the way they de-
crease towards the surface. Whereasfalls to zero atp

=1, as dictated by the free-surface condition, the hoop stress
decreases to a finite value at the surface. In this figure, as in

will appear as prefactors in the expressions for stress andll other graphs presented in the paper, a Poisson ratio equal

strain, respectively.

to v=0.3 is chosef:*
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0.0 . . . —

02L_(2)b =05

clo

06}

Field up

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 08 1.0
r/R r/R

FIG. 3. Distribution of radialuppe) and hoop(lower) stress and strain as the applied field is increased from zero and up until a state of
full flux penetration is reached. The indicated values of the figldre given relative to the full penetration fieB)= woj:R. The curves are
labeled(1)—(4) in a consistent way. The dashed lines represent the position of the flux front as the field increases.

The strain components ande, are also shown in Fig. 3. o, 1+2v p? 1+vb,—1 2—v 2b, 7—2vp
The st_ram distributions behave quite similarly to the corre-U—0 ~1-, 7 +2 1-, 3 P 1,3 + m
sponding stresses. Note, however, thatloes not reduce to (32)
exactly zero at the surface, but crosses over to a small posi-
tive value atp just below 1. This means that an expansive 5 )
radial strain occurs in the outermost layer while the cylinder & _ 1-v—2v (3_P+ ba— 1) _2-3v—w E
is loaded by only compressive forces. This surprising result e, 1-v 8 3 /P 1-v 3
can in fact be seen directly from Eg4.8) and (19), which

2
when evaluated gi=1 give the following two relations of " /—9v—8v 33
general validity: 241—-v)
3v—1 AR AR ey 1-v—217 P, ba-1 2-3v—1% b,
e,(l)zv(l_—y)zﬁ and ea(l):F. (30 e_O_ 1—p § 3 p 1—» ?
) ) 7-9v—812
Hence near the surface the two strains will always have op- m (34)

posite signs ifv<3%, as here.

Figure 4 shows the stress-strain picture for applied fields
B. Stage 2B,=B, up tob,=4. Above the full penetration field both stress and
As the field is increased above the full penetration valueStrain at a given poinp grow in magnitude linearly with the
the critical current fills the entire cylinder, and the flux den-applied field. Asb, becomes large all the profiles, which are
sity is given byb=h,+p—1 for all p. The evaluation of the ~Parabolic inp, will approach straight lines. The slope in the
elastic response now yields o, profile is then a factor (2 v)/(1+ v) larger than foto,
whereas the slope @ (p) is twice that ofey(p), indepen-
dently of v. Provided thatv<3, the point where the radial
Or _ 3—2v Q+ 2 Z_ba_ /—2v (p—1), (31) strain changes sign approachps=1—(v—3v%)/(2—2v
oo 1-v 4 1-v 3 121-v) ' —41?),
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1

5L (4)b =4 Field up - @

0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 04 0.6 08 10
r/R r/R

FIG. 4. Radial(uppe) and hoop(lower) stress and strain in the cylinder Bg is increased abovB,, .

IV. DECREASING FIELD
1-2v

o e 22 E)a-kba A
UO_(ba+p 1) ba+ 1—

T (ba_ ba_ 6)

A. Stage 1,B,—2B,<B,<B,
When the applied field decreases from its maximum value 3p+86 _5
b,, the direction of the critical current is reversed in the X(E)a—ba)2+ Ta(l—p)
outer part of the cylinder. In this remagnetized region the
body forces now point away from the symmetry axis,

whereas the forces remain unchanged in the inner part, 34+62)02—8(1+ ) (1—b.)p—8(2— 1)D.+7—2
Therefore during the field reduction, where both compressive—”:( V)P 1+ 2)p—8(2=v)ba Y

