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Kondo effect in systems with spin disorder
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We consider the role of static disorder in the spin sector of the one- and two-channel Kondo models. The
distribution functions of the disorder-induced effective energy splitting between the two levels of the Kondo
impurity are derived to the lowest order in the concentration of static scatterers. It is demonstrated that the
distribution functions are strongly asymmetric, with the typical splitting being parametrically smaller than the
average rms value. We employ the derived distribution function of splittings to analyze the temperature
dependence of the low-temperature conductance of a sample containing an ensemble of two-channel Kondo
impurities. The results are used to analyze the consistency of the two-channel Kondo interpretation of the
zero-bias anomalies observed in Cu/~Si:N!/Cu nanoconstrictions.@S0163-1829~99!06737-5#
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I. INTRODUCTION

The Kondo effect—that is, the low-temperature screen
of dynamical quantum defects in metals by band electron
has been extensively studied during the past 30 years a
by now well understood~see, e.g., Refs. 1 and 2!. The con-
tinuing interest in the problem is motivated chiefly by t
search for novel realizations of the effect.3 For example,lo-
cal non-Fermi-liquid ground states have been predic
theoretically4 for certain types of dynamical defects coupl
to band electrons. The behavior of these impurities is so
times invoked in efforts to understand the non-Fermi-liqu
behavior of strongly correlated systems, such as heavy
mion materials and high-temperature superconductors.2

One of the main difficulties encountered in the interpre
tion of experimental data from novel Kondo systems is
fact that defects with internal degrees of freedom very s
dom represent the only type of disorder in the system. M
often, a considerable number of random static defects aff
ing band electrons are also present. Scattering of electron
this static disorder may alter the experimental signature
the Kondo effect,5–12 sometimes masking genuine no
Fermi-liquid behavior or, vice versa, possibly mimicking
in Fermi-liquid systems.13

The Kondo effect requires that at least two internal sta
of the impurity be degenerate or, at least, that their ene
difference be much smaller than the Kondo temperatureTK .
Barring the cases of accidental degeneracy between the s
of the dynamical impurity, degeneracy occurs as a con
quence of a symmetry, e.g., invariance under a time-reve
transformation in the case of the magnetic one-chan
Kondo effect. Accordingly, the possible types of disord
can be separated into two classes, depending on whethe
order destroys the relevant symmetry of the Hamiltonian

A typical example of the first class is a dilute magne
alloy with a finite concentration of nonmagnetic defects. A
suming that the charge state of the magnetic impurity d
not change as a result of the interaction with conduct
electrons~thus excluding the mixed-valence regime of t
PRB 600163-1829/99/60~13!/9675~15!/$15.00
g

is

d

e-

r-

-
e
l-
e
t-
on
f

s
y

tes
e-
al
el
r
is-

-
s

n

Anderson model!, potential scattering on static disorder do
not involve the degree of freedom of conduction electro
which is coupled to the magnetic impurity—their spin. Th
Hamiltonian remains invariant under time reversal, and
spin states of the impurity are degenerate even in the p
ence of disorder. The Kondo temperatureTK , on the other
hand, is affected by the potential scattering of electrons.
nature of the ground state in systems of this type has b
studied in Refs. 6,9,10, and 13.

Another example of such symmetry-preserving disorde
given by spin-orbit scattering14,15 in magnetic Kondo sys-
tems. The corresponding Hamiltonian is also invariant un
time reversal, and Kramers’ theorem ensures that each
bital state of conduction electrons is doubly degenerate
their coupling to magnetic impurities does not lift the dege
eracy of impurity states.

An entirely different situation is encountered when sc
tering on static defects breaks the relevant symmetry. Ko
coupling between the band electrons and the dynamic de
then leads to symmetry-breaking contributions to the s
energy of the dynamic defect. The frequency-independ
part of these contributions can be reinterpreted as an e
term in thebare Hamiltonian of the dynamic defect, and th
difference between its eigenvalues~the energy difference be
tween the ‘‘up’’ and ‘‘down’’ states of the defect! is an ef-
fective splittingD. Being induced by random scattering, th
splitting itself is a random quantity. This type of model w
studied, for example, in Ref. 14, where theaveragesplitting
induced by broken time-reversal invariance due to the co
bined effect of random spin-orbit scattering and weak m
netic field was computed. A similar model has been enco
tered in the study of internal magnetic field distributions
spin glasses.16

The present study of models of this type has been m
vated in part by the discussion in Ref. 11 of different the
retical interpretations of zero-bias anomalies in Cu/Si:N/
nanoconstrictions.17 The zero-bias anomalies first reported
Ref. 17 were observed in nanoconstrictions formed by et
ing a bowl-shaped cavity in an insulating Si3N4 substrate
9675 ©1999 The American Physical Society
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9676 PRB 60IGOR E. SMOLYARENKO AND NED S. WINGREEN
before covering both sides with vacuum-deposited Cu film
The anomalies are characterized by aAV dip in conductance
G at small biasV, a correspondingAT temperature depen
dence of conductance atV50, and, more generally, a scalin
function of the formG(V,T)2G(0,T)5T1/2G(V/T) where
G(x@1)}x1/2. These features were interpreted in Refs.
and 18~see also Ref. 19 for additional experimental resu
and Ref. 20 for a comprehensive review! as consistent with
the scaling properties at low temperatures of the two-chan
Kondo model.4 The observed absence of Zeeman splitt
led to the conclusion17 that a nonmagnetic realization of th
two-channel Kondo model of the type suggested by Vla´r
and Zawadowski21 might be responsible for the observe
anomaly.

The two-channel Kondo model, proposed in Ref. 4~see
also Ref. 22 for an extensive review! to classify magnetic
properties of rare earth materials, is characterized by a d
bling of the degrees of freedom of conduction electrons
compared to the usual one-channel case, while the dyna
impurity is still a ‘‘spin-up, spin-down’’ doublet. In othe
words, each orbital state of conduction electrons acquire
addition to its spin, an extra label, ‘‘flavor,’’ which is silen
in the sense that the scattering on the dynamic impurity c
serves the flavor quantum number. Even so, the strongly
related ground state of this model has been predicted to
hibit unusual and rather distinctive scaling properti
markedly different from the Fermi-liquid-like ground-sta
properties of ordinary Kondo impurities.

In the original model proposed in Ref. 4, the flavor d
grees of freedom were constructed out of different angu
momentum states of conduction electrons. Subsequentl
was proposed in a series of papers by Vlada´r and
Zawadowski21 that aneffectivetwo-channel Kondo mode
may emerge in an entirely different context, where the ro
of orbital angular momentum and spin of conduction el
trons are interchanged. The role of a dynamic impurity
such nonmagnetic realizations of the Kondo effect is
sumed to be played by a two-level system~TLS!—an atom
or a group of atoms tunneling between two nearly degene
states. If transitions between the two states of the TLS
volve a transfer of charge, the transition amplitude becom
dependent on the density of conduction electrons via
Coulomb interaction.21 The parity of electronic states wit
respect to the center of the spatially extended defect beco
the active degree of freedom—‘‘pseudospin.’’ The physi
spin assumes the role of the silent ‘‘flavor’’ degree of fre
dom, providing two independent channels~in the absence o
spin scattering! for the screening of the dynamic impurity.4,21

Such TLS’s may be formed accidentally in a strained gla
material,23 or as a result of a Jahn-Teller effect,24 and TLS’s
have also been conjectured to occur at interfaces.25 Very
recently, the non-Fermi-liquid properties of the ground st
in this model have been invoked in the study of the deph
ing rate of conduction electrons in disordered metals.26

The degeneracy between the two states of the TLS ba
on pseudospin symmetry is a crucial precondition for tw
channel Kondo screening and the formation of the n
Fermi-liquid ground state. In practice this degeneracy is
most always expected to be lifted because the pseudo
corresponding to parity about the center of the TLS, is no
general a conserved quantity and, in particular, is not c
s.
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served by ordinary potential scattering. This feature of
orbital two-channel Kondo model has to be contrasted w
magnetic Kondo models where the relevant symmetry
time-reversal invariance, which is broken only in special c
cumstances, e.g., by an applied magnetic field or magn
disorder. Therefore, an analysis of the magnitude of disord
induced splittings of two-level systems is essential in eva
ating the consistency of the two-channel Kondo interpre
tion of the zero-bias anomalies of Refs. 17 and 19.

