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Flux-pinning-induced stress and strain in superconductors: Case of a long circular cylinder

Tom H. Johansen
Department of Physics, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo 3, Norway

~Received 23 February 1999!

The irreversible behavior of the flux-pinning-induced stress and strain in a long circular cylindrical super-
conductor placed in a parallel magnetic field is analyzed. An exact solution of the full three-dimensional~3D!
magnetoelastic problem is found. The solution differs from the previous simplified 2D plane stress treatments
of the same problem. We derive formulas for all stress and strain components, including the magnetostriction
DR/R, in terms of the flux density profile in the cylinder. The results are valid for any critical-state model
j c5 j c(B). Based on the Bean model,j c5const, an extensive analysis is made of the elastic behavior during
~1! a complete field cycle after zero-field cooling, and~2! field descent to the remanent state after field cooling.
Special emphasis is put on the field-sweep stages generating tensile stresses, which tend to create cracking in
the cylinder. A comparison is made between the overall maximum tensile stresses encountered in both pro-
cesses~1! and ~2!, which one today uses, e.g., to activate superconducting trapped-field or quasipermanent
magnets.@S0163-1829~99!06437-1#
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I. INTRODUCTION

Bulk high-temperature superconductors~HTS’s! are by
increasingly sophisticated preparation methods steadily
proving in their flux pinning properties. Of equal importan
in this development is that now large-size samples can
prepared free from weak links so that high currents can fl
unperturbed throughout the volume, and hence give ris
very large magnetic moments. The material showing to
the best combination of these qualities are~RE!Ba2Cu3Oy
where RE can be one or even several rare-earth element1 A
record high critical current density of 63104 A/cm2 at 77 K
and a field of 3 T was recently reported for the ternery co
pound ~Nd,Eu,Gd!Ba2Cu3Oy ~NEG! with Pt additions.2 By
these improvements the potential has grown considerably
the use of HTS single-domain bulks in a number of appli
tions such as trapped-field magnets and levitating beari
and one sees today an intensive activity in this direction3

Because the mere size of the HTS is a crucial param
the magnetic characterization of these materials is o
made by recording maps of the field distribution trapped b
full-sized sample. Here one usually measures with a sc
ning Hall sensor the field near the surface in the reman
state after some initial activation field has been remov
Whereas the figure-of-merit is always the maximum fie
trapped by the bulk, the field maps can also reveal impor
information about weak connections between parts of
sample. Quite frequently one finds that internal disconn
tions, and even complete cracking, are indeed resulting f
the activation process itself. Such damaging effects were
studied systematically by Renet al.,4 who by experiments
with field cooling in various fields up to 14 T observed th
cracks were createdduring the ramping down of the field
They also explained the cracking tendency by showing
the internal stresses generated by the pinned vortices bec
tensile and with a maximum magnitude at some point dur
the field reduction.

A different, but closely related, flux-pinning-induced e
fect was discovered by Ikutaet al.5 They observed using
PRB 600163-1829/99/60~13!/9690~14!/$15.00
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capacitance dilatometry that superconductors can show a
ant magnetostriction, typically of the order of 1025– 1024

when placed in fields of a few Tesla. The observed hyster
dilatation versus applied fieldBa was successfully
modeled5,6 by a formula derived by considering the pinnin
induced strain in an infinite slab of half-widthw,

Dw/w5~2cm0w!21E
0

w

@B2~x!2Ba
2#dx. ~1!

Herec is an elastic constant andB(x) the local flux density.
Later, Johansen and co-workers7,8 gave an extended and un
fied critical-state analysis of the two magnetoelastic pheno
ena for the more realistic geometry of a circular cylind
Also the case of a square cross section was investiga
showing that the symmetry of the body forces causes h
deformations which do not conserve the shape of the cr
sectional area.

In this modeling work the superconductor was assume
behave magnetically as a long cylinder, so that demagne
tion effects can be ignored. At the same time, however,
elasticity problem was analyzed within the plane-stress
proximation, which is the scheme normally used to calcul
the elastic response of thin plates loaded by forces ac
parallel to the plate.

In a fully consistent magnetoelastic treatment of a th
sample the three-dimensional character of the deforma
should be accounted for. For this the plane strain schem
the proper approach.9 Very recently,10 the plane strain
scheme was applied to find an exact solution of the pinni
induced stress/strain problem for a long rectangular slab
parallel field. General expressions for all stress and st
components in terms of the flux density distribution we
derived. In the present paper we use the same approac
the case of a long circular cylinder. An extensive analysis
given for the various states occurring during a compl
cycle of the applied field. Also the decreasing field sta
after field cooling is discussed. Special emphasis is put
the stress conditions and probability for cracking during fie
9690 ©1999 The American Physical Society
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PRB 60 9691FLUX-PINNING-INDUCED STRESS AND STRAIN IN . . .
reductions ending in the remanent state, i.e., in the proces
energizing the HTS to become a quasipermanent, or trap
field, magnet. The paper is organized as follows.

In Sec. II we first define the magnetoelastic plane str
problem. Then an exact solution is derived for stress
strain in terms of the flux density and elastic constants. In
subsequent sections explicit stress-strain expressions ar
tained by assuming a Bean model type of magnetic behav
Sections III and IV discuss the various states encounte
during a complete field cycle. Section V focuses on the
ternal radial magnetostrictionDR/R. In Section VI the
stress-strain picture for field-cooling conditions is present
Then, in Sec. VII the maximum tensile stress occurring
various field descent routes to the remanent state is
cussed, before we finally give the conclusions in Sec. VI

II. MAGNETOELASTIC PROBLEM

A. General approach

Consider a type-II superconductor shaped as a circ
cylinder and placed in a magnetic field oriented parallel
the cylinder axis~z axis!. We seek a solution of the flux
pinning-induced stress-strain problem based on the follow
assumptions:

~i! The magnetic behavior can be described by
critical-state model. The critical current density can have a
dependence on the local inductionj c5 j c(B).