: (36)

and expansive forces are simultaneously present, the distriZ0 121-v)
butions of stress and strain will vary dramatically along a 1-20b.—b
radius. From the Bean model it follows that the remagneti- +(6§_b§)[1+ " a(f,a_ba_(;)} (37)
zation front is located at 1-v 24
b _b e 1-v—2/v° bz L jp b2 do +1—3v+4V2
po=1- =2, 35 & 2(1-w) | 0 pZJoP PORP T TRy
xfp(’ b2 d +f1 bzd} Y (39
. pBHUp p Pl Da
The current becomes reversed throughout the volume first o Po © 2
whenb, is reduced by twice the full penetration field. We
consider in this section only the stage of incomplete current o2 B 2
reversal, i.e., ap, decreases from 1 to 0. o_ 1”—2"2 Jpp’bﬁ>dp’+ 1-3viav
To calculate stress and strain from E@52), (13), (18), € 2(1-v)p°Jo 2(1-v)
and (19) we now use that in the inner part=<(hb<p,, the ) N 1—v
flux density is given byoj,=b,+p—1. In the remagnetized X f Opb(zi)dp-i-f pbfo)dp}— — b2, (39
region, po<p=<1 the flux density equal®,=b,+1—p. 0 Po

Again the two parts of the cylinder require separate calcula-
tions, and we find for & p<py: and forppy<p<1:
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o 1-2v atb — b,
L= (1=p)| 2oyt 1—p+ <
” ” 0 <)
b,+b, . ,1+p 3p—8b,~5 i
X| =g (24ba=b)—+ —5 , 2} T~
(40) 1 (“po
0'9_(3+6v)p2—8(1+V)(1+ba)p+8(2—v)63+7—2v
oo 12(1—v) 0 TP
1-2v b,+b, . ; 1 b ~
b — = 2+ —~ b
+ 7= 5z (ba=ba=2) 1+p2, (41) (i) _ Ta
e _1-v=2, 1 Jpo 02 g L fp b2 ! i
e 21wy P 2 g PGPz | blode 0 L,
+l—3v+41/2 JPO b2 d +fl b2 dol— 172
201=v) | Jo PPOEPT ], PRE@P TR WP R
<+ e b
(42) (iii) -
e(,_l—v—ZVZ fpo b2 d fﬂ b2 dp’ 0 _1p\L
e 2(1-1p7| Jo poGdp+ pOP (0)dp A B

1-3v+412

N 1-v FIG. 5. Remagnetization as the applied field is reduced from
2(1-v)

Po 2 Lo B 2
fo pbiiydp+ popb(o)dp 2 ba  three different maximum valueb,, where in(i) b,=4, (ii) b,
43 =2, and in(iii) b,=1. Shown are the flux density profiles b
(43 decreases until the current is reversed in all the cylinder volume.

The strains are listed as integral expressions to show how velv. It i dilv derived that th |
the calculations are carried out when the flux profile consistdons: fresphectlve y. Itis reakl y aerive L at the envelope
of two segments. The integration itself is s:traightforward.Curve or the two stress peaks are given by

Note.that dEmng the field descent one may or may not, de- o™ [ 125 8p3+8(p?+ p— 1)63—21p+ 11
pending onb,, pass through the remanent staig=0. In =

any case, the formulas Eq86)—(43) are valid. We will now %0 1-v 12

look in detail on the remagnetization process starting from

three selectetl, , see Fig. 5, all giving qualitatively different +3p+2b,—3|(1-p), (44)
stress-strain behaviors.

~ max _ _ _" _ 2
Case (i): B,=4B, Ty _21 2v1-p—b, s 1—2vp

oo 1-v 3 P 1-v 4

Figure 6 shows the stress distributions while the applied
field is reduced fronb,=4 to b,=2, i.e., the starting con- 2—v3p+(1-p)b, 25—14v
dition is given by the set of curves label&) in Fig. 4. The t27— 3 T 1A= (45)
radial stress begins immediately to become tensile in the
outer part of the cylinder. A sequence of cusped peaks ader field reductions from anp,=1. In Figs. 6, 7, and 8 the
company the motion of the remagnetization frppfb,), the  peak envelopes are plotted as dashed curves.
point where also the flux density is maximum. Note that the gy the present cask, = 4, both envelope curves are seen
region of tensileo is about twice as wide as the entire {5 he monotoneous. The stresses have therefore a common
remagnetized region. Hence beloby=b,—1 the radial overall maximum,c™®=40,, at p=0, which occurs when
stress becomes tensile throughout. the current reversal is completed. Hence during this remag-
The hoop stress behaves differently,ogsremains every- netization process the last stage is the most critical, and
where compressive until, is reduced by approximately 0.3. cracking is most likely to be initiated in the center of the
Then, tension first occurs in the cylinder @=0.85. Like  cylinder.
o (p), alsooy(p) has a cusped maximum at the remagneti- Shown in Fig. 6 is also the behavior of the stramsand
zation front, although the peak i, is less sharp. ey for the same sequence of decreasing fields. Except very
Tensile stresses tend to generate cracks, or expand alreadypse to the surface, the curves for the radial strain follow
existing microcracks in the material. Hence the behavior otlosely the behavior of the radial stress. The hoop strain
the maxima ino, and o, give crucial information about the curves, on the other hand, contrast all the others by lacking
probability for cracking in the tangential and radial direc-the peak at the remagnetization front. In fact, one has to
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|_@)b, =33