Most of the previous theoretical work on this subject11,14

has been concentrated on computing the second mome
the random splittings. A calculation of̂D2& induced by
white-noise potential scattering was reported in Ref. 11
was argued there that even small amounts of disorder
lead to large splittings between the energy levels of the T
thus effectively stopping the Kondo screening at tempe
tures higher thanTK . However, the distributions of splitting
tend to be very asymmetrical so that their moments are
representative of the typical values. Moreover, knowledge
the full distribution function is necessary to understand h
the splittings of an ensemble of defects may affect the s
ing behavior of conductance.

It should be remarked that there is no direct evidence
the existence of TLS’s in the nanoconstrictions studied in
experiments of Refs. 17 and 19. It is precisely the ma
between the experimental scaling of conductance and
predicted theoretically for two-channel Kondo systems t
is the main argument in favor of the two-channel Kon
interpretation of the data. The theoretical scaling functio
used for this purpose in Refs. 17 and 18 were derived un
the assumption that no disorder other than the TLS’s the
selves is present, and thus it is of considerable interes
understand how these scaling functions may be change
realistic amounts of static disorder.

In this paper we study the distribution functions of spl
tings for two models:~i! isotropic magnetic Kondo impuri-
ties in a spin glass environment and~ii ! atomic TLS’s in an
environment of static defects inducing potential scattering
both cases the disorder is modeled by an array of rando
located point scatterers. The magnetic model may be real
if a dilute solution of weakly coupled magnetic impuritie
undergoes Kondo screening in a spin-glass environm
formed, for example, by a more concentrated solution
more strongly coupled magnetic impurities. The result
the distribution of splittings in this case reproduces the d
tribution of internal fields in spin glasses derived earlier
Ref. 16. We also analyze the effects of higher-order term
the Kondo coupling which cannot be reduced to Ruderm
Kittel-Kasuya-Yosida-type~RKKY-type! expressions. These
terms are shown to lead to a finite renormalization of
small-D portion of the distribution functions, while their ef
fect on the large-D tail is negligible. A similar analysis is
performed for the distribution of splittings of atomic TLS’s
The magnitude of the splittings obtained here should
viewed as a lower bound, since only effects of electro
disorder are taken into account: i.e., we assume that in
absence of such disorder the two states of the TLS
degenerate.27

Using the distribution of splittings, we derive the tem
perature dependence of the zero-bias conductance of a
tallic sample containing an ensemble of TLS’s. On this ba
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we reanalyze the two-channel Kondo interpretation of
zero-bias anomalies.17,19,18The discrepancy between the o
served scaling behavior and that derived in the present w
presents, in our view, a significant challenge for the tw
channel Kondo interpretation. Furthermore, the estimate
the total number of degenerate~in the absence of electroni
disorder! TLS’s which would be needed to produce the co
ductance observed in Ref. 17 is found to be unphysic
large, indicating another problem with the two-chann
Kondo scenario.

The paper is organized as follows. In the next section
consider in greater detail the role of symmetry-breaking d
order, present the main results, and discuss their implicat
for the interpretation of the Ralph-Buhrman experiments17

Section III contains the derivation of the splitting distributio
for the magnetic and nonmagnetic Kondo effects. A br
discussion and the summary are presented in Sec. IV.

II. DISORDER IN THE SPIN SECTOR

The generaln-channel anisotropic Kondo Hamiltonian fo
a dynamic impurityt̂ located atr50 has the form

H (n)5 (
a51

n

(
a

E drcaa
† ~r !@ ê~2 i¹!#caa~r !

1(
j 51

3

Jj ŝ
j~0!t̂ j , ~1!

where ê is the Hamiltonian of band electrons,ŝ j (r )
5(a51

n (abcaa
† (r )sab

j cba(r ) is the electron spin-densit
operator atr , sab is the vector of Pauli matrices, andJj are
the exchange coupling constants. In the isotropic case we
the notationJ5Jj . Greek indices are used to label sp
quantum numbers, and Latin indices denote channel qu
tum numbers.28

When considering the orbital two-channel realization
the Kondo effect due to an electron-TLS interaction, it
convenient for our purposes to use, as a simple model
TLS, an atom which can tunnel between two minima o
double-well potential located atr56b ~Fig. 1!. The corre-
sponding Hamiltonian has the form

H5He1V1t̂1@c†~b!c~2b!1c†~2b!c~b!#

1V3t̂3@c†~b!c~b!2c†~2b!c~2b!#, ~2!

whereHe describes free electrons, andt̂1 and t̂3 are Pauli
matrices operating in the two-state Hilbert space of the T
V1 is the amplitude of the ‘‘pseudospin-flip’’ proces

FIG. 1. Schematic representation of an atomic two-level sys
~TLS!.
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whereby the TLS tunnels between its two states accom
nied by the transfer of an electron fromb to 2b or vice
versa.V3 is the position-dependent interaction between
TLS and electrons. The summation over physical spin is
plied in the terms bilinear in electronic annihilation and cr
ation operatorsc and c†. Terms proportional tot̂2 are ab-
sent in the Hamiltonian because of the combined effect
the invariance under time reversal and locality.21 Note that
the apparently nonlocal term proportional tot̂1 in Eq. ~2! is
an artifact of the approximation neglecting the full mome
tum dependence of the couplingV1 .

The Hamiltonian in Eq.~2! can be cast in the form of Eq
~1! with corresponding couplings29 J35(2ppFb/))V3 and
J152pV1 . The channel quantum numbers in Eq.~1! would
then refer to physical spin, while spin quantum numbers c
respond to the impurity atom and electronic excitations be
located at either of the TLS potential minima or, depend
on the choice of the basis, to different parity eigensta
Anisotropy of the couplings is unlikely to occur in~hypo-
thetic! magnetic realizations of this model, while TLS rea
izations generically possess strong anisotropy.21

The disordered environment is modeled by adding to
Hamiltonian in Eq.~1! the term

Hdis5Hc1Hs5E dr @Uc~r !n̂~r !1Us~r !•ŝ~r !#, ~3!

wheren̂ andŝ are the charge- and spin-density operators
the conduction electrons, andUc andUs are the correspond
ing random potentials. Formally, the disorder Hamiltoni
Hdis introduces two additional energy scales into t
problem—the inverse scattering timet21 and the inverse
spin-scattering timets

21 .
Before proceeding further, we will comment briefly o

the role of the charge disorder termHc in Hdis. It has been
discussed in numerous works including Refs. 5–10. A
lated self-consistent model for the case of afinite concentra-
tion of Kondo impurities has been considered in Ref. 1
This term affects only the charge degree of freedom, and
of its effects is to randomize the Kondo temperatureTK . In
systems of lower dimensionality, it can also produce singu
corrections to the energy dependence of thermodynamic
transport coefficients in the perturbative high-temperature
gime. Incorporating charge disorder into the description
the low-temperature (T,TK) regime of the Kondo effect ha
not been achieved so far. However, it has been argued in
6 that, in the one-channel magnetic case, the basic natu
the ground state as a local Fermi liquid would not chang

In the context of the magnetic Kondo effect, we will on
consider the role of spin disorder. Furthermore, we will
strict consideration to the case of the ordinary one-chan
effect, both because multichannel magnetic realizations h
not been unambiguously observed, and because cons
ation of the renormalization of splittings~Sec. III! cannot be
transferred to the casen.2. @The renormalization of split-
tings in then52 case is discussed in Sec. III. The results
a hypothetical magnetic isotropicn52 case can be obtaine
by a simple changegm→2gm in Eq. ~9!#.

In the orbital two-channel realization of the Kondo effec
the roles of spin and orbital degrees of freedom are parti
interchanged. The potential scattering termHc in Eq. ~3! will

m
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produce a contribution analogous to the spin-scattering t
Hs when Eq.~2! is transformed into the form of Eq.~1!.30 In
what follows, the term ‘‘spin scattering’’ is understood
apply either to physical spin in the context of magne
Kondo effect or to ‘‘pseudospin’’ constructed out of ele
tronic states of different parity in the context of the orbi
two-channel realization.

Our choice of model for disorder assumes that breaking
the spin symmetry is due to a well-defined set of scatte
present in the system. The scatterers couple to the spin
grees of freedom, e.g., ‘‘frozen’’ magnetic impurities in th
magnetic one-channel case or ordinary nonmagnetic de
in the orbital two-channel case. Replacing such a set of
fects by a continuous random Gaussian-distributed poten
as is frequently done in transport calculations, is not w
ranted here because the distribution of splittingsD is nonuni-
versal. That is, its form depends on the choice of the dis
bution function for the random potentialsUc(r ) andUs(r ),
and therefore a more realistic model is required.