~ii ! Demagnetization effects are neglected, i.e., the sam
is assumed sufficiently thick to be treated as an infinite c
inder.

~iii ! Perpendicular to the cylinder axis the magnetic pro
erties are isotropic.

~iv! Elastically, the cylinder is isotropic, and it has a fr
surface, i.e., all stresses vanish at the surface.

~v! The deformations are well below the fracture lim
thus allowing linear elasticity theory to be applicable.

Under these conditions the sample will in a general m
netized state contain an axially symmetric flux density d
tribution B(r ) and an azimuthal current density satisfyin
j u(r )52B8(r )/m0 . In the critical-state the Lorentz forc
j uB acting on the vortices is balanced by a distribution
pinning forces. As the pinning forces react back on the cr
tal lattice the cylinder experiences a radial body force eq
to

f 52
1

2m0

d

dr
~B2! ~2!

per unit volume. Loaded by this axially symmetric an
z-independent body force, the free-standing cylinder will d
form by radial displacements as well as strain in the lon
tudinal direction. The elastic response is most convenie
calculated in two steps:

As step 1, let the cylinder be constrained to a fixed len
by two rigid and smooth parallel planes allowing the e
faces to expand and contract freely in the radial direction,
Fig. 1~a!. In this way an axial displacement is prevented a
all cross sections are in the same condition. The deforma
is then described by a radial displacementu5u(r ), and
there are only two nonvanishing strain components:
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er5u8~r ! and eu5u /r , ~3!

the radial and tangential~hoop! strain, respectively. The re
lations between the strainser ,eu ,ez and the corresponding
stressess r ,su ,sz are

Eer5s r2n~su1sz!,

Eeu5su2n~sz1s r !,

Eez5sz2n~s r1su!, ~4!

whereE andn is the Young’s modulus and Poisson’s rati
respectively. Because of the constraintez50, there will be a
buildup of axial stresssz , amounting tosz5n(s r1su),
which may be compressive or tensile.

As step 2, in order to recover the condition of free e
faces, we add a uniform axial stress, see Fig. 1~b!, of mag-
nitude:

^sz&5R22E
0

R

sz~r !2rdr , ~5!

which is the cross-sectional average ofsz(r ) found under
step 1. The second stress is applied opposite to the buil
stress, i.e., if the constraint gave a compressive^sz& the
added stress is tensile, and vice versa. This superpos
results in a zero net axial stress in the cylinder. According
Saint-Venant’s principle the procedure gives the correct
sultant elastic state except for local deviations close to
cylinder’s end faces.9

FIG. 1. Long cylindrical superconductor placed in a paral
applied magnetic fieldBa . The elastic response to the flux-pinning
induced body forcesf 5 j uB is considered as a superposition of tw
deformations.~a! First, the forces create a purely radial displac
ment in the cylinder which is thought to be confined between t
perfectly smooth and rigid planes.~b! Second, the condition of free
surfaces is recovered by letting the averaged axial stress^sz& built
up in ~a! be compensated by adding the opposite stresssz8 distrib-
uted uniformly over the end faces of the cylinder.
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9692 PRB 60TOM H. JOHANSEN
B. Cylinder of fixed length

We determine first the elastic response of the cylin
subjected to the body force, Eq.~2!, and constrained by the
conditionez50. It follows that the stress-strain relations th
become

er5
11n

E
@~12n!s r2nsu#,

eu5
11n

E
@~12n!su2ns r #, ~6!

and conversely,

s r5
E

12n22n2 @~12n!er1neu#,

su5
E

12n22n2 @~12n!eu1ner #,

sz5
nE

12n22n2 ~er1eu!. ~7!

The stresses acting on a volume element are illustrate
Fig. 2. The condition of static equilibrium in the radial d
rection is

s r8~r !1
s r2su

r
1 f 50. ~8!

Using Eqs.~3! and ~7! this can be expressed in terms of t
displacement field as

u91
1

r
u82

1

r 2 u1
12n22n2

~12n!E
f 50. ~9!

The corresponding equation valid for the plane stress
proximation deviates only by having a different prefactor
the body force term.8 Since Eq.~9! can be written as

d

dr F1

r

d~ru !

dr G5
12n22n2

2~12n!Em0

d

dr
~B2!; ~10!

it allows twice integration, which gives

u~r !5
12n22n2

2~12n!Em0
r F 1

r 2 E
0

r

r 8B2dr81
122n

R2

3E
0

R

r 8B2dr82~12n!Ba
2G . ~11!