2k 4
b;=37

=4 Field down

4 : . . :

0.0 0.2 04 06 0.8 1.0 0.0 0.2 0.4

0.6
r/R r/R

0.8 1.0

FIG. 6. Stress and strain distributions as the field is reduced fl’gm4 to b,=2, see Fig. &). The dashed lines show the stress and
strain at the remagnetization front, and forms also the envelope curve for maximum local stress and radiallsfrsinlesreased. Fa,
the dashed curve isot the envelope of local maximum. Positive stress values correspond to tension.

reduce the field considerably before a peak appears at all. Another remarkable difference is that stress and strain

Eventually, a broad maximum i@, occurs at som@>po,  magnitudes are substantially reduced relative to fije 4
which finally ends up ap=0. The dashed curves plotted case. In particular, all maxima are nearly a factor of 4 lower.
together with thee, ande, graphs show the strain ab. Therefore in energizing a trapped-field magnet a maximum
field Ba larger than 2 should from a mechanical point of view
Case (ii): i3a=28p be avoided. In practice, however, this is not easily realized as

the full penetration field of the superconductor is usually not
T N o known in advance.
the applied field is reduced frotn, =2 tob,=0. This is the The fact that highest cracking probability is now found at
activation process giving maximum trapped flux in the rem-5r4e ,, is not favorable. Destroying current loops of large
anent state at a minimum cost in terms of applied fild- 515 rapidly reduces the remanent magnetic moment as com-
cooling processes are discussed latéhe starting condition  areq to losing currents near the center. As shown schemati-
is now given by the set of curveg) in Fig. 4. . cally in Fig. 8b), a defect near the axis only cuts off a small
The most striking difference from the previous c&8€s (o part of the “flux density cone,” whereas defects far from
that stress and strain maxima now follow nonmonotoneougye axis easily reduces the width of the entire cone represent-
paths towards the remanent stat_e. All th-e global MaxiMgng the trapped field. Note, however, that the maximum
have moved away from the cylinder axis, namely 4o ajye itself is not so sensitive to the position of the defected
=0.42,0.32, 0.49, and 0.40 for., oy, €, andey, respec-  region. Of course, fully realistic considerations concerning
tively. Highest cracking probability is therefore now in posi- cracking probabilities can not be carried out unless stress

tions far from the center. We also find that the maximumeoncentrations are correlated with the mechanical homoge-
radial stress and strain are both larger than their hoop couyeity of the grown superconducting sample.

terparts. Hence tangentially oriented cracks are the more

likely to be initiated or expanded. On the other hand, if tan- Case (ii): B,=B,

gential cracks do not grow too large in size their effectonthe _ S
final trapped field will not be significant since the circular ~ Figure 9 shows the stress and strain as the applied field is
flow of the persistent current is only weakly perturbed. Inreduced after being first raised b =1. In this particular
this respect the formation of cracks running radially are byfield rangeb, from 1 to —1, the elastic response undergoes
far more deteriorating, as illustrated in Figag a complete cycle. As in the previous ca@e, the global

Figure 7 illustrates the behavior of , o4, €,, ande,, as



9698

TOM H. JOHANSEN

Fieid down

04 06 08 1.0
r/'R

PRB 60

-0.6 B

0.0 0.2 0.4 0.6 0.8 1.0
r/R

FIG. 7. Stress and strain as the field decreases frgmz to the remanent statb,= 0, see Fig. Gi). See also caption to Fig. 6.

stress and strain maxima ocdoeforethe remanent state is broad peak, here centeredat 0.61. One can, in fact, show
reached. However, the remanent state itself, represented loyite generally from Eqs39) and (43) that the two curve
the curves labeled3), is now different as all the cusped segments making up they(p) profile always combine gi,
maxima are located at,=0.5. The hoop strain has again a with equal derivatives, hence the smooth hoop strain distri-

(a

remagnetization
front

FIG. 8. (a) During field reduction the stresses ando, become
tensile and may generate cracks. Shows are two types of cracks; onel — p. This yields the following expressions for stress and

tangential—easily expanded by,, and one radial—easily ex-
panded by, . (b) The cone of trapped field in the remanent state is
perturbed differently depending on whether the cracked region is

near the centefleft case or at a large radiugright case.

bution.