In the model of isolated scatterers spin disorder is giv
by

Us~r !5g(
i

Sid~r2r i !, ~4!

whereSi are randomly oriented frozen spins located at r
domly selected pointsr i , and g is the corresponding ex
change coupling constant. The distribution of each ofSi is
assumed isotropic and is given by

PS~S!5
1

2p
d~12S2!. ~5!

In the TLS case, we use a slightly more general expr
sion, allowing for scatterers of finite size:

Uc~r !5(
i

U~r2r i !. ~6!

Since ‘‘spin’’ degrees of freedom in this case are a subse
orbital degrees of freedom, the above expression cont
both charge disorder and ‘‘spin’’ disorder terms. We w
only concentrate on the effect of the latter.

Below we will restrict our consideration to the case
rotationally invariant potentialsU, so that the correspondin
scattering matrixT can be reduced to the diagonal formT
5diag(Tl), where Tl can be expressed in terms of pha
shifts h l for each value of the orbital angular momentum

Tl52
1

pn
eih l sinh l . ~7!

The coordinatesr i of N impurities are drawn from a uni
form distributionPr($r i%)51/V N whereV is the total vol-
ume of the sample. The calculations are performed in
limit N,V→` with the concentrationc5N/V kept finite. It is
assumed that the concentration is small in the sense tha
typical interimpurity distanced;c21/3 is much larger than
the Fermi wavelengthlF52p/pF , which implies, in the
magnetic case,EFts@1 andEFt@1 in the TLS case, where
EF and pF are the Fermi energy and Fermi momentum,
m
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spectively. The effective ‘‘spin’’-scattering time in the TL
case is also of the order oft, and we will keep the notationts
for it.

A. Splitting of the internal states of a dynamic impurity
by spin scattering

What is the main effect of spin scattering on the behav
of a Kondo impurity? Even though a nonzero value ofts

21

means that the ‘‘spin memory’’ of electrons has a finite lif
time, the spin-flip processes at the location of the Kon
impurity still lead to logarithmic divergences in the high
temperature perturbative expansion~see Appendix A!. In
fact,ts

21 does not directly compete with the Kondo tempe
ture TK . Nevertheless, spin scattering can change the l
temperature behavior of an impurity by introducing an effe
tive splitting D between its internal states.

To understand qualitatively why finitets
21 does not by

itself destroy the Kondo effect, consider the underlyi
Anderson model for a magnetic impurity. In this descriptio
the Kondo effect is reflected in the logarithmic divergence
the perturbative contributions to the impurity electron se
energy atEF . There are two processes that contribute to t
self-energy: tunneling of an impurity electron into the co
duction band and the reverse process, tunneling of a con
tion electron onto the impurity. Both of these contributio
are logarithmically divergent atEF but with opposite signs.
For an impurity without on-site interactions, the two term
cancel and there is no Kondo effect. Interactions remove
cancellation, essentially because an occupied site can
decay in one way—by an electron tunneling out~double oc-
cupancy is forbidden or strongly suppressed by Coulo
repulsion!—while an unoccupied site can decay in tw
ways—by an electron of either spin tunneling in. The a
pearance of a finitets

21 may change slightly the relative
tunneling rates for spin-up and spin-down electrons, bu
cannot significantly change the factor of 2 difference b
tween the rate of decay of an occupied and an unoccu
site. Hencets

21 does not directly destroy the logarithm
divergences in perturbation theory associated with the Ko
effect.

Importantly, however, the main effect of spin scattering
to break time-reversal invariance and hence induce a s
ting D between the two spin states of the Kondo impuri
The splitting results from the appearance of a random n
zero quantum-mechanical expectation value of the local s
density of statess(e) at the impurity site. The coupling o
s(e) to the dynamic impurity viaJ is responsible for break
ing the energy degeneracy between different orientation
the impurity spin. In diagrammatic language, the splitting
associatednot with a modification of the standard set o
logarithmic diagrams, but rather with proliferation of a ne
set of diagrams which were forbidden by SU~2! and time-
reversal symmetries in the absence of spin disorder.
leading contribution toD in perturbation theory in the cou
pling strengthJ is shown in Fig. 2~a!. The energy scale es
tablished byD serves as a cutoff of all logarithmic diver
gences in the perturbation theory inJ.

Formally, the main effect of spin disorder is to generat
self-energy term which is essentially energy independe
and can be reinterpreted as a contribution to the effec
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impurity Hamiltonian. It is a Hermitian 232 matrix in the
space of impurity states. In the magnetic case, it is con
nient to expand this matrix in the basis of Pauli matrices

Heff5 (
a51

3

Dat̂a, ~8!

where theDa denote the components of the impurity ener
in this basis.

The discussion presented so far does not distinguish
tween the one- and two-channel cases. This is natural s
the high-temperature diagrammatic expansions in the
cases have identical structures, and differ only in factors o
~from the two channels! for closed electronic loops. If the
Kondo temperatureTK,D, spin-flip processes are sup
pressed atT,D, the strongly correlated state is nev
formed, and belowD all temperature dependences are of
Fermi-liquid type. If, however,TK.D, the behavior of the
one- and two-channel Kondo systems is very different. In
one-channel case a nonzero but smallD is equivalent to a
weak polarizing field acting on the Kondo impurity, resultin
in finite but small changes in the values of the impurity s
ceptibility and conductance. However, since these quant
depend onTK , which is itself altered in a random way b
disorder, no significant experimental consequences fol
from a small splittingD,TK .

Conversely, in the two-channel case whenDÞ0 there ap-
pear two distinct low-temperature regimes. A non-Ferm
liquid regime survives in the intervalT* ,T,TK , whereT*
is a new characteristic temperature,T* 5D2/2pTK .31–33 A
Fermi-liquid regime emerges belowT* . Hence, the low-
temperature properties of an ensemble of two-channel Ko
impurities will explicitly depend on the distribution of split
tings D.

If D.TK , a non-Fermi-liquid regime does not exist, a
at temperatures belowD the splitting becomes the only re
evant energy scale. In other words, the TLS~or, rather, the
composite object comprised of the TLS and correlated e
trons! becomes frozen in its lowest-energy state. Excitatio
above this state result inT2 dependences which blend wit
other Fermi-liquid effects that are always present. As w
demonstrated by Moustakas and Fisher,29 a generic set of
TLS parameters almost always corresponds toD.TK . In

FIG. 2. ~a! The dominant contribution to the effective splittin
D. The solid line represents the conduction-electron Green func
and the dashed line represents pseudofermions. The dot repre
the interaction vertexJ, and the cross corresponds to impurity sc
tering. ~b! The leading logarithmic order~parquet! contribution to
the splitting.~c! The sum of parquet diagrams. The large dot rep
sents the renormalized~in the parquet approximation! scattering
amplitudeJR . ~d! Renormalization of splitting.
e-
s

e-
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e

e
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s
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order to observe the non-Fermi-liquid square-root scaling
havior, the parameters of the Hamiltonian have to
fine-tuned.34

The distribution of splittings in the ordinary~one-channel!
magnetic case has a simple form~Ref. 16, Sec. III!

Pm~D!5
4gm

p

D2

~D21gm
2 !2 , ~9!

where gm5(2p2c/3pF
3)Jgn2EF is a constant which deter

mines the scale for the typical values ofD. It is proportional
to the strength of the dimensionless Kondo couplingnJ,
wheren is the density of states at the Fermi level, and to
magnitude of spin scatteringg @Eq. ~4!#. The quadratic sup-
pression ofPm at smallD results from the fact thatD2 is a
sum of three random variablesDa

2 , each possessing
smooth distribution nearDa50. Crucially, the Kondo tem-
peratureTK;EFe21/(nJ) is exponentially small, so even in
systems with weak magnetic disorder (c/pF

3 ,ng!1), gm

may be comparable toTK .
In the orbital two-channel Kondo case, we will show

Sec. III thatP(D) is described by a more complicated an
lytical expression

P~D!5E
0

2p du

2p

K~u!

AK1K3

Dg~u!

@D21g2~u!#3/2, ~10!

whereK(u)5(cos2 u/K11sin2 u/K3)
21,

g~u!5
2pc

3pF
3 AK~u!

2
F~u!,

and

F~u!511
cos2 u

usinuu
lnS utanuu1

1

ucosuu D . ~11!