FIG. 2. Volume element of a cylinder loaded by an axially sy
metric body force distributionf. When conditions are the same at a
cross sections, as during the deformation step 1@Fig. 1~a!#, it is
sufficient to consider only a slice of the cylinder. Indicated are
nonzero stress components.
r

in

p-

Here two integration constants were determined from
free-surface conditions r(r 5R)50, and using thatur(0)
50. From this formula foru(r ) one can calculate the com
plete stress-strain picture produced by a given flux den
distributionB(r ). For the stresses, Eq.~7!, we find

s r~r!5
1

2m0
FB22Ba

21
122n

12n

3S E
0

1

r8B2dr82
1

r2 E
0

r

r8B2dr8D G , ~12!

su~r!5
1

2m0
F n

12n
B22Ba

21
122n

12n

3S E
0

1

r8B2dr81
1

r2 E
0

r

r8B2dr8D G , ~13!

and

sz~r!5
1

2m0
S n

12n
B222nBa

212n
122n

12n E
0

1

r8B2dr8D ,

~14!
wherer[r /R. The stresses are evidently not uniformly di
tributed in the cylinder. This applies even for the axial stre
which in fact has the same spatial variation as that ofB(r )2.
From Eqs.~6!, ~12!, and~13! one finds the strainser andeu
in the constrained state. Note that the last integral term
Eqs. ~12! and ~13! approaches the valueB(0)2/2 asr→0,
and that this impliess r(0)5su(0).

C. Recovering free ends

To recover the condition of free end faces the built-
axial stress, Eq.~14!, is compensated by applying external
the uniform stresssz852^sz&, which from Eq.~5! becomes

sz85
2n

m0
E

0

1

r~Ba
22B2!dr. ~15!

This modifies the strains as follows. To bother and eu the
term 2nsz8/E is added, or equivalently, the displaceme
u(r ) receives an extra term2nsz8r /E. From Eq.~11! one
then obtains the final expression

u~r!5
12n

2Em0
rRF12n22n2

~12n!2r2 E
0

r

r8B2dr8

1
123n14n2

~12n!2 E
0

1

r8B2dr82Ba
2G . ~16!

Of particular interest is the observable external dilatat
DR5u(1), which takes the simple form

DR

R
52

12n

Em0
E

0

1

r~Ba
22B2!dr. ~17!

Interestingly, this formula is the same as derived earlier7 in
the plane stress approximation. The expression foru(r),
however, is different, as are the results for strains a
stresses.

-
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The final formula for the radial strain becomes

er~r!5
12n

2Em0
F12n22n2

~12n!2 S B22
1

r2 E
0

r

r8B2dr8D
1

123n14n2

~12n!2 E
0

1

r8B2dr82Ba
2G , ~18!

while the final hoop strain

eu~r!5u~r!/rR ~19!

follows directly from Eq.~16!. The compensating stress, E
~15!, generates also a longitudinal deformation of the cyl
der. This is described by a uniform axial strain equal toez

5sz8/E, which can be expressed as

ez52
2n

12n

DR

R
. ~20!

The superposition of the uniform axial stress,sz8 does not
influence the other two stress components. Hence the exp
sions Eqs.~12! and ~13! for s r andsu remain valid.

D. Flux density profiles and notation

In order to calculate explicit expressions for stress a
strain one needs first to determine the flux density profi
B(r) for the various stages of a magnetization proce
Given the appropriate functionj c(B) this can be done by
integrating

dr52
1

m0R

dB

j u~B!
, ~21!

where j u(B) has the magnitude ofj c(B), and a sign in ac-
cordance with the magnetic history as prescribed by
critical-state model. In this paper we restrict the calculatio
to the Bean model, i.e.,j c(B)5const, which leads to linea
or piecewise linear profilesB(r).

We consider first a superconductor initially zero-fie
cooled belowTc , followed by a complete cycle of the ap
plied fieldBa . The maximum applied field, which we deno
by B̂a , is assumed larger than, or equal to, the full pene
tion field, which for the Bean model equalsBp5m0 j cR.
WhenB̂a>2Bp the magnetization process is one that give
maximum trapped field in the subsequent remanent state
the sections below both of the cases,B̂a larger and smaller
than 2Bp , will be discussed in detail. To simplify notation
we normalize all magnetic fields byBp , and write b
[B/Bp ,ba[Ba /Bp , etc. The parameters defined by

s0[
Bp

2

2m0
and e0[

Bp
2

Em0
, ~22!

will appear as prefactors in the expressions for stress
strain, respectively.
-
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III. INCREASING FIELD

A. Stage 1,Ba<Bp

Starting with a flux free superconductor an increasing
plied field causes flux to penetrate into the cylinder in
outer shell of thicknessba , i.e., the flux front is located a
r5a where

a512ba . ~23!

During this virgin magnetization the flux density is given b
b5ba1r21 for a<r,1, and byb50 for r,a. The two
regions require separate calculations, and Eqs.~12!, ~13!,
~18!, and~19! yield for 0<r,a:

s r5su52s0S ba
21

122n

12n

ba24

12
ba

3D , ~24!

er5eu52e0S 12n

2
ba

21
123n14n2

12n

ba24

24
ba

3D ,

~25!

and fora<r<1:

s r

s0
5~ba1r21!22ba

21
122n

12n

3Fba23r21

12r2 ~ba1r21!32
ba24

12
ba

3G , ~26!

su

s0
5

n

12n
~ba1r21!22ba

22
122n

12n

3Fba23r21

12r2 ~ba1r21!31
ba24

12
ba

3G , ~27!

er

e0
5

12n22n2

12n F4r23

6
~ba21!1

3r222

8
1

~ba21!4

24r2 G
2

123n14n2

12n

ba
224ba16

24
ba

2, ~28!

eu

e0
5

12n22n2

12n

3r2ba11

24r2 ~ba1r21!3

2
123n14n2

12n

ba24

24
ba

32
12n

2
ba

2. ~29!