Compared to the previous two cases there is also here
large reductions in stress and strain values. In the remanent
state the maximum tensile stress is now only o:24nd
0.170 for the radial and hoop component, respectively,

whereas withb,=2 it amounts to 0.76, for both compo-
nents. The strong field dependence of characteristic features
in the elastic response are, in fact, to be expected since the
general expressions, Eq42)—(20), for stress and strain are
all quadratic in the flux density.

The remanent state is also characterized by having zeros
in the radial stress and strain, locatedpat 0.95 and 0.87,
respectively. This feature, however, is very sensitive to the
exact value of the Poisson ratio. Actually, the zeroejn
vanishes when>0.343, while the same happens tgr for
v close to the limiting value 0.5.

B. Stage 2,B,<B,—2B,

When the applied field has been reduced by more than
twice the full penetration field the current is reversed in all
the cylinder volume, and the flux density is given lby b,

strain:

o |3=2vp 2-v2Db,
0'_0_ 1-v 4 1-v 3

7—2v
21| P

(46)
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FIG. 9. Stress and strain as the field decreases frpmil to b,=—1, see Fig. Gii). The initial and final state, labelgd) and(5), have
identical stress and strain profiles.

o, 1+2vp? 1+vb,+1 2—v 2b, 7—2v one only reproduces fdn,<—1 the stress-strain behavior
oo 1-v 4 2 1—p 3 PT1=, 3 * 121—v)" already described for increasing fieldg>1. This symmetry
(47) between states at opposite fieldd, is quite general, and
follows from the fact that the body force equals the product
e 1- V_2V2<3p b,+ 1) of current and flux density, which both have opposite sign
—— |5 p

8 2 3 but are otherwise equally distributedab,. The curves for
b,= =1, under casgiii) was another example of the sym-
2-3v—v?b, 7-9v—81 metry. .
1—, §+ 241—v) (48) This completes the coverage of all types of stress-strain
states encountered &g is cycled betweentb,, (b,=1),
including the initial stage of virgin flux penetration. Field

P cycles with6a< 1, or minor field loops not centered around

e_o_ 1-v

€y 1—v—2v2(p b,+1

e 1-v (8 3 , dl
b,=0, can be analyzed in a similar manner.
2—-3v—12 ba+7—9v—8v2 49
1-v 3 241-v) (49) V. MAGNETOSTRICTION, AR/R
As an example, Fig. 10 shows the elastic behaviob.ass The dilatation of the cylinder diameter, &R/R, is an

reduced from 2 to-1, i.e., it is assumed that the field had important quantity because it can be measured experimen-

previously been raised tb,=4 or larger. During field re- tally. Its hysteretic critical-state behavior can be calculated

duction towardsb,=0 the stresses are tensile, and withgenerally from Eq(17). However, this is not necessary here

maxima always in the cylinder center. Both strain compo-Since AR/R also equals the hoop strain at=1 for which

nents behave again similarly to the stress components. Nofxpressions are already derived. For completeness, we list

in the remanent state that both and e, also now have the expressions for the various branches making up a full

Zeros, as seen more C|ear|y in the ﬁgure inserts. magnetostriction IOOp. For the Virgin ianeaSing field branCh,
Decreasing the field belota, =0 one gradually reaches at Pa<1, one finds

b,=—1 the same elastic state as at full virgin penetration

b,=1, i.e., the curves labele@) in Fig. 10 are identical to AR 1-v

2 A3, n4
the curves labele4) in Fig. 3. If b, is reduced even more R €012 (6b3—4bg +b3). (50
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At the smallest fields the radius contracts with an amount AR ARl 1—v
increasing ab2. Forb,=>1 one has R L_ R T:7E (AMB),, (54)
AR 1-v 1—ab 51 whereAM =2R|./3 is the width of the Bean model magne-
R = €o 12 ( a), (51 tization loop. This relation allows one to make use of dilata-
tion data in the same way as one analyzes magnetization
showing a linear dependence on the applied field. curves to gain information about the irreversible flux
As b, starts to decrease from a maximiy, the dilata- behavior>*? Note, however, that the simple relation is not
tion becomes easily generalized to other geometries, such as, e.g., long
prismatic bodies. Here the magnetostrictive behavior is ex-
AR 1 b._p. |2 pected to be much more complex because of the discontinu-
— R _ e ; L
— =t 1+4b,—4(b,+b,)| 1— a2 al | ity lines in the flow pattern of the critical curreht.