The constantsK1 and K3 depend on the strength of elec
tronic coupling to the TLS and static scatterers,

K152~EFV1nt !2, K352~EFV3nt !2~2pFb!2, ~12!

where the scatterer strengtht is expressed in terms of th
scattering phase shiftsh l introduced in Eq.~7!:

t5(
l

~21! l~2l 11!sin~2h l !. ~13!

The functiong(u) is the analog of the parametergm intro-
duced in the magnetic case.

In the asymptotic limitD@ (c/pF
3)max$AK1,AK3% the

above expression simplifies to

P~D!;
&cK1K3

3pF
3D2 E

0

2p F~u!du

~K1 sin2 u1K3 cos2 u!3/2. ~14!

The distribution function in Eq.~14! has the same
asymptoticD22 behavior as Eq.~9! for large D. However,
the full distribution function given by Eq.~10! is linear rather
than quadratic at smallD because, in the absence oft̂2 terms
in the bare Hamiltonian,D2 is a sum of two rather than thre
random variables. In physical models of TLS’s the couplin
are usually related viaV1;V3(2pFb)2 ~see Ref. 21!. This
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typically corresponds toK3@K1 , so that the distribution
function acquires a third asymptotic region. It extends
tween the sharp maximum at D;(c/pF

3)AK1

;(nV1ct/pF
3)EF and the beginning of theD22 decay atD

FIG. 3. The distribution function of splittingsD. The parameters
of the distribution function are chosen as follows~see Appendix B!:
c/pF

351024, K350.38EF
2 , andK153.731025EF

2 ; the Fermi en-
ergy of Cu is EF583104 K. Insets: ~a! Isotropic caseK15K3

50.5EF
2 . ~b! Distribution of the crossover temperatureT* ; the pa-

rameter regime is the same as in the main graph;TK'8.2 K.
r
s

a
c

er
t

on
r
.
th
e
li
-

;(c/pF
3)AK3;(nV3ct/pF

3)EF , and corresponds to approx
mately linear decay of the distribution function from a co
stant value. IfK1'K3 , the intermediate asymptotic regim
disappears.

The graph ofP(D) for the strongly anisotropic regime
corresponding to the choice of parameters discussed in
pendix B (c/pF

3'1024, K350.38EF
2 , K153.731025EF

2!, is
shown in Fig. 3. The isotropic case (K15K350.5EF

2) is
shown in the top inset. Note that both crossovers betw
asymptotic regimes in the main graph occur at values oD
which are significantly smaller than the rms splitting quot
in Ref. 11 ~see also Ref. 35!: ^D2&1/2;100 K;1023EF ,
where the valueEF'83104 K for copper has been used.

Assuming that fluctuations of the Kondo temperatureTK
can be neglected~see Appendix C!, the distribution of
T* —the temperature at which the crossover from no
Fermi-liquid to Fermi-liquid behavior occurs—is easily in
ferred from Eq.~10!:

P̃~T* !5E
0

2p du

4p

K~u!

AK1K3

g~u!/A2pTK

@T* 1g2~u!/2pTK#3/2. ~15!

This expression is applicable only forT* !TK , where the
relationshipT* 5D2/2pTK holds. The graph ofP̃(T* ) is
shown in the bottom inset in Fig. 3. The corresponding li
iting behaviors are
P̃~T* !}5
4TK

AK1K3
S 2pc

3pF
3 D 22E

0

p/2 du

F2~u!
, T* ,~c/pF

3 !2 min~K1 ,K3!/TK ,

2pc/3pF
3

Ap3TKT* 3 E0

p/2

du
K3/2~u!F~u!

AK1K3

, ~c/pF
3 !2 max~K1 ,K3!/TK,T* ,TK .

~16!
to a

n-
ral

a
ss,
In the intermediate regime (c/pF
3)2K1 /TK,T*

,(c/pF
3)2K3 /TK the distribution functionP̃(T* ) is propor-

tional to 1/AT* . Both the intermediate and the fa
asymptotic regimes may not exist if the corresponding cro
over scales become comparable to, or larger than,TK .

B. Relevance of disorder to a two-channel Kondo-model
interpretation of zero-bias anomalies

If the parameters of TLS’s are randomly drawn from
certain distribution, the net contribution to conductan
DGN(T) from N TLS’s can be approximated as

DGN~T!'N^G&1O~AN!,

where^G& is the contribution of a single TLS averaged ov
the distribution ofT* . It was estimated in Ref. 17 that a
least 10 separate TLS in the vicinity of the nanoconstricti
and up to 40 in some samples, must be present in orde
explain the observed magnitude of the zero-bias anomaly
this regime the second term on the right-hand side in
above expression would manifest itself as noise on the
perimental curves, and hence can be neglected. A sca
s-

e

,
to
In
e
x-
ng

ansatz for the anomaly in the zero-bias conductance due
single TLS can be represented atT,TK as DG(T)
5CT1/2Y(T* /T), whereC is a constant andY is a smooth
function with the limiting behaviorY(0)51 andY(x@1)
→0. The signal fromN TLS’s is then written as

DGN~T!5NCT1/2E P̃~T* !Y~T* /T!dT*

5NCT3/2E P̃~xT!Y~x!dx, ~17a!

where x5T* /T, and P̃(T* ) is a normalized distribution.
The functionY(x) reflects the ‘‘freezing out’’ of some im-
purity degree of freedom, and is likely to decay expone
tially at largex. Thus the convergence of the above integ
at largex is provided by eitherY or P̃ depending on the
temperature.

It has been conjectured in Ref. 20 that the observedT1/2

scaling of GN may be consistent with the existence of
distribution of splittings because of an autoselection proce
in which only impurities with sufficiently smallD contribute
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to conductance. Such a scenario would imply that the in
gral in Eq.~17a! could be approximated as

DGN~T!'NCT3/2Y~0!E P̃~xT!dx, ~17b!

resulting inDGN5NCT1/2 by virtue of the normalization of
P̃. However, this approximation is only valid ifP̃(T* ) is
peaked so sharply that the integral in Eq.~17a! is not much
different from its value in the limiting caseP̃(T* )}d(T* ).
We will now consider under what circumstances such a
havior of P̃(T* ) is possible and what consequences a diff
ent behavior ofP̃(T* ) would have.

Randomly formed TLS’s in metallic glasses typical
have a broad distribution of asymmetriesDz even in the ab-
sence of electronic disorder.36 Neglecting contributions from
randomDx at first, we can writeP(D)51/Wz , whereWz is
independent ofD in the region of interest. The correspondin
distribution of T* is P̃(T* )5ApTK/2T* /Wz , and conse-
quentlyDGN must display a linear in temperature behavi

DGN5NCApTK

2Wz
2TE

0

` dx

Ax
Y~x!.

Nonzero values ofDx distributed with a widthWx,Wz
would only exacerbate the discrepancy with the experim
tally observedDGN;T1/2 behavior: specifically, the distribu
tion of D would acquire a linear dip atD,Wx , yielding a
flat distribution ofT* , leading in turn toDGN(T);T3/2 from
the integral in Eq.~17a!. Thus in order for the Kondo effec
in its orbital two-channel realization to be the cause of
observedT1/2 scaling, one must assume a set of nearly
generate TLS’s, at least before disorder is taken into acco
Glassiness as a source of TLS’s in Ralph-Buhrman sam
must, therefore, be ruled out.

Let us now turn to the case when electronic disorder is
only source of TLS splitting; i.e., the TLS’s are assumed
be formed by some mechanism which, in the absence
coupling to conduction electrons, ensures their degener
The analytic form for the distribution ofT* , Eq. ~15!, can be
substituted into Eq.~17a! together with an exponential ansa
Y(x)5e2x. Using the available experimental data to det
mine the parameters of the distributionP̃(T* ) in Eq. ~15! is
not straightforward, and is discussed in detail in Appendix
Integrating overx we obtain the following integral represen
tation for the TLS contribution to conductance:

DGN~T!5NCT1/2E
0

2p du

2p

K~u!

AK1K3
H 12

g~u!

A2TKT

3expF g2~u!

2pTKTGerfcF g~u!

A2pTKT
G J . ~18!

The remaining integral overu is performed numerically, and
the resulting graph for the temperature dependence ofDGN
is shown in Fig. 4. As discussed in Appendix B, electron
disorder is assumed to be caused by strongly scattering
equilibrium vacancies. The plot in Fig. 4 does indicate
behavior close to a power law. However, the best fit in
region 0.05TK,T,0.5TK , corresponding to the interva
-

-
-

,

-

e
-

nt.
es

e
o
of
y.