Figure 3 shows the stress distributions in the cylinder
four values of the increasing applied field. Both stress co
ponents are negative, i.e., compressive, and increase in m
nitude towards the center. In the nonpenetrated inner reg
r,a, where the body forces are zero, the stresses are
form. The position of the flux front for variousba is indi-
cated in the graphs as a dashed line. For small applied fi
the stresses grow relatively slowly, proportional toba

2. Note
that the two stress components differ in the way they
crease towards the surface. Whereass r falls to zero atr
51, as dictated by the free-surface condition, the hoop st
decreases to a finite value at the surface. In this figure, a
all other graphs presented in the paper, a Poisson ratio e
to v50.3 is chosen.4,11
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FIG. 3. Distribution of radial~upper! and hoop~lower! stress and strain as the applied field is increased from zero and up until a st
full flux penetration is reached. The indicated values of the fieldba are given relative to the full penetration fieldBp5m0 j cR. The curves are
labeled~1!–~4! in a consistent way. The dashed lines represent the position of the flux front as the field increases.
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The strain componentser andeu are also shown in Fig. 3
The strain distributions behave quite similarly to the cor
sponding stresses. Note, however, thater does not reduce to
exactly zero at the surface, but crosses over to a small p
tive value atr just below 1. This means that an expansi
radial strain occurs in the outermost layer while the cylind
is loaded by only compressive forces. This surprising re
can in fact be seen directly from Eqs.~18! and ~19!, which
when evaluated atr51 give the following two relations of
general validity:

er~1!5n
3n21

~12n!2

DR

R
and eu~1!5

DR

R
. ~30!

Hence near the surface the two strains will always have
posite signs ifn, 1

3 , as here.

B. Stage 2,Ba>Bp

As the field is increased above the full penetration val
the critical current fills the entire cylinder, and the flux de
sity is given byb5ba1r21 for all r. The evaluation of the
elastic response now yields

s r

s0
5F322n

12n

r

4
1

22n

12n

2ba

3
2

722n

12~12n!G~r21!, ~31!
-

si-

r
lt

p-

,
-

su

s0
5

112n

12n

r2

4
12

11n

12n

ba21

3
r2

22n

12n

2ba

3
1

722n

12~12n!
,

~32!

er

e0
5

12n22n2

12n S 3r

8
12

ba21

3 D r2
223n2n2

12n

ba

3

1
729n28n2

24~12n!
, ~33!

eu

e0
5

12n22n2

12n S r

8
1

ba21

3 D r2
223n2n2

12n

ba

3

1
729n28n2

24~12n!
. ~34!

Figure 4 shows the stress-strain picture for applied fie
up to ba54. Above the full penetration field both stress a
strain at a given pointr grow in magnitude linearly with the
applied field. Asba becomes large all the profiles, which a
parabolic inr, will approach straight lines. The slope in th
s r profile is then a factor (22n)/(11n) larger than forsu ,
whereas the slope ofer(r) is twice that ofeu(r), indepen-
dently of n. Provided thatn< 1

3 , the point where the radia
strain changes sign approachesr512(n23n2)/(222n
24n2).
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FIG. 4. Radial~upper! and hoop~lower! stress and strain in the cylinder asBa is increased aboveBp .
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IV. DECREASING FIELD

A. Stage 1,B̂a22Bp<Ba<B̂a

When the applied field decreases from its maximum va
b̂a , the direction of the critical current is reversed in t
outer part of the cylinder. In this remagnetized region
body forces now point away from the symmetry ax
whereas the forces remain unchanged in the inner p
Therefore during the field reduction, where both compress
and expansive forces are simultaneously present, the d
butions of stress and strain will vary dramatically along
radius. From the Bean model it follows that the remagn
zation front is located at

r0512
b̂a2ba

2
. ~35!

The current becomes reversed throughout the volume
when ba is reduced by twice the full penetration field. W
consider in this section only the stage of incomplete curr
reversal, i.e., asr0 decreases from 1 to 0.

To calculate stress and strain from Eqs.~12!, ~13!, ~18!,
and ~19! we now use that in the inner part, 0<r,r0 , the
flux density is given byb( i )5b̂a1r21. In the remagnetized
region, r0<r<1 the flux density equalsb(o)5ba112r.
Again the two parts of the cylinder require separate calcu
tions, and we find for 0<r,r0 :
e

e
,
rt.
e

tri-

i-

st

t

-

s r

s0
5~ b̂a1r21!22ba

21
122n

12n
F b̂a1ba

24
~ b̂a2ba26!

3~ b̂a2ba!21
3r18b̂a25

12
~12r!G , ~36!

su

s0
5

~316n!r228~11n!~12b̂a!r28~22n!b̂a1722n

12~12n!

1~ b̂a
22ba

2!F11
122n

12n

b̂a2ba

24
~ b̂a2ba26!G , ~37!

er

e0
5

12n22n2

2~12n! Fb~ i !
2 2

1

r2 E
0

r

r8b~ i !
2 dr8G1

123n14n2

2~12n!

3F E
0

r0
rb~ i !

2 dr1E
r0

1

rb~o!
2 drG2

12n

2
ba

2, ~38!

eu

e0
5

12n22n2

2~12n!r2 E
0

r

r8b~ i !
2 dr81

123n14n2

2~12n!

3F E
0

r0
rb~ i !

2 dr1E
r0

1

rb~o!
2 drG2

12n

2
ba

2, ~39!

and forr0<r<1:
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s r

s0
5~12r!H 2ba112r1

122n

12n

3F b̂a1ba

24
~21ba2b̂a!3

11r

r2 1
3r28ba25

12
G J ,

~40!

su

s0
5

~316n!r228~11n!~11ba!r18~22n!b̂a1722n

12~12n!