(52) - - - -

This expression holds until the field has been reduceln, to
—2, where a further field reduction gives the magnetostric-
tion

=]
()]
AR ap 53 &
R &3 (1+4b,). (53 S
<]

The field cycle is completed using that afR/R hysteresis
loop must have mirror symmetry about the vertical axis. Fig-
ure 11 shows\R/R for b, cycled with amplitudesfaa: 1,2,
and 4. Recalling thaA R/R is proportional to the axial strain,
Eq. (20), the expressions above also apply to the longitudinal
dilatation if one replaces the factor-lv by —2v. Ba/Bp

Whenb,>2 there is a part of the loop where the ascend-
ing and descending field branches are linear. The vertical FIG. 11. Hysteretic behavior of the magnetostrictidbR/R as
width of the loop in this field range can be expressed as the field is cycled between b, with b,=1, 2, and 4.
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FIG. 12. Flux density profiles during field descent to the rema-
nent state after cooling in the fieltt, . Shown are two situations,
(i) and (i), with b; larger and smaller than the full penetration
field.

VI. FIELD COOLING

The pinning-induced stress generated by reducing the
field after field cooling has been considered earlier in Ref. 4.
Nevertheless it is worthwhile to consider the same process
here since the previous treatment was based on the plane
stress approximation, and also because the authors did not
perform a complete stress distribution analysis. One should
also keep in mind here the importance of field cooling as
method to activate trapped-field magnets. It requires less ap-
plied fields as compared to the field-cycle method discussed
in the first part of this paper. On the other hand, in the latter
case the activation can be accomplished more easily using
only a short high-field pulse.

Let B¢, denote the external field applied during the cool-
ing. We assume th&; also is the flux density frozen in the
superconductor when the subsequent field descent starts. As
illustrated in Fig. 12, there are here two different situations
to be considered, namely) b;.:>1 and(ii) b;.<1, where
only the first gives maximum trapped field.

In both cases, field reduction implies tHatstarts to flow
in an outer regiona<p<1 where now

a=1-b.+b,. (55)

stress /o 0

i

0.0

FIG. 13. Stress profiles during field descent to the remanent

0.2

0.

4 0.
r/R

6

0.8 1.0

Here the flux density equals=b,+ 1— p, while in the inner
part, 0<p<a, the original field remains frozeb="b;.. The
stress calculation using Eq§l2) and (13) gives now the
result for O=p<a:

Ir_99_ 2 2 "4V Ch\2(pk2
oo = oo = Dfembim 15—y (bre~ba)*(b3+ b,
+2b,bsc+ 8bs—3bZ,), (56)
and forasp=<1:
o 1 8(2—v)b,+7-2v 3-2vp
) 12(1— ) 1-v 4
1_21/ 3bf0+ba+l +p

bre—by—1)3
1_]} 12 (fC a ) pZ'

(57)

state after field cooling witth;,=1.5, 1.0, and 0.5. Thick lines
showay, fine lines showr, and dashed lines show the stress value
at the magnetization froni=a.

oy (3+6v)p?—8(1+v)(1+by)p+8(2— )b, +7—-2v
oo 12(1—v)

1-2v 3bt+b,+1
1o, T 12

0o

(bfc_ ba_ 1)3

1
1+—|. (58
P

These formulas apply to both cagg and (ii), although in
case(i) only to the point whereb,=b¢.—1. The final de-
scent tob,=0 goes via states already discussed in Sec. IV B,
and the expressions listed there hold also here. Formulas for
the strain components can be derived similarly from Egs.
(18) and(19).