-

.

n-

e

0.4 K,T,4 K for TK'8 K, gives DGN}Tafit with afit
'0.84. The deviation from theT1/2 behavior expected for
degenerate TLS’s is rather significant. While the measu
exponent in the temperature dependence of zero-bias
ductance does show deviations froma51/2, they do not
exceed 0.25~Ref. 20!, so that the value 0.84 clearly lie
outside the experimental error.

This result can be understood better by examining un
what conditions Eq.~17b! can be valid. Let us assume, fo
simplicity, thatP̃ is characterized by a single parameter,
width W. Formally, Eq.~17b! can be used whenT!W. Let
us consider a hypothetical case of a sufficiently sharp dis
bution, e.g., a Gaussian,P̃5A2/pW2 exp@2T*2/2W2#. Sub-
stituting this form into Eq.~17a! we find that in the tempera
ture region W,T,10W, the best fit gives a power-law
exponent of approximately 0.7, while the asymptotic beh
ior 0.5 is approached within a 10% accuracy in the reg
10W,T,20W. Thus, even in the case of a sharp distrib
tion, the relationT!W has to be understood as implying
least an order-of-magnitude difference. Returning to the
tual distribution, Eq.~10!, we note that it is a much broade
function with a power-law 1/T* 3/2 tail so that the condition
for the validity of Eq. ~17b! is even stricter. At the same
time, the larger of the two parameters controlling the wid
of P̃(T* ) is W;(c/pF

3)2K3 /TK;3 K;0.3TK , so that the
asymptotic conditionW!T can never be satisfied for tem
peratures belowTK .

It should be observed that the most optimistic choice
parameters for the two-channel Kondo interpretation, co
sponding to scattering by nonequilibrium vacancies, lead
an estimate for the concentration of defects ofc/pF

3'1024.
Using such a choice of parameters to support the tw
channel Kondo interpretation also meets with a difficu
concerning the fraction of defects which form two-level sy
tems. Indeed, using the estimate made in Ref. 17 of up to
separate TLS’s in the vicinity of the nanoconstriction, t
corresponding estimate for the density ofactive TLS’s is
found in Ref. 20 to be 1024/atom orcactive/pF

3'231025. It
can be assumed that TLS’s withT* ,T0 , whereT0 is the

FIG. 4. Temperature dependence of the change in conduct
due to scattering by an ensemble of TLS’, based on Eq.~18!. The
solid line is the result of numerical evaluation, and the dot-das
line is the linear fit ln(DGN /NC)524.8310.84 ln(T/TK).
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9682 PRB 60IGOR E. SMOLYARENKO AND NED S. WINGREEN
appropriately chosen cutoff temperature, are active. Then
ratio of the concentration of active TLS’s to their total co
centrationcTLS is given by

cactive

cTLS
5E

0

T0P̃~T* !dT* . ~19!

ChoosingT0'0.8 K, which is a slightly generous assum
tion, since theT1/2 behavior is traced experimentally down
temperaturesT'0.4 K, we findcactive/cTLS'0.4. The total
density of TLS’s is consequently estimated atcTLS /pF

3

'(1/0.4)cactive/pF
3'0.531024. Comparing this to the

above estimate ofc/pF
3'1024 for the total concentration o

defects forces the improbable conclusion thathalf of all the
defects in the constriction are two-level systems. In ot
words, in order for the autoselection mechanism to work,
total number of TLS’s which would be degenerate in t
absence of disorder must be so large as to be inconsi
with the results of measurements, indicating a rather sm
overall density of defects in the nanoconstriction. Althou
indirect, this reasoning serves, in our view, as another in
cator of internal consistency problems with the two-chan
Kondo interpretation of zero-bias anomalies in Cu nanoc
strictions.

III. DISTRIBUTION OF SPLITTINGS

A. Local spin in a spin-glass environment

The coupling of the conduction electrons to the rand
spins results in the appearance of a nonzero expecta
value of the conduction-electron spin density at a gen
point in the sample. When this spin density is coupled to
dynamic impurity, the lowest-order effect is to generate
self-energy matrix, whose componentsDa in the basis of
Pauli matrices and to the lowest order in impurity concen
tion c are @see diagram in Fig. 2~a!#

Da52 iJg(
i
E de

2p
G2~e;r i !Si

a , ~20!

where the zero-temperature Green function in the coordin
representation is given by

G~e;r !52
pn

pFr
expH i S pFr 1

e

vF
r D sgneJ . ~21!

Note thatDa is proportional to the RKKY-induced random
spin polarization in directiona at the position of the impu-
rity. To the lowest order inJ, the distribution of splittings
follows the distribution of internal random magnetic fields
spin glasses. The latter has been derived in Ref. 16 usi
somewhat simplified RKKY interaction, in which its oscilla
tory character is modeled by random signs. The deriva
below, while reproducing the essential results of Ref.
serves primarily to introduce the more technically involv
derivation for the nonmagnetic two-channel case prese
in the next subsection.

Integrating over energy we obtain

Da5Jgn2(
i

pEF

~pFr i !
3 cos~2pFr i !Si

a . ~22!
he

r
e
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The distribution function ofD5A(aDa
2 therefore takes the

form

Pm~D!52DE )
i

N
dr i

V E )
i

N
dSi

2p
d~12Si

2!

3dS D22
K

2 (
i j

f ~r i ! f ~r j !SiSj D , ~23!

where K52(pJgn2EF)2 and f (r i)[ f i5cos(2pFri)/(pFri)
3.

Exponentiating the secondd function and introducing a
shorthand notationF5( i f iSi we rewrite the distribution
function as

Pm~D!52DE )
i

N
dr i

V E )
i

N
dSi

2p

3d~12Si
2!E dm

2p
eimD22 i mKF2

/2. ~24!

Decoupling the last term in the exponent with the help o
‘‘Hubbard-Stratonovich’’ transformation we obtain

Pm~D!52DE )
i

N
dr i

V
dSi

2p
d~12Si

2!E dm

2p
eimD2

3E dl

~2p imK !3/2expH i l2

2mK
2 i lFJ

52DE dm

2p
eimD2E dl

~2p imK !3/2expH i l2

2mKJ
3F E dr

V
dS

2p
d~12S2!e2 i f (r )lSGN

. ~25!

The expression in the square brackets can be transforme
follows:

F E dr

V E dS

2p
d~12S2!exp$2 i f ~r !lS%GN

5F E dr

V
sin@ ulu f ~r !#

ulu f ~r ! GN

'expH 2cE dr S 12
sin@ ulu f ~r !#

ulu f ~r ! D J . ~26!

To compute the last integral the following approximation
employed: since the dominant contribution to the distribut
function is expected to come fromr;d, it is possible to
decouple fast oscillations inf ~proportional to cos 2pFr! from
the slow decay (pFr )23. Formally, f (r ) is replaced with
f (w,r )5cosw/(pFr)3 with a simultaneous replacement

E dr→E drE dw

2p
.

Integration overr now gives

expH 2E dw

2p

p2culuucoswu
3pF

3 J 5expH 2
2pculu

3pF
3 J . ~27!
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AbsorbingAumuK into l we can rewrite the distribution
function as

Pm~D!52DE dm

2p
eimD2 4p

~2p i sgnm!3/2

3E
0

`

l2dl expH i sgnm

2
l22

2pcAumuKl

3pF
3 J .

~28!

Rotating the contour of integration by (p/4)sgnm we arrive
at

Pm~D!5E dm

2p
eimD2A2

pE x2dx

3expH 2
1

2
x22

2pc

3pF
3

11 i sgnm

A2
AumuKxJ .

~29!

Performing another change of variables,y252umuD2, and
rotating the contour of integration overy we obtain the fol-
lowing integral representation for the distribution function

Pm~D!52S 2

p D 3/2

Re
]

]gm
E

0

`

xdxE
0

`

dy

3expH 2
1

2
~x21y2!1 i

gm

D
xyJ , ~30!

where

gm5
2pc

3pF
3 AK

2
.

Using polar coordinates~r,u! in the (x,y) plane and integrat-
ing overr the distribution function can be rewritten as

Pm~D!52
2

p
Re

]

]gm
E

0

p/2 cosudu

S 12 i
gm

D
sin 2u D 3/2. ~31!

The remaining integral can be performed by element
means, leading to the expression for the distribution funct
~cf. Ref. 16! quoted in Eq.~9!.