1
122n

12n

b̂a1ba

24
~ b̂a2ba22!3S 11

1

r2D , ~41!

er

e0
5

12n22n2

2~12n! Fb~o!
2 2

1

r2 E
0

r0
rb~ i !

2 dr2
1

r2 E
r0

r

r8b~o!
2 dr8G

1
123n14n2

2~12n! F E
0

r0
rb~ i !

2 dr1E
r0

1

rb~o!
2 drG2

12n

2
ba

2,

~42!

eu

e0
5

12n22n2

2~12n!r2 F E
0

r0
rb~ i !

2 dr1E
r0

r

r8b~o!
2 dr8G

1
123n14n2

2~12n! F E
0

r0
rb~ i !

2 dr1E
r0

1

rb~o!
2 drG2

12n

2
ba

2.

~43!

The strains are listed as integral expressions to show
the calculations are carried out when the flux profile cons
of two segments. The integration itself is straightforwa
Note that during the field descent one may or may not,
pending onb̂a , pass through the remanent stateba50. In
any case, the formulas Eqs.~36!–~43! are valid. We will now
look in detail on the remagnetization process starting fr
three selectedb̂a , see Fig. 5, all giving qualitatively differen
stress-strain behaviors.

Case (i): B̂a54Bp

Figure 6 shows the stress distributions while the app
field is reduced fromb̂a54 to ba52, i.e., the starting con
dition is given by the set of curves labeled~4! in Fig. 4. The
radial stress begins immediately to become tensile in
outer part of the cylinder. A sequence of cusped peaks
company the motion of the remagnetization frontr0(ba), the
point where also the flux density is maximum. Note that
region of tensiles r is about twice as wide as the enti
remagnetized region. Hence belowba.b̂a21 the radial
stress becomes tensile throughout.

The hoop stress behaves differently, assu remains every-
where compressive untilba is reduced by approximately 0.3
Then, tension first occurs in the cylinder atr.0.85. Like
s r(r), alsosu(r) has a cusped maximum at the remagne
zation front, although the peak insu is less sharp.

Tensile stresses tend to generate cracks, or expand alr
existing microcracks in the material. Hence the behavior
the maxima ins r andsu give crucial information about the
probability for cracking in the tangential and radial dire
w
ts
.
-

d

e
c-

e

-

ady
f

tions, respectively. It is readily derived that the envelo
curve for the two stress peaks are given by

s r
max

s0
5F122n

12n

8r318~r21r21!b̂a221r111

12

13r12b̂a23G ~12r!, ~44!

su
max

s0
52

122n

12n

12r2b̂a

3
r32

722n

12n

r2

4

12
22n

12n

3r1~12r!b̂a

3
2

25214n

12~12n!
, ~45!

for field reductions from anyb̂a>1. In Figs. 6, 7, and 8 the
peak envelopes are plotted as dashed curves.

For the present case,b̂a54, both envelope curves are see
to be monotoneous. The stresses have therefore a com
overall maximum,smax54s0, at r50, which occurs when
the current reversal is completed. Hence during this rem
netization process the last stage is the most critical,
cracking is most likely to be initiated in the center of th
cylinder.

Shown in Fig. 6 is also the behavior of the strainser and
eu for the same sequence of decreasing fields. Except v
close to the surface, the curves for the radial strain foll
closely the behavior of the radial stress. The hoop str
curves, on the other hand, contrast all the others by lack
the peak at the remagnetization front. In fact, one has

FIG. 5. Remagnetization as the applied field is reduced fr

three different maximum valuesb̂a , where in ~i! b̂a54, ~ii ! b̂a

52, and in~iii ! b̂a51. Shown are the flux density profiles asba

decreases until the current is reversed in all the cylinder volum
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FIG. 6. Stress and strain distributions as the field is reduced fromb̂a54 to ba52, see Fig. 5~i!. The dashed lines show the stress a
strain at the remagnetization front, and forms also the envelope curve for maximum local stress and radial strain asba is decreased. Foreu

the dashed curve isnot the envelope of local maximum. Positive stress values correspond to tension.
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reduce the field considerably before a peak appears a
Eventually, a broad maximum ineu occurs at somer.r0 ,
which finally ends up atr50. The dashed curves plotte
together with theer andeu graphs show the strain atr0 .

Case (ii): B̂a52Bp

Figure 7 illustrates the behavior ofs r , su , er , andeu , as
the applied field is reduced fromb̂a52 to ba50. This is the
activation process giving maximum trapped flux in the re
anent state at a minimum cost in terms of applied field~field-
cooling processes are discussed later!. The starting condition
is now given by the set of curves~2! in Fig. 4.

The most striking difference from the previous case~i! is
that stress and strain maxima now follow nonmonotone
paths towards the remanent state. All the global max
have moved away from the cylinder axis, namely tor
50.42, 0.32, 0.49, and 0.40 fors r , su , er , andeu , respec-
tively. Highest cracking probability is therefore now in pos
tions far from the center. We also find that the maximu
radial stress and strain are both larger than their hoop co
terparts. Hence tangentially oriented cracks are the m
likely to be initiated or expanded. On the other hand, if ta
gential cracks do not grow too large in size their effect on
final trapped field will not be significant since the circul
flow of the persistent current is only weakly perturbed.
this respect the formation of cracks running radially are
far more deteriorating, as illustrated in Fig. 8~a!.
ll.

-

s
a

n-
re
-
e

y

Another remarkable difference is that stress and str
magnitudes are substantially reduced relative to theb̂a54
case. In particular, all maxima are nearly a factor of 4 low
Therefore in energizing a trapped-field magnet a maxim
field b̂a larger than 2 should from a mechanical point of vie
be avoided. In practice, however, this is not easily realized
the full penetration field of the superconductor is usually n
known in advance.