Figure 13 shows examples of stress profilesbgsde-
creases to zero frorh;;=1.5, 1, and 0.5. The stresses are
tensile and withr, (bold line) always larger than or equal to
o, (fine ling. The two stress components have the same
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maximum value, which one finds as plateaus in the region
where the original frozen flux remains unchanged. A tiny 1 fe
negativeo, exists near the surface in the remanent states. . . : r : . —

In the upper panel, whette;,= 1.5, one sees that the pla- 4 (3)@(1)
teau value steadily increases lg is swept down. Atb,
=bs.—1 a maximum stress of 1.56, is reached ap=0.
Upon further field reduction fronb,=0.5 to the remanent
state, both stresses decay gradually, while being always larg-
est in the cylinder center.

The panel in the middel, with;.=1, shows similar be-
havior except that the vanishing of the plateau now coincides
with reaching the remanent state. Note from the dashed
curve, indicating the stress at the magnetization frgnt,
=a, that even here the overall stress maximum occurs be-
fore coming to the final state. Hence in this case the highest
stress is experienced by a larger portion of the cylinder,
namely for allp<0.13. One can show that when

0

max. stress/ o

bie=(4—2v)/3, (59

which for our v=0.3 become®;.=1.13, the highest stress ~
occurs only in the cylinder center, whereas for smalgrit max. field ba
is experienced by an extended region.

The lower panel is included to illustrate the cdgé of FIG. 14. Overall maximum tensile stress occurring in the cylin-
Fig. 13. Reducing here the field frotm,=0.5 tob,=0, a  der during field descent to the remanent state in the field cooling
large inner partp<0.5, holds the highest remanent stress. (FC) and zero-field-cooling route. The stresses are plotted as func-

By comparing the three panels, one sees that also her®ns of the maximum fieldb;. and b,. Regions marked byl),
there is a strong dependence of the maximum stress on tt8), and(2) indicate if the corresponding stress maximum is located
field. In particular, one may compare the remanent statest p=0, at some finitep, or in some extended inner part of the
after field reduction fromb;.<1. The stress in the central cylinder, respectively.
region is then from Eq(56) given by

Full lines always correspond to ca€b.
1-2v 8bfc—3bf2c For the field-cooling routggraph labeled FCthere is
12 ' (60 only one curve since both stress components have equal
maximum values. Fob;.=(4—2v)/3 the highest stress in-
reflecting again the generally quadratic dependence on thgreases wittb;, according to the linear relation
applied field. At this point we can also compare with a for-
mula derived in Ref. 4. Their Eq12), can be rewritten as o™ 22—y 3—-2v
the above equation with the only difference being the factor oo “31-» brc+ 4(1-v)’ (62)
containing the Poisson ratio, which in their formula becomes
(1—v). Such deviations are typical between the plane stresand occurs ap=0. For the smallebs., drawn as dashed

_—ﬂ—bZ 1—
oy o9 ¢ 1-
o 0o v

and the plane strain solutions. line indicating casé2) above, the stress dependsiay in a
nonlinear way resembling a parabola. Under optimum con-
VIl. COMPARISON OF MAXIMUM STRESS ditions for making a fully activated trapped-field magnet,

i.e., usingbs.=1, the highest stress encountered is equal to
Of prime practical importance is the overall maximum 0.774r,. This point, which is marked by a filled circle on
tensile stress generated as the applied field is reduced frothe graph, takes place whéin=0.127.
some maximum value and down to zero. Evidently, the over- The other two curves show the overall maximumoof
all maximum stress, and alsehereit occurs in the cylinder, ando, occurring in the field cycle following zero-field cool-

depends on the exact route towards the remanent stalgq For largeb, the stress maxima are also here equal for

Shown in Fig. 14 are the overall highest stress generategyin components, and take placepat0. Their magnitude is
during field descent after field cooling and during a ﬁeldgiven by

cycle after zero-field cooling. The horisontal axis gives the

maximum field applied in the process, i.b, andb, in the o™ 22—y, 25— 14v

field-cooling and zero-field-cooling case, respectively. Each oo “31-y at 12(1—v) (62)

of the three graphs is divided in two segments, one full line

and one dashed, to indicate that the stress maximum diffefer b, down to (5-v)/(1+ v) and 3 for the radial and hoop