B. Nonmagnetic TLS’s in the presence of static defects

The electronic contribution to the splitting between t
energy levels of TLS’s is determined by the difference b
tween the two eigenvalues of the self-energy matrix14

S V3d11 V1d12

V1d21 2V3d22
D . ~32!

The components of this matrix are expressed in terms of
scattering matrixT corresponding to the potentialU(r ) in-
troduced in Eq.~6! as
y
n

-

e

d11522i(
i
E de

2p E drE dr 8Ge~r1b!Te~r2r i ,r 82r i !

3Ge~r 81b!, ~33a!

and similarly ford22 . The off-diagonal termd12 is

d12522i(
i
E de

2p E drE dr 8Ge~r1b!Te~r2r i ,r 82r i !

3Ge~r 82b!. ~33b!

The factor of 2 in front is due to summation over channels
the two orientations of the real spin of the conduction el
trons. The resulting electronic contribution to the splitting

D25V3
2@Re~d112d22!#214V1

2~Red12!2. ~34!

After integrating overe and approximatingur i6bu5r i
6b•ni , ni5r i /r i , the distribution function forD is given by
an expression analogous to Eq.~22!:

P~D!52DE )
i

dr i

V dS D22
1

2 (
i j

@K1f i f j1K̃3hihj # D ,

~35!

where hi5h(r i)5 @sin 2pFri /(pFri)
3#sin(2pFb•ni), and the

constantsK1 , K3 , andt were defined above in Eqs.~12! and
~13!. K̃3 is related toK3 via K35(2pFb)2K̃3 .

Following the technique used in the preceding section,
distribution function can be represented as an integral ov
Lagrange multiplierm and two ‘‘Hubbard-Stratonovich’’
variablesl1 andl3 ,

P~D!52DE dm

2p
eimD2E dl1dl3

2p imAK1K̃3

3expH i
l1

2

2mK1
1 i

l3
2

2mK̃3

2
4pc

3pF
3 u~l1 ,l3!J ,

~36!

where the functionu is defined by an expression analogo
to Eq. ~26!,

4pc

3pF
3 u~l1 ,l3!5cE dr @12exp$2 il1f ~r !2 il3h~r !%#.

~37!

Integrating over orientations ofn, and decoupling fast oscil
lations in f andh, we arrive, in the approximation sin 2pFb
'2pFb, at an analog of Eq.~27!:

u~l1 ,l3!5E
0

` dz

z2 E
0

2p dw

2p
F 12

sin~l3b̃ sinwz!

l3b̃ sinwz

3exp$2 il1 coswz%G , ~38!

where b̃52pFb and z51/(pFr )3. Integration overw now
gives
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u~l1 ,l3!5
2b̃ul3u

p
E

0

` dz

z2 F12
zul1u

b̃ul3u
K21S zul1u

b̃ul3u
D sinz

z G ,

~39!
where Kn is the modified Bessel function. Completing th
remaining integration overz, and rescalingb̃l3→l3 so that
K̃3 in Eq. ~36! is replaced withK35b̃2K̃3 , we obtain

u~x,y!5
x2

uyu
ln

uyu1Ax21y2

uxu
1Ax21y2. ~40!

Using polar coordinates~l,u! in the (l1 ,l3) plane, introduc-
ing another set of polar coordinates~r,c! in the ~l,m! plane,
and integrating overr we obtain the following integral rep
resentation for the distribution function:

P~D!52
2

pD E
0

2p du

2p

K~u!

AK1K3

Re
]

]g

3E
0

p/2 dc

12 ig sin 2c U
g5g(u)/D

. ~41!

The final result obtained after integrating overc, together
with the definition ofg~u!, has been presented in Eq.~10!.

C. Higher-order contributions

The scaling ansatz used in Eq.~17a! depends crucially on
the shape of the distribution functionP in the region of small
splitting D. Thus, the applicability of the above analys
hinges on whether the perturbative calculation ofD in the
preceding subsection is sufficient forD’s smaller thanTK .
Only the lowest-order diagram in Kondo coupling has be
retained in the calculation so far, and we now turn to
consideration of higher-order contributions.

These higher-order contributions can be convenien
separated into two classes. The diagrams belonging to
first class@Fig. 2~c!# correspond to the renormalization of th
Kondo scattering amplitude with parquet diagrams, wh
collect the leading order logarithmic terms. They produ
corrections toD which are smaller by powers of the Kond
coupling and, importantly, unlike the Kondo scattering a
plitude itself, do not contain any logarithmically diverge
terms. These contributions can therefore be neglected.

Indeed, the contributions of the diagrams belonging to
first class is typified by that of the diagram in Fig. 2~b!:

dDa5(
i

~ng!~nJ!2
pEF

~pFr i !
3

3F ln
EF

vF /r i
1constGcos~2pFr i !Si

a . ~42!

This expression is valid as long as

vF /r i,TK , ~43!

which, for TK /EF;1024, would be violated only at un-
physically small concentrationsc/pF

3,10212. It is seen that
this contribution does not contain any uncontrolled logari
mic divergences. The reason is that the sum of all diagra
of this type can be written in the form of Eq.~20!, where the
n
e

y
he

h
e

-

e

-
s

bare scattering amplitudeJ is replaced with the renormalize
amplitudeJR(e,e). The renormalized amplitude is singula
at small energies, but the singularity is integrable, and a
the integration over energies in Eq.~20! it only manifests
itself in finite logarithmic terms like the first term in squa
brackets in Eq.~42!. The inequality~43! ensures that the
contribution of these terms is small in the parame
(nJ)ln@EF /(vF /d)# !1, and can be ignored.

In contrast, the diagrams of the second class correspon
a further renormalization of the scattering amplitude
particle-hole pairs, and retain the usual logarithmically div
gent factors. These terms were previously analyzed pertu
tively using the renormalization group~RG! approach in Ref.
21, where it was established that in anisotropic models
effect of these terms may be to renormalize downwards
effective splittingat the scale just above TK . We argue that
this analysis cannot be straightforwardly extended throu
the crossover region into the low-temperature regime.
stead, we show that the effective splitting at temperatu
below the Kondo temperature can be deduced from
lowest-order perturbative result on the basis of universa
properties of the two models under consideration, the o
and two-channel Kondo models. We employ the language
the underlying Anderson model, as it affords a unified d
scription of the high- and low-energy regimes.2

The simplest diagram of the second class is shown in F
2~d!. These graphs correspond to linear~in D! screening of
the splitting by the Kondo interaction. In the perturbati
renormalization group analysis by Vlada´r and Zawadowski21

it was found that the splitting tends to be renormaliz
downwards, and in the case of strong anisotropy, at least
component of the splitting may be renormalized sign
cantly,

Dx,eff~T>TK!;DxS nJ1

4nJ3
D 1/4nJ3

.

However, the perturbative analysis in Ref. 21 cannot be
tended to energy scales belowTK . An extrapolation of the
perturbative RG results from the energy scaleE>TK to pre-
dict the values ofD at T!TK ~Ref. 20! is unjustified because
splitting is a relevant operator in the RG sense.

Let us consider first the isotropic one-channel magne
case. The perturbative renormalization group calculation
Ref. 21, although formulated in terms of the orbital tw
channel Kondo model, can be transferred, with minor mo
fications, to the one-channel case as well because of the i
tical structures of the corresponding high-temperat
perturbation expansions. When graphs of the type show
Fig. 2~b! are neglected, the splitting has the literal mean
of an external magnetic fieldh acting on the impurity. The
unrenormalized impurity Green function has the form

G5~v2ed1h•s!21, ~44!

whereed is the energy of the singly occupied impurity stat
The ground state of the model can be described as an e
tive Fermi liquid, in which the Green function of the impu
rity spin retains its form under strong renormalization. T
fully renormalized G will contain additional self-energy
contributions,2
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G5@v2ed1 iG/z1h•s2Ŝ~v,h!#21, ~45!

where G is the width of the Kondo resonance. The se
energyŜ5S01S•s is expanded at smallv andh as

S0~v,h!5S001S 12
1

zDv1 iO~v2!,

S5Sh8h, ~46!

whereSh8 andz are the renormalization constants, andS00 is
the constant term which, in the case of symmetric Ander
model, is equal toed ensuring that the Kondo resonance
centered at the Fermi energy.

Factoring out the quasiparticle weightz, theeffectivefield
heff takes the form

heff5z~12Sh8!h. ~47!