The fact that highest cracking probability is now found
large r is not favorable. Destroying current loops of larg
area rapidly reduces the remanent magnetic moment as c
pared to losing currents near the center. As shown schem
cally in Fig. 8~b!, a defect near the axis only cuts off a sma
top part of the ‘‘flux density cone,’’ whereas defects far fro
the axis easily reduces the width of the entire cone repres
ing the trapped field. Note, however, that the maximu
value itself is not so sensitive to the position of the defec
region. Of course, fully realistic considerations concern
cracking probabilities can not be carried out unless str
concentrations are correlated with the mechanical homo
neity of the grown superconducting sample.

Case (iii): B̂a5Bp

Figure 9 shows the stress and strain as the applied fie
reduced after being first raised tob̂a51. In this particular
field range,ba from 1 to 21, the elastic response undergo
a complete cycle. As in the previous case~ii !, the global
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FIG. 7. Stress and strain as the field decreases fromb̂a52 to the remanent state,ba50, see Fig. 5~ii !. See also caption to Fig. 6.
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stress and strain maxima occurbefore the remanent state i
reached. However, the remanent state itself, represente
the curves labeled~3!, is now different as all the cuspe
maxima are located atr050.5. The hoop strain has again

FIG. 8. ~a! During field reduction the stressess r andsu become
tensile and may generate cracks. Shows are two types of cracks
tangential—easily expanded bys r , and one radial—easily ex
panded bysu . ~b! The cone of trapped field in the remanent state
perturbed differently depending on whether the cracked regio
near the center~left case! or at a large radius~right case!.
by
broad peak, here centered atr50.61. One can, in fact, show
quite generally from Eqs.~39! and ~43! that the two curve
segments making up theeu(r) profile always combine atr0
with equal derivatives, hence the smooth hoop strain dis
bution.

Compared to the previous two cases there is also h
large reductions in stress and strain values. In the rema
state the maximum tensile stress is now only 0.24s0 and
0.17s0 for the radial and hoop component, respective
whereas withb̂a52 it amounts to 0.76s0 for both compo-
nents. The strong field dependence of characteristic feat
in the elastic response are, in fact, to be expected since
general expressions, Eqs.~12!–~20!, for stress and strain ar
all quadratic in the flux density.

The remanent state is also characterized by having z
in the radial stress and strain, located atr50.95 and 0.87,
respectively. This feature, however, is very sensitive to
exact value of the Poisson ratio. Actually, the zero iner
vanishes whenn.0.343, while the same happens fors r for
n close to the limiting value 0.5.

B. Stage 2,Ba<B̂a22Bp

When the applied field has been reduced by more t
twice the full penetration field the current is reversed in
the cylinder volume, and the flux density is given byb5ba
112r. This yields the following expressions for stress a
strain:

s r

s0
5F322n

12n

r

4
2

22n

12n

2ba

3
2

722n

12~12n!G~r21!, ~46!

ne

s
is
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FIG. 9. Stress and strain as the field decreases fromb̂a51 to ba521, see Fig. 5~iii !. The initial and final state, labeled~1! and~5!, have
identical stress and strain profiles.
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s0
5

112n

12n

r2

4
22

11n

12n

ba11

3
r1

22n

12n

2ba

3
1

722n

12~12n!
,

~47!

er

e0
5

12n22n2

12n S 3r

8
22

ba11

3 D r

1
223n2n2

12n

ba

3
1

729n28n2

24~12n!
, ~48!

eu

e0
5

12n22n2

12n S r

8
2

ba11

3 D r

1
223n2n2

12n

ba

3
1

729n28n2

24~12n!
. ~49!

As an example, Fig. 10 shows the elastic behavior asba is
reduced from 2 to21, i.e., it is assumed that the field ha
previously been raised tob̂a54 or larger. During field re-
duction towardsba50 the stresses are tensile, and w
maxima always in the cylinder center. Both strain comp
nents behave again similarly to the stress components. N
in the remanent state that boths r and er also now have
zeros, as seen more clearly in the figure inserts.

Decreasing the field belowba50 one gradually reaches a
ba521 the same elastic state as at full virgin penetrat
ba51, i.e., the curves labeled~4! in Fig. 10 are identical to
the curves labeled~4! in Fig. 3. If ba is reduced even more
-
te

n

one only reproduces forba,21 the stress-strain behavio
already described for increasing fieldsba.1. This symmetry
between states at opposite fields6ba is quite general, and
follows from the fact that the body force equals the prod
of current and flux density, which both have opposite s
but are otherwise equally distributed at6ba . The curves for
ba561, under case~iii ! was another example of the sym
metry.

This completes the coverage of all types of stress-st
states encountered asba is cycled between6b̂a , (b̂a>1),
including the initial stage of virgin flux penetration. Fiel
cycles withb̂a,1, or minor field loops not centered aroun
ba50, can be analyzed in a similar manner.