in its location depending on the maximum applied field. Thestress, respectively. For the smaller fields, shown as dashed
stress can be eithét) restricted tgp =0, (2) distributed over curves, the maximum radial stress always lies above the
an extended region near the center(3rrestricted to some hoop stress. As discussed in Sec. IV A, these stress maxima
point with p>0. Shown together with the graphs are theare cusped and located at some finiteThe highest stress
dividing lines pointing out where each of these cases applyoccurring for the optimum condition for activating trapped-
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field magnetsE)a=2, is also here indicated by filled circles. general in the sense that stress-strain calculations can be car-
These stresses are of magnitude=1.210, and o, fied out for any critical-state model=j.(B).
=1.03r,, and occur wherb,=0.84 andb,=0.64, respec- The stress-strain behavior in the Bean model was dis-
tively. When comparing those numbers with the peak stressussed in detail for two common magnetization processes:
0.7740 in the field-cooling route, it is clear that the latter (1) a full cycle of the applied magnetic field after zero-field
method is strongly preferable if cracking is a real potentialcooling and(2) a field reduction to zero after field cooling.
problem. Greatest attention received the descending field stages, where
the pinning-induced body forces point outwards creating ten-
VIIl. CONCLUSION sile stress in the cylinder. Knowing the magnitude and loca-
] ] o . tion of the maximum tensile stress is imperative to under-

A full three-dimensional elasticity analysis of the flux- stand and hopefully control the well-known tendency of bulk
pinning-induced stress-strain problem has been presentegyperconductors to crack up either partly or completely dur-
The plane strain approach was used to find an exact consigyg magnetization with fields of several Tesla. We were able
tent solution for a long circular cylinder with free surfaces o map out the overall highest stresses in both of the magne-
placed in a parallel magnetic field. By assuming a critical-tjzation processes for various maximum applied fields in pro-
state-model type of magnetic behavior the body force in th%ess(l), and for various cooling fields in proce¢). Ex-

squared, which allows simple analytical expressions folyreparation.

stress and strain to be found. While the result for the external
radial magnetostrictiod R/R turned out to be the same as
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present spatial distributions of stress and strain are given by
different formulas. Several relations betwe&R/R and The author is grateful to J. Lothe, Y. Galperin, H.

other characteristic strains were also found; both the radidgFujimoto, and E. H. Brandt for encouragement and helpful
and hoop strain at=R, and the uniform longitudinglaxial) discussions. The financial support from The Research Coun-
strain are proportional td R/R. The derived results are all cil of Norway is acknowledged.

IM. Murakami, N. Sakai, T. Higuchi, and S. I. Yoo, Supercond. °H. Ikuta, K. Kishio, and K. Kitazawa, J. Appl. Phy26, 4776

Sci. Technol.9, 1015 (1996; A. Das, M. R. Koblischka, N. (1994.
Sakai, M. Muralidhar, S. Koishikawa, T. Fukuzaki, S. J. Seo, 'T. H. Johansen, J. Lothe, and H. Bratsberg, Phys. Rev. 8@tt.
and M. Murakami,jbid. 11, 1283(1998. 4757(1998.

2M. Muralidhar, H. S. Chauhan, T. Saitoh, K. Segawa, K. Ka- 8T. H. Johansen, H. Bratsberg, and J. Lothe, Supercond. Sci. Tech-
mada, and M. Murakami, Supercond. Sci. Techrid), 663 nol. 11, 1186(1998.
(1997. 9S. Timoshenko and J. N. Goodidtheory of ElasticitfMcGraw-

3G. Fuchs, G. Krabbes, P. Schtzle, P. Stoye, T. Steiger, and K.-H. Hill, New York, 195).
Muller, Physica C268 115(1996); H. Fujimoto, H. Kamijo, S. 107 H. Johansen, Phys. Rev.3® 11 187(1999.

I. Yoo, and M. Murakamiunpublishegl 1A, Goyal, W. C. Oliver, P. D. Funkenbusch, D. M. Kroeger, and
4Y. Ren, R. Weinstein, J. Liu, R. P. Sawh, and C. Foster, Physica S. J. Burns, Physica €83 221(1991.
C 251, 15 (1995. 12K, Fllber, A. Geerkens, S. Ewert, and K. Winzer, Physicad®,

5H. Ikuta, N. Hirota, Y. Nakayama, K. Kishio, and K. Kitazawa, 1 (1998; N. Nabialek, H. Szymczak, V. A. Sirenko, and A. 1.
Phys. Rev. Lett70, 2166(1993. D'yashenko, J. Appl. Phy4, 3770(1998.