The perturbative RG calculation of renormalized splitting
Ref. 21 is equivalent to computing the same prefactor

R~v!5z~12Sh8![
12]S/]h

12]S/]v

at a finite frequencyv @see Eqs.~3.5!–~3.10! in the second
reference of Ref. 21#. The frequency dependence of bo
derivatives in this region is logarithmic, so that, with log
rithmic accuracy, frequency can be identified with ener
scale in the RG sense. Such scale-dependent quantitie
termine the properties of the system at temperatures of
order of the energy scale.

The perturbative RG analysis cannot be continued bey
some intermediate scaleE0*TK , and its usefulness for de
termining low-temperature properties relies on the assu
tion that further renormalization fromE;E0 to E!TK does
not change the value of the renormalized quantity in a
essential way. This assumption may be violated when re
malization of relevant operators is considered, as is ind
the case in the models considered here.

At zero temperature, the prefactor in Eq.~47! is just the
universal Wilson ratioR ~Ref. 2!. Substituting its known
value, R52, we obtain a seemingly counterintuitive resu
that, despite the downwards renormalization of the splitt
at E.TK , the splitting is actually increased atE!TK by a
factor of 2 compared to its bare value. Of course, at z
temperature the role of the weak effective magnetic fi
acting on the impurity is to polarize the Kondo screen
complex~as long asD!TK ,! andheff induces a ‘‘splitting’’
only in this sense.

To explain the nonmonotonic behavior of the effecti
splitting as a function of energy scale~or temperature!, one
should note that, in the Anderson model, the renormaliza
of the splitting is proportional to the ratio of the impurit
magnetic susceptibilityx to C/T, whereC is the impurity
specific heat. This ratio is a nonmonotonic function of te
perature nearTK , essentially because of the maximum in t
temperature dependence ofC at T;TK .

The Anderson model is less well suited for a discussion
anisotropic Kondo models. Nevertheless, anisotropy can
modeled, at the price of additional potential scattering in
corresponding s-d Hamiltonian, by introducing spin-
n
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dependent renormalization constantsza andSab8 . Coupling
anisotropy is an irrelevant operator~in both one-channel and
two-channel spin-1/2 Kondo models: see, e.g., Ref. 31!, and
the invariance of the Wilson ratio demands that

25z↑~12S↑↑8 !5z↓~12S↓↓8 !5Az↑z↓~12S↑↓8 !. ~48!

The choice of only two different renormalization con
stantsz↑ and z↓ corresponds toJ15J2ÞJ3 in the Kondo
effective Hamiltonian. If the field now is chosen in thexy
plane (h↑↓ in the above notations!, the corresponding value
of the self-energy at zero temperature is still

h↑↓eff5h↑↓Az↑z↓~12S↑↓8 !52h↑↓ .

The temperature dependence of this self-energy may be q
nonmonotonic, as the transverse susceptibility devia
strongly from the free-spin value at temperatures above
specific heat maximum.

Let us turn now to the two-channel Kondo case. T
above analysis cannot be transferred verbatim because
ground state is not a Fermi liquid, andT* does not have the
meaning of the renormalized Fermi-liquid quasipartic
self-energy.37 In particular, the renormalization factorR(v)
can no longer be identified with the Wilson ratio of a
Anderson-like model. Nevertheless, the salient features
this analysis survive. Once again, we can identify the s
energy contribution of Fig. 2~a! with an external fieldh act-
ing on the impurity. The effective field in the high
temperature regime is renormalized downwards, in
anisotropic case strongly.21 However, in the low-temperature
regime the weight of the quasiparticle excitations for whi
this effective field represents the self-energy is zero, so
this self-energy term does not define any physical lo
temperature energy scale. It has been demonstr
recently37,38 that impurity thermodynamics in the low-
temperature regime can be described in terms of three ve
and one scalar Majorana quasiparticles. An external fielh
generates a self-energy contribution for the scalar Major
fermion SM5h2/2pTK5T* which is universal apart from
its dependence onTK .31–33 The universality39 ensures that
T* is controlled by the unrenormalized value ofh—namely,
the bare splittingD.

IV. DISCUSSION

The results of our model calculation of the splitting b
tween the states of magnetic impurities and nonmagn
two-level systems in the presence of spin disorder can
summarized as follows. First, the main feature of the dis
bution functions of the splittings is their strong asymmet
Formally the distribution functions in Eqs.~9! and ~11! do
not even possess finite first moments. This is a manifesta
of the fact that all the moments of the splittings are dom
nated by disorder configurations with one or more scatte
located very close to the dynamic impurity. In real syste
the shortest possible separation between the dynamic im
rity and the nearest scatterer is determined by the lat
spacing. Therefore one has to introduce a short-distance
tice cutoff into the coordinate integration in Eq.~26!. In the
presence of such a cutoff all the moments are dominated
distances of the order of the cutoff, and thus, for examp
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the average rms splittingA^D2& is of the order of
EF(Jgn2)Ac/pF

3 for the magnetic case o
EF(max$V1,V3pFb%)tnAc/pF

3 for the nonmagnetic TLS case
These values are larger than the typical ones by a facto
ApF

3/c;(pFd)3/2@1. This confirms the result obtained ind
pendently by Cox.41

Second, since the splitting is the difference between
eigenvalues of a random Hermitian 232 matrix, at small
splittings one observes the equivalent of level repulsion le
ing to a vanishing probability density to observe zero sp
ting. In the nonmagnetic TLS case the matrix is real a
symmetric, and the suppression is linear rather than q
dratic.

The asymmetry of the distribution functions has importa
implications for the study of the effects of spin disorder
the behavior of Kondo impurities in the crossover and lo
temperature regimes. Because of the buildup of ma
particle correlations at low temperatures, the effective sp
ting between the levels of magnetic impurities or TLS
Deff(T), can be reduced at intermediate temperaturesT;TK

compared to the bare valueD ~Refs. 21 and 29! Since the
distribution of splittings is very asymmetric, with the roo
mean-square splitting much larger than the typical value
proper renormalization analysis would necessarily treat
full distribution rather than just the first few moments. T
what extent the distributions found here preserve their sh
under renormalization is an open question.

Nevertheless, the zero-temperature behavior of the s
ting, or, more precisely, of the corresponding self-ene
terms, is dictated by the universality properties of the o
and two-channel Kondo models, and can be extracted
rectly. This, in turn, made it possible to derive a correspo
ing temperature dependence of conductance for a collec
of two-level systems. We find~cf. Ref. 11! a Ta behavior
with a'0.84 in contrast to theT1/2 dependence observe
experimentally.17,18,20The concentration of the TLS’s whic
must be degenerate~in the absence of disorder! in order to
sustain the two-channel Kondo interpretation is also found
be unphysically large. Both these arguments suggest tha
two-channel Kondo model does not provide a consistent
terpretation of the zero-bias anomalies observed in Ref.

In conclusion, we have computed the distribution fun
tions of the splittings of magnetic impurities and nonma
netic two-level systems induced by disorder scattering
conduction electrons. In the magnetic case these splitt
only appear if the disorder breaks time-reversal symme
i.e., if the disorder is itself magnetic. In the nonmagne
case the degeneracy between the levels of a TLS is du
geometric symmetry about its center, and therefore
strongly broken by any type of disorder. We find that t
probability distribution of splittings vanishes as a power la
at small splittings, making nearly degenerate impurities
rarity. The typical values of splittings are found to be smal
than the average estimated previously in Ref. 11. Howe
even in quite clean systems such as the ones studied in
experiments of Ref. 17, the broad profile of the distributi
of splittings results in a temperature dependence of the c
ductance which is substantially different from the squa
root law expected in the absence of disorder. Conseque
experimental observation of the square-root temperature
of
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voltage dependences may not be a reliable indicator of t
channel Kondo physics.
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APPENDIX A

To illustrate the small effects of spin disorder on the sta
dard logarithmic terms in the perturbation-theory expansi
we consider the well-known lowest-order logarithmic cont
bution to the spin susceptibility given by the diagram sho
in Fig. 5.