V. MAGNETOSTRICTION, DR/R

The dilatation of the cylinder diameter, orDR/R, is an
important quantity because it can be measured experim
tally. Its hysteretic critical-state behavior can be calcula
generally from Eq.~17!. However, this is not necessary he
sinceDR/R also equals the hoop strain atr51 for which
expressions are already derived. For completeness, we
the expressions for the various branches making up a
magnetostriction loop. For the virgin increasing field bran
ba,1, one finds

DR

R
52e0

12n

12
~6ba

224ba
31ba

4!. ~50!
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FIG. 10. Stress and strain a
the field is decreased fromba52
to ba521. Remagnetization is
assumed already complete. Inse
magnification of the radial stres
and strain near the edge forba

50.
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At the smallest fields the radius contracts with an amo
increasing asba

2. For ba>1 one has

DR

R
5e0

12n

12
~124ba!, ~51!

showing a linear dependence on the applied field.
As ba starts to decrease from a maximumb̂a , the dilata-

tion becomes

DR

R
5e0

12n

12
F114ba24~ b̂a1ba!S 12

b̂a2ba

2
D 3G .

~52!

This expression holds until the field has been reduced tob̂a
22, where a further field reduction gives the magnetost
tion

DR

R
5e0

12n

12
~114ba!. ~53!

The field cycle is completed using that anyDR/R hysteresis
loop must have mirror symmetry about the vertical axis. F
ure 11 showsDR/R for ba cycled with amplitudesb̂a51, 2,
and 4. Recalling thatDR/R is proportional to the axial strain
Eq. ~20!, the expressions above also apply to the longitudi
dilatation if one replaces the factor 12n by 22n.

Whenb̂a.2 there is a part of the loop where the ascen
ing and descending field branches are linear. The vert
width of the loop in this field range can be expressed as
t

-

-

l

-
al

DR

R U
↓
2

DR

R U
↑
5

12n

E
~DMB!a , ~54!

whereDM52R jc/3 is the width of the Bean model magne
tization loop. This relation allows one to make use of dila
tion data in the same way as one analyzes magnetiza
curves to gain information about the irreversible flu
behavior.5,12 Note, however, that the simple relation is n
easily generalized to other geometries, such as, e.g.,
prismatic bodies. Here the magnetostrictive behavior is
pected to be much more complex because of the discont
ity lines in the flow pattern of the critical current.7

FIG. 11. Hysteretic behavior of the magnetostrictionDR/R as

the field is cycled between6b̂a with b̂a51, 2, and 4.
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VI. FIELD COOLING

The pinning-induced stress generated by reducing
field after field cooling has been considered earlier in Ref
Nevertheless it is worthwhile to consider the same proc
here since the previous treatment was based on the p
stress approximation, and also because the authors did
perform a complete stress distribution analysis. One sho
also keep in mind here the importance of field cooling
method to activate trapped-field magnets. It requires less
plied fields as compared to the field-cycle method discus
in the first part of this paper. On the other hand, in the la
case the activation can be accomplished more easily u
only a short high-field pulse.

Let Bf c denote the external field applied during the co
ing. We assume thatBf c also is the flux density frozen in th
superconductor when the subsequent field descent start
illustrated in Fig. 12, there are here two different situatio
to be considered, namely~i! bf c.1 and ~ii ! bf c<1, where
only the first gives maximum trapped field.

In both cases, field reduction implies thatj c starts to flow
in an outer region,a<r<1 where now

a512bf c1ba . ~55!

Here the flux density equalsb5ba112r, while in the inner
part, 0<r,a, the original field remains frozen,b5bf c . The
stress calculation using Eqs.~12! and ~13! gives now the
result for 0<r,a:

s r

s0
5

su

s0
5bf c

2 2ba
22

122n

12~12n!
~bf c2ba!2~ba

214ba

12babf c18bf c23bf c
2 !, ~56!

and fora<r<1:

s r

s0
5~12r!F8~22n!ba1722n

12~12n!
2

322n

12n

r

4

2
122n

12n

3bf c1ba11

12
~bf c2ba21!3

11r

r2 G ,
~57!

FIG. 12. Flux density profiles during field descent to the rem
nent state after cooling in the fieldbf c . Shown are two situations
~i! and ~ii !, with bf c larger and smaller than the full penetratio
field.
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s0
5

~316n!r228~11n!~11ba!r18~22n!b̂a1722n

12~12n!

1
122n

12n

3bf c1ba11

12
~bf c2ba21!3S 11

1

r2D . ~58!

These formulas apply to both case~i! and ~ii !, although in
case~i! only to the point whereba5bf c21. The final de-
scent toba50 goes via states already discussed in Sec. IV
and the expressions listed there hold also here. Formula
the strain components can be derived similarly from E
~18! and ~19!.

Figure 13 shows examples of stress profiles asba de-
creases to zero frombf c51.5, 1, and 0.5. The stresses a
tensile and withsu ~bold line! always larger than or equal t
s r ~fine line!. The two stress components have the sa

-

FIG. 13. Stress profiles during field descent to the reman
state after field cooling withbf c51.5, 1.0, and 0.5. Thick lines
showsu , fine lines shows r and dashed lines show the stress va
at the magnetization frontr5a.
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maximum value, which one finds as plateaus in the reg
where the original frozen flux remains unchanged. A ti
negatives r exists near the surface in the remanent state

In the upper panel, wherebf c51.5, one sees that the pla
teau value steadily increases asba is swept down. Atba
5bf c21 a maximum stress of 1.56s0 is reached atr50.
Upon further field reduction fromba50.5 to the remanen
state, both stresses decay gradually, while being always
est in the cylinder center.

The panel in the middel, withbf c51, shows similar be-
havior except that the vanishing of the plateau now coinci
with reaching the remanent state. Note from the das
curve, indicating the stress at the magnetization frontr
5a, that even here the overall stress maximum occurs
fore coming to the final state. Hence in this case the high
stress is experienced by a larger portion of the cylind
namely for allr<0.13. One can show that when

bf c>~422n!/3, ~59!

which for ourn50.3 becomesbf c>1.13, the highest stres
occurs only in the cylinder center, whereas for smallerbf c it
is experienced by an extended region.

