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Kondo effect in systems with spin disorder
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We consider the role of static disorder in the spin sector of the one- and two-channel Kondo models. The
distribution functions of the disorder-induced effective energy splitting between the two levels of the Kondo
impurity are derived to the lowest order in the concentration of static scatterers. It is demonstrated that the
distribution functions are strongly asymmetric, with the typical splitting being parametrically smaller than the
average rms value. We employ the derived distribution function of splittings to analyze the temperature
dependence of the low-temperature conductance of a sample containing an ensemble of two-channel Kondo
impurities. The results are used to analyze the consistency of the two-channel Kondo interpretation of the
zero-bias anomalies observed in &i/N)/Cu nanoconstriction§S0163-182809)06737-3

I. INTRODUCTION Anderson mode| potential scattering on static disorder does
not involve the degree of freedom of conduction electrons
The Kondo effect—that is, the low-temperature screeningvhich is coupled to the magnetic impurity—their spin. The
of dynamical quantum defects in metals by band electrons—Hamiltonian remains invariant under time reversal, and the
has been extensively studied during the past 30 years and $pin states of the impurity are degenerate even in the pres-
by now well understoodsee, e.g., Refs. 1 and.Zrhe con- ence of disorder. The Kondo temperatdrg, on the other
tinuing interest in the problem is motivated chiefly by the hand, is affected by the potential scattering of electrons. The
search for novel realizations of the effédeor exampleJo-  nature of the ground state in systems of this type has been
cal non-Fermi-liquid ground states have been predictedstudied in Refs. 6,9,10, and 13.
theoretically for certain types of dynamical defects coupled ~ Another example of such symmetry-preserving disorder is
to band electrons. The behavior of these impurities is somegiven by spin-orbit scatterif§'® in magnetic Kondo sys-
times invoked in efforts to understand the non-Fermi-liquidtems. The corresponding Hamiltonian is also invariant under
behavior of strongly correlated systems, such as heavy fetime reversal, and Kramers’ theorem ensures that each or-
mion materials and high-temperature superconduétors. bital state of conduction electrons is doubly degenerate, so
One of the main difficulties encountered in the interpreta-their coupling to magnetic impurities does not lift the degen-
tion of experimental data from novel Kondo systems is theeracy of impurity states.
fact that defects with internal degrees of freedom very sel- An entirely different situation is encountered when scat-
dom represent the only type of disorder in the system. Moréering on static defects breaks the relevant symmetry. Kondo
often, a considerable number of random static defects affectoupling between the band electrons and the dynamic defect
ing band electrons are also present. Scattering of electrons @hen leads to symmetry-breaking contributions to the self-
this static disorder may alter the experimental signature oénergy of the dynamic defect. The frequency-independent
the Kondo effect? sometimes masking genuine non- part of these contributions can be reinterpreted as an extra
Fermi-liquid behavior or, vice versa, possibly mimicking it term in thebare Hamiltonian of the dynamic defect, and the
in Fermi-liquid system&? difference between its eigenvalu@ke energy difference be-
The Kondo effect requires that at least two internal statesween the “up” and “down” states of the defects an ef-
of the impurity be degenerate or, at least, that their energfective splittingA. Being induced by random scattering, the
difference be much smaller than the Kondo temperafige  splitting itself is a random quantity. This type of model was
Barring the cases of accidental degeneracy between the statsidied, for example, in Ref. 14, where theeragesplitting
of the dynamical impurity, degeneracy occurs as a consdnduced by broken time-reversal invariance due to the com-
guence of a symmetry, e.g., invariance under a time-reversalined effect of random spin-orbit scattering and weak mag-
transformation in the case of the magnetic one-channatetic field was computed. A similar model has been encoun-
Kondo effect. Accordingly, the possible types of disordertered in the study of internal magnetic field distributions in
can be separated into two classes, depending on whether dipin glasse&®
order destroys the relevant symmetry of the Hamiltonian. The present study of models of this type has been moti-
A typical example of the first class is a dilute magneticvated in part by the discussion in Ref. 11 of different theo-
alloy with a finite concentration of nonmagnetic defects. As-retical interpretations of zero-bias anomalies in Cu/Si:N/Cu
suming that the charge state of the magnetic impurity doesanoconstrictiond’ The zero-bias anomalies first reported in
not change as a result of the interaction with conductiorRef. 17 were observed in nanoconstrictions formed by etch-
electrons(thus excluding the mixed-valence regime of theing a bowl-shaped cavity in an insulating;Si substrate
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before covering both sides with vacuum-deposited Cu filmsserved by ordinary potential scattering. This feature of the
The anomalies are characterized byM dip in conductance orbital two-channel Kondo model has to be contrasted with
G at small biasV, a corresponding/T temperature depen- magnetic Kondo models where the relevant symmetry is
dence of conductance ¥t=0, and, more generally, a scaling time-reversal invariance, which is broken only in special cir-
function of the formG(V,T)—G(0,T)=TY2I'(V/T) where  cumstances, e.g., by an applied magnetic field or magnetic
I'(x>1)xxY2 These features were interpreted in Refs. 17disorder. Therefore, an analysis of the magnitude of disorder-
and 18(see also Ref. 19 for additional experimental resultsnduced splittings of two-level systems is essential in evalu-
and Ref. 20 for a comprehensive revieas consistent with ating the consistency of the two-channel Kondo interpreta-
the scaling properties at low temperatures of the two-channéion of the zero-bias anomalies of Refs. 17 and 19.
Kondo model* The observed absence of Zeeman splitting Most of the previous theoretical work on this subfédt
led to the conclusiof that a nonmagnetic realization of the has been concentrated on computing the second moment of
two-channel Kondo model of the type suggested by \adathe random splittings. A calculation afA?) induced by
and ZawadowsKki might be responsible for the observed white-noise potential scattering was reported in Ref. 11. It
anomaly. was argued there that even small amounts of disorder may
The two-channel Kondo model, proposed in Refisée lead to large splittings between the energy levels of the TLS,
also Ref. 22 for an extensive revigwo classify magnetic thus effectively stopping the Kondo screening at tempera-
properties of rare earth materials, is characterized by a douures higher thaif . However, the distributions of splittings
bling of the degrees of freedom of conduction electrons asend to be very asymmetrical so that their moments are not
compared to the usual one-channel case, while the dynamiepresentative of the typical values. Moreover, knowledge of
impurity is still a “spin-up, spin-down” doublet. In other the full distribution function is necessary to understand how
words, each orbital state of conduction electrons acquires, ithe splittings of an ensemble of defects may affect the scal-
addition to its spin, an extra label, “flavor,” which is silent ing behavior of conductance.
in the sense that the scattering on the dynamic impurity con- It should be remarked that there is no direct evidence for
serves the flavor quantum number. Even so, the strongly cothe existence of TLS’s in the nanoconstrictions studied in the
related ground state of this model has been predicted to exexperiments of Refs. 17 and 19. It is precisely the match
hibit unusual and rather distinctive scaling properties,between the experimental scaling of conductance and that
markedly different from the Fermi-liquid-like ground-state predicted theoretically for two-channel Kondo systems that
properties of ordinary Kondo impurities. is the main argument in favor of the two-channel Kondo
In the original model proposed in Ref. 4, the flavor de-interpretation of the data. The theoretical scaling functions
grees of freedom were constructed out of different angulaused for this purpose in Refs. 17 and 18 were derived under
momentum states of conduction electrons. Subsequently, ihe assumption that no disorder other than the TLS’s them-
was proposed in a series of papers by Viadend selves is present, and thus it is of considerable interest to
ZawadowsKi* that an effectivetwo-channel Kondo model understand how these scaling functions may be changed by
may emerge in an entirely different context, where the rolesealistic amounts of static disorder.
of orbital angular momentum and spin of conduction elec- In this paper we study the distribution functions of split-
trons are interchanged. The role of a dynamic impurity intings for two modelsii) isotropic magnetic Kondo impuri-
such nonmagnetic realizations of the Kondo effect is asties in a spin glass environment afi atomic TLS’s in an
sumed to be played by a two-level syst€fiLS)—an atom  environment of static defects inducing potential scattering. In
or a group of atoms tunneling between two nearly degenerateoth cases the disorder is modeled by an array of randomly
states. If transitions between the two states of the TLS infocated point scatterers. The magnetic model may be realized
volve a transfer of charge, the transition amplitude become# a dilute solution of weakly coupled magnetic impurities
dependent on the density of conduction electrons via th@ndergoes Kondo screening in a spin-glass environment,
Coulomb interactiod! The parity of electronic states with formed, for example, by a more concentrated solution of
respect to the center of the spatially extended defect becomesore strongly coupled magnetic impurities. The result for
the active degree of freedom—"pseudospin.” The physicalthe distribution of splittings in this case reproduces the dis-
spin assumes the role of the silent “flavor” degree of free-tribution of internal fields in spin glasses derived earlier in
dom, providing two independent channéls the absence of Ref. 16. We also analyze the effects of higher-order terms in
spin scatteringfor the screening of the dynamic impurity>  the Kondo coupling which cannot be reduced to Ruderman-
Such TLS’s may be formed accidentally in a strained glass¥ittel-Kasuya-Yosida-typ&€RKKY-type) expressions. These
material® or as a result of a Jahn-Teller efféétand TLS's  terms are shown to lead to a finite renormalization of the
have also been conjectured to occur at interfategery  small-A portion of the distribution functions, while their ef-
recently, the non-Fermi-liquid properties of the ground state€fect on the largeh tail is negligible. A similar analysis is
in this model have been invoked in the study of the dephasperformed for the distribution of splittings of atomic TLS’s.
ing rate of conduction electrons in disordered metls. The magnitude of the splittings obtained here should be
The degeneracy between the two states of the TLS basedewed as a lower bound, since only effects of electronic
on pseudospin symmetry is a crucial precondition for two-disorder are taken into account: i.e., we assume that in the
channel Kondo screening and the formation of the nonabsence of such disorder the two states of the TLS are
Fermi-liquid ground state. In practice this degeneracy is aldegeneraté’
most always expected to be lifted because the pseudospin, Using the distribution of splittings, we derive the tem-
corresponding to parity about the center of the TLS, is not inperature dependence of the zero-bias conductance of a me-
general a conserved quantity and, in particular, is not contallic sample containing an ensemble of TLS’s. On this basis,
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whereby the TLS tunnels between its two states accompa-
nied by the transfer of an electron fromto —b or vice
versa.V; is the position-dependent interaction between the
TLS and electrons. The summation over physical spin is im-
plied in the terms bilinear in electronic annihilation and cre-
ation operatorsy and '. Terms proportional té-, are ab-
sent in the Hamiltonian because of the combined effect of
the invariance under time reversal and localityNote that
the apparently nonlocal term proportional#pin Eq. (2) is

FIG. 1. Schematic representation of an atomic two-level systerr‘ffln artifact of the apprOX|mathn neglecting the full momen-
(TLS). tum dependgncg of.the coupling . _
The Hamiltonian in Eq(2) can be cast in the form of Eq.

we reanalyze the two-channel Kondo interpretation of thell) With corresponding coupling$Js=(27pgb/v3)V; and
zero-bias anomalie€:'**®The discrepancy between the ob- J1=27V;. The channel quantum numbers in Eg). would
served scaling behavior and that derived in the present worthen refer to physical spin, while spin quantum numbers cor-
presents, in our view, a significant challenge for the two-"e€spond to the impurity atom and electronic excitations being
channel Kondo interpretation. Furthermore, the estimate ofocated at either of the TLS potential minima or, depending
the total number of degeneraie the absence of electronic On the choice of the basis, to different parity eigenstates.
disorde¥ TLS’s which would be needed to produce the con-Anisotropy of the couplings is unlikely to occur ifmypo-
ductance observed in Ref. 17 is found to be unphysica”ﬁhet}c) magnet!c realizations of this quel, while TLS real-
large, indicating another problem with the two-channeliZations generically possess strong anisotrdpy.
Kondo scenario. The disordered environment is modeled by adding to the
The paper is organized as follows. In the next section wéiamiltonian in Eq.(1) the term
consider in greater detail the role of symmetry-breaking dis-
order, present the main results, and discuss their implications
for the interpretation of the Ralph-Buhrman experimefts.
Section Ill contains the derivation of the splitting distribution
for the magnetic and nonmagnetic Kondo effects. A briefwhere and & are the charge- and spin-density operators of

discussion and the summary are presented in Sec. IvV.  the conduction electrons, até andUs are the correspond-
ing random potentials. Formally, the disorder Hamiltonian

Il. DISORDER IN THE SPIN SECTOR Hgs introduces two additional energy scales into the
problem—the inverse scattering time ! and the inverse
The generah-channel anisotropic Kondo Hamiltonian for spin-scattering time; *.
a dynamic impurityr located at =0 has the form Before proceeding further, we will comment briefly on
the role of the charge disorder ter). in Hys. It has been
discussed in numerous works including Refs. 5-10. A re-
lated self-consistent model for the case diréte concentra-
3 tion of Kondo impurities has been considered in Ref. 12.
i This term affects only the charge degree of freedom, and one
+]Zl Jjo'(0)7y, (1) of its effects is to randomize the Kondo temperatlige In
, systems of lower dimensionality, it can also produce singular
where € is the Hamiltonian of band electronsy'(r)  corrections to the energy dependence of thermodynamic and
=Eg=12aﬁw2a(r)agﬁwﬁa(r) is the electron spin-density transport coefficients in the perturbative high-temperature re-
operator atr, o, is the vector of Pauli matrices, adgare  gime. Incorporating charge disorder into the description of
the exchange coupling constants. In the isotropic case we uske low-temperatureT< Ty) regime of the Kondo effect has
the notationJ=J;. Greek indices are used to label spin not been achieved so far. However, it has been argued in Ref.
quantum numbers, and Latin indices denote channel quarg that, in the one-channel magnetic case, the basic nature of
tum numberg® the ground state as a local Fermi liquid would not change.
When considering the orbital two-channel realization of In the context of the magnetic Kondo effect, we will only
the Kondo effect due to an electron-TLS interaction, it isconsider the role of spin disorder. Furthermore, we will re-
convenient for our purposes to use, as a simple model of strict consideration to the case of the ordinary one-channel
TLS, an atom which can tunnel between two minima of aeffect, both because multichannel magnetic realizations have
double-well potential located at==*b (Fig. 1). The corre- not been unambiguously observed, and because consider-

HdiszHc+Hs=fdf[Uc(f)ﬁ(r)+Us(r)-ff(r)], ()

H(n):a;%j drpl (N[E(=i1V)1¢,a(r)

sponding Hamiltonian has the form ation of the renormalization of splittingS$ec. Ill) cannot be
. . transferred to the case>2. [The renormalization of split-
H=Hc+V T[4 (D) (—b)+ ¢ (—b)¢(b)] tings in then=2 case is discussed in Sec. Ill. The results for
V[ (D) (b) — T (— b)Y — D)1, 2 a hypothetical magnetic isotr.opic=2 case can be obtained
373l ' (b)¢h(b) — ¢ (= b)y(—b)] ) by a simple change/.— 2., in Eq. (9)].
whereH, describes free electrons, afg and 75 are Pauli In the orbital two-channel realization of the Kondo effect,

matrices operating in the two-state Hilbert space of the TLSthe roles of spin and orbital degrees of freedom are partially
V; is the amplitude of the “pseudospin-flip” process interchanged. The potential scattering tefmin Eq. (3) will
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produce a contribution analogous to the spin-scattering termpectively. The effective “spin”-scattering time in the TLS
H. when Eq.(2) is transformed into the form of Eg1).%° In case is also of the order af and we will keep the notation,
what follows, the term “spin scattering” is understood to for it.

apply either to physical spin in the context of magnetic
Kondo effect or to “pseudospin” constructed out of elec-
tronic states of different parity in the context of the orbital
two-channel realization.

Our choice of model for disorder assumes that breaking of What is the main effect of spin scattering on the behavior
the spin symmetry is due to a well-defined set of scatterersf a Kondo impurity? Even though a nonzero valuerpf
present in the system. The scatterers couple to the spin deeans that the “spin memory” of electrons has a finite life-
grees of freedom, e.g., “frozen” magnetic impurities in the time, the spin-flip processes at the location of the Kondo
magnetic one-channel case or ordinary nonmagnetic defectpurity still lead to logarithmic divergences in the high-
in the orbital two-channel case. Replacing such a set of deemperature perturbative expansi¢gee Appendix A In
fects by a continuous random Gaussian-distributed potentiafact, 7, ! does not directly compete with the Kondo tempera-
as is frequently done in transport calculations, is not warture Ty . Nevertheless, spin scattering can change the low-
ranted here because the distribution of splittidgs nonuni-  temperature behavior of an impurity by introducing an effec-
versal. That is, its form depends on the choice of the distritive splitting A between its internal states.

A. Splitting of the internal states of a dynamic impurity
by spin scattering

bution function for the random potentials.(r) andUg(r), To understand qualitatively why finite;* does not by

and therefore a more realistic model is required. itself destroy the Kondo effect, consider the underlying
In the model of isolated scatterers spin disorder is givemnderson model for a magnetic impurity. In this description,

by the Kondo effect is reflected in the logarithmic divergence of

the perturbative contributions to the impurity electron self-
energy atEg . There are two processes that contribute to this
self-energy: tunneling of an impurity electron into the con-
duction band and the reverse process, tunneling of a conduc-
where§ are randomly oriented frozen spins located at rantjon electron onto the impurity. Both of these contributions
domly selected points;, andg is the corresponding eX- are logarithmically divergent & but with opposite signs.
change coupling constant. The distribution of eactSofs  For an impurity without on-site interactions, the two terms
assumed isotropic and is given by cancel and there is no Kondo effect. Interactions remove this
cancellation, essentially because an occupied site can only
decay in one way—»by an electron tunneling ¢édouble oc-
cupancy is forbidden or strongly suppressed by Coulomb
repulsion—while an unoccupied site can decay in two
In the TLS case, we use a slightly more general expresways—by an electron of either spin tunneling in. The ap-
sion, allowing for scatterers of finite size: pearance of a finiter; ' may change slightly the relative
tunneling rates for spin-up and spin-down electrons, but it
cannot significantly change the factor of 2 difference be-
tween the rate of decay of an occupied and an unoccupied
) ) o site. Hencer, ' does not directly destroy the logarithmic
Since “spin” degrees of freedom in this case are a subset Offivergences in perturbation theory associated with the Kondo
orbital degrees of freedom, the above expression containsffect.
both charge disorder and “spin” disorder terms. We will  jmportantly, however, the main effect of spin scattering is
only concentrate on the effect of the latter. to break time-reversal invariance and hence induce a split-
Below we will restrict our consideration to the case of ting A between the two spin states of the Kondo impurity.
rOtationally inVariant pOtentia|Bl, SO that the Corresponding The Sp||tt|ng resu'ts from the appearance Of a random non-
scattering matrix7 can be reduced to the diagonal forM  zero quantum-mechanical expectation value of the local spin
=diag(7)), where7; can be expressed in terms of phaseqensity of statesr(e) at the impurity site. The coupling of
shifts i for each value of the orbital angular momentum aso-( E) to the dynamic |mpur|ty via is responsib]e for break-
ing the energy degeneracy between different orientations of
the impurity spin. In diagrammatic language, the splitting is
associatednot with a modification of the standard set of
logarithmic diagrams, but rather with proliferation of a new
The coordinates; of N impurities are drawn from a uni- set of diagrams which were forbidden by @Jand time-
form distribution P,({r;})=1/VN whereV is the total vol- reversal symmetries in the absence of spin disorder. The
ume of the sample. The calculations are performed in théeading contribution ta\ in perturbation theory in the cou-
limit N,V— <0 with the concentratioo=N/V kept finite. Itis  pling strengthd is shown in Fig. 2a). The energy scale es-
assumed that the concentration is small in the sense that thablished byA serves as a cutoff of all logarithmic diver-
typical interimpurity distancel~c~ Y3 is much larger than gences in the perturbation theoryJn
the Fermi wavelengtt\=27/pg, which implies, in the Formally, the main effect of spin disorder is to generate a
magnetic case&7>1 andEr7>1 in the TLS case, where self-energy term which is essentially energy independent,
Er andpgr are the Fermi energy and Fermi momentum, re-and can be reinterpreted as a contribution to the effective

us<r>=92i Sa(r—ry), (4)

1
Ps(S)= 55(1—32)- ©)

uc<r>=2 Ur—ry). (6)

1
=_— — @7 gj
7 7we siny, . (7)
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order to observe the non-Fermi-liquid square-root scaling be-
havior, the parameters of the Hamiltonian have to be
fine-tuned*

The distribution of splittings in the ordinafpne-channegl
magnetic case has a simple fofRef. 16, Sec. Il

9 :
€A Po(d)= T ©)

A2+ 22
@ ( Ym)

(b) (©)

, o , . where y,=(2m?c/3p2)Jgv’Ef is a constant which deter-