As in other similar logarithmic diagrams, there appear
set of terms due to the off-diagonal in spin index parts of
Green function. The corresponding analytical expression

dx~T!

x0
5

1

3
J2E de1de2

F 12tanh
e1

2T
tanh

e2

2T

~e12e2!2

22T

tanh
e1

2T
2tanh

e2

2T

~e12e2!3
G

3S 3r~e1!r~e2!2(
j 51

3

s j~e1!s j~e2!D , ~A1!

wheres j (e) is the electron spin density of states at the i
purity site, andx0 is the susceptibility of a free spin. Sinc
the averagês j&50, there is no positive definite contributio
to the logarithmic integral similar to that coming from th
first term 3r(e1)r(e2). Moreover, the absence of diffusiv
behavior fors j ~due to the absence of an equivalent of t
particle-number conservation law which enforces the univ
sal diffusion pole in the density correlations! leads to the
absence of ‘‘fine structure’’ in the correlator^s js j& at scales
smaller thants

21 . In the model of isolated impurities th
effect of the second term in Eq.~A1! reduces to a smal
correction to the coefficient of the leading logarithm.42

Indeed, in the lowest order in concentration of magne
defectsSa , the local spin density of states is given by

s~e!52
g

p (
a

S pn

pFr a
D 2

Im e22i (pF1e/vF)r aSa , ~A2!

FIG. 5. The lowest-order logarithmic contribution to suscep
bility in the magnetic Kondo problem. The wavy lines correspo
to the external magnetic field.
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where ra are the coordinates of the defects. Using^Sa
i Sb

j &
5 1

3 dabd i j , we find

^s i~e1!s i~e2!&5cg2E dr S pn

pFr D
4 1

p2 sin@2~pF1e1 /vF!r #

3sin@2~pF1e2 /vF!r #

5p2n2~pgn!2
c

pF
3 F41

e11e2

EF
2

ue12e2u
EF

G .
~A3!

Substituting the last expression into Eq.~A1! we see that
the second and third terms in square brackets produce i
evant constants and terms which are as small asT/EF , while
the first term results simply in a correction to the effecti
density of statesdr2/n25(24pc/3pF

3 )p4(gn)2.

APPENDIX B

The Kondo temperature in the TLS model is given by21

TK'EFA~nJ1!~nJ3!S J1

4J3
D 1/4nJ3

, ~B1!

whereJ1 andJ3 are electron-TLS coupling constants, andn
is the local conduction-electron density of states. Assumin
two-channel Kondo interpretation of the anomalies,
Kondo temperature is estimated in Ref. 17 to be betwee
and 10 K. The choice of the bare coupling valuesnJ3'0.2
andnJ1'0.007, which is adopted in the calculations leadi
to the graphs in Figs. 3 and 4, corresponds to the Ko
temperature ofTK'8.2 K. The respective values of the co
plings V3 andV1 in Eq. ~2! areV3'0.74, andV1'0.0012,
corresponding to the dimensionless distance between
TLS minima set at 2pFb'0.15.

The nature of defects in quenched vacuum-depos
films is not well understood, and is likely to vary dependi
on the details of a particular experimental setup. As a ro
measure of disorder, the transport mean free path nea
opening of the constriction is estimated in Ref. 19 to bel tr
;30 nm in unannealedsamples. The mean free path is r
lated to the scattering phase shiftsh l and concentration o
defectsc via43

pFl tr5
pF

3

4pc

1

( l 51l sin2~h l2h l 21!
, ~B2!

wherel denotes angular momentum channels. The trans
mean free path inannealedsamples is shown in Ref. 19 to b
close to 300 nm: i.e., it increases by a factor of 10 up
annealing. Therefore, most of the disorder in the constric
is likely to be caused not by substitution impurities whi
cannot anneal, but by localized structural inhomogeneitie
stressed deposited films. Spatially extended defects, suc
dislocations and grain boundaries, are unlikely to be a m
cause of scattering for the same reason.

The coefficientsK1 and K3 in Eq. ~10! cannot be ex-
pressed in terms of the transport mean free path alone. T
computation requires knowledge of the phase shiftsh l
el-

a
e
5

o

he

d

h
he

rt

n
n

in
as

or

eir

@which would make it possible to infer the concentrati
from Eq. ~B2!#. Even allowing for an independent measur
ment of defect concentration~one not available for the
Ralph-Buhrman samples!, information about phase shifts i
still needed if more than one of them is nonzero.

It is seen from Eq.~10! that the scale for the typical val
ues ofD is set by the combinations (c/pF

3)AKi , i 51,3, and,
for smallh l , it is linear in bothc andh l . Together with Eq.
~B2!, this implies that, for a fixed value ofl tr , smaller val-
ues ofh l result in a broader distribution functionP(D). For
example, the choice ofusinhu51/6 leads to typical values o
T* exceedingTK . Conversely, if scatterers are strong (h l
;1), fewer of them are needed to produce the same valu
l tr , and the distribution function is narrowed, implyin
smaller typical disorder-induced splittings.

It should be noted that because of the Friedel sum r
small values ofall sinhl are possible only in the case o
neutral defects. If defects are charged, at least one of
phase shifts cannot be small.

A typical neutral defect is a combination of a se
interstitial and a neighboring vacancy~a so-called Frenke
defect!. We are not aware of any studies of whether su
defects are more or less common in vacuum-deposited fi
than simple nonequilibrium vacancies, which are charg
and thus scatter strongly. However, the formation energy
such neutral defects in Cu is 2–3 times larger than the
mation energy of a vacancy.44 Consequently, we concentrat
on the nonequilibrium vacancies as the dominant source
scattering. Since one of the aims of this work is to explo
whether the two-channel Kondo interpretation of the Ralp
Buhrman zero-bias anomalies can be compatible with
presence of the static scattering in their samples, the assu
tion that the bulk of disorder is caused by strongly scatter
nonequilibrium vacancies is also quite appropriate. It lead
the smallest values of splittings, and is, therefore, the m
favorable for the two-channel Kondo interpretation of t
experiments in Ref. 17.

Scattering by vacancies in Cu has been studied by sev
techniques~experimental, numerical, and their combinatio!
in Ref. 45. The results of the fitting procedure combini
experimental and numerical techniques quoted in Ref.
give for the differences between the vacancy and the h
phase shifts the following set of values:h0'0.92, h1'
20.7, andh l>250.

APPENDIX C

Fluctuations of the Kondo temperatureTK due to static
disorder can be addressed in the same framework used
the calculation of the distribution of splittings. Indeed, in t
leading logarithmic order, the Kondo temperature can be
ferred from the scaling relation21

dc

F~c!
52d ln D, ~C1!

where D is the renormalized band cutoff,c is a homoge-
neous degree-1 function of dimensionless couplingsJin, and
F is a homogeneous function of degree 2 which depends
c and bare values of the couplings. The effect of disorde
contained in the energy-dependent density of statesn(D).
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The homogeneity of bothc and F allows one to make a
substitutionc(Jn)→c(Jn̄), wheren̄ is the average densit
of states, while transferring the energy dependence ofn to
the right hand side of Eq.~C1!. The implicit equation forTK
takes the form

E
0

1 dc

F~c!
5E

TK

D0 @n~D !1n~2D !#dD

2n̄D
, ~C2!

where D0;EF is the unrenormalized bandwidth, and th
boundary conditionc@J(D0)#50 was used. Following the
consideration in Sec. III B, the correction to the density
states as a function of energye is expressed as

dn~e!5n~e!2 n̄52(
j

S pn̄

pFr j
D 2 t

2p2n̄
Im e2i (pF1e/vF)r j ,

~C3!

wherer j are the coordinates of random scatterers. Subst
ing the above expression into Eq.~C2! we obtain the follow-
ing condition for the disorder-induced shiftdTK :
.

v.

tt.

n,

N.
s.
f

t-

ln
TK1dTK

TK
1(

j

t

~pFr j !
2 sin~2pFr j !ci~2TKr j /vF!50.

~C4!

The argument of the integral cosine ci is as small
(TK /EF)(pF

3/c)1/3;1023, where the valuesTK /EF'1024

andc/pF
3'1024 are used~see Sec. II B!. It can therefore be

approximated as ci(2TKr j /vF)'2C2 ln(2TKr j /vF), where
C is the Euler constant. Typical values ofdTK /TK are thus
seen to be of the order oft(c/pF)2/3 ln@(TK /EF)(c/pF

3)21/3#,
and we estimatedTK /TK;1022. Therefore random varia
tions ofTK due to static disordercan be safely neglected fo
the parameter regime of Ref. 17.

Intrinsic variation of TK among different randomly
formed TLS’s is, of course, a possibility. However, it h
been established in the main text that all TLS’s have to
degenerate in order for the two-channel Kondo interpreta
to have a chance of succeeding. Thus one must assume
the TLS’s are formed by the same nonrandom mechani
again excluding large variations ofTK .
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