The lower panel is included to illustrate the case~ii ! of
Fig. 13. Reducing here the field frombf c50.5 to ba50, a
large inner part,r,0.5, holds the highest remanent stress

By comparing the three panels, one sees that also
there is a strong dependence of the maximum stress on
field. In particular, one may compare the remanent sta
after field reduction frombf c<1. The stress in the centra
region is then from Eq.~56! given by

s r

s0
5

su

s0
5bf c

2 S 12
122n

12n

8bf c23bf c
2

12 D , ~60!

reflecting again the generally quadratic dependence on
applied field. At this point we can also compare with a fo
mula derived in Ref. 4. Their Eq.~12!, can be rewritten as
the above equation with the only difference being the fac
containing the Poisson ratio, which in their formula becom
(12n). Such deviations are typical between the plane str
and the plane strain solutions.

VII. COMPARISON OF MAXIMUM STRESS

Of prime practical importance is the overall maximu
tensile stress generated as the applied field is reduced
some maximum value and down to zero. Evidently, the ov
all maximum stress, and alsowhereit occurs in the cylinder,
depends on the exact route towards the remanent s
Shown in Fig. 14 are the overall highest stress genera
during field descent after field cooling and during a fie
cycle after zero-field cooling. The horisontal axis gives t
maximum field applied in the process, i.e.,bf c and b̂a in the
field-cooling and zero-field-cooling case, respectively. Ea
of the three graphs is divided in two segments, one full l
and one dashed, to indicate that the stress maximum di
in its location depending on the maximum applied field. T
stress can be either~1! restricted tor50, ~2! distributed over
an extended region near the center, or~3! restricted to some
point with r.0. Shown together with the graphs are t
dividing lines pointing out where each of these cases ap
n
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Full lines always correspond to case~1!.
For the field-cooling route~graph labeled FC! there is

only one curve since both stress components have e
maximum values. Forbf c>(422n)/3 the highest stress in
creases withbf c according to the linear relation

smax

s0
5

2

3

22n

12n
bf c1

322n

4~12n!
, ~61!

and occurs atr50. For the smallerbf c , drawn as dashed
line indicating case~2! above, the stress depends onbb f in a
nonlinear way resembling a parabola. Under optimum c
ditions for making a fully activated trapped-field magne
i.e., usingbf c51, the highest stress encountered is equa
0.774s0 . This point, which is marked by a filled circle o
the graph, takes place whenba50.127.

The other two curves show the overall maximum ofst
andsu occurring in the field cycle following zero-field cool
ing. For largeb̂a the stress maxima are also here equal
both components, and take place atr50. Their magnitude is
given by

smax

s0
5

2

3

22n

12n
b̂a1

25214n

12~12n!
~62!

for b̂a down to (52n)/(11n) and 3 for the radial and hoop
stress, respectively. For the smaller fields, shown as das
curves, the maximum radial stress always lies above
hoop stress. As discussed in Sec. IV A, these stress max
are cusped and located at some finiter. The highest stress
occurring for the optimum condition for activating trappe

FIG. 14. Overall maximum tensile stress occurring in the cyl
der during field descent to the remanent state in the field coo
~FC! and zero-field-cooling route. The stresses are plotted as fu

tions of the maximum field,bf c and b̂a . Regions marked by~1!,
~3!, and~2! indicate if the corresponding stress maximum is loca
at r50, at some finiter, or in some extended inner part of th
cylinder, respectively.
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field magnets,b̂a52, is also here indicated by filled circle
These stresses are of magnitudes r51.21s0 and su
51.03s0 , and occur whenba50.84 andba50.64, respec-
tively. When comparing those numbers with the peak str
0.774s0 in the field-cooling route, it is clear that the latte
method is strongly preferable if cracking is a real poten
problem.

VIII. CONCLUSION

A full three-dimensional elasticity analysis of the flu
pinning-induced stress-strain problem has been presen
The plane strain approach was used to find an exact co
tent solution for a long circular cylinder with free surfac
placed in a parallel magnetic field. By assuming a critic
state-model type of magnetic behavior the body force in
cylinder is proportional to the gradient in the flux dens
squared, which allows simple analytical expressions
stress and strain to be found. While the result for the exte
radial magnetostrictionDR/R turned out to be the same a
found earlier in a two-dimensional plane stress treatment,
present spatial distributions of stress and strain are given
different formulas. Several relations betweenDR/R and
other characteristic strains were also found; both the ra
and hoop strain atr 5R, and the uniform longitudinal~axial!
strain are proportional toDR/R. The derived results are a
d
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ss
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general in the sense that stress-strain calculations can be
ried out for any critical-state modelj c5 j c(B).

The stress-strain behavior in the Bean model was
cussed in detail for two common magnetization process
~1! a full cycle of the applied magnetic field after zero-fie
cooling and~2! a field reduction to zero after field cooling
Greatest attention received the descending field stages, w
the pinning-induced body forces point outwards creating t
sile stress in the cylinder. Knowing the magnitude and lo
tion of the maximum tensile stress is imperative to und
stand and hopefully control the well-known tendency of bu
superconductors to crack up either partly or completely d
ing magnetization with fields of several Tesla. We were a
to map out the overall highest stresses in both of the mag
tization processes for various maximum applied fields in p
cess~1!, and for various cooling fields in process~2!. Ex-
tending the present analysis to more realisticj c(B) is under
preparation.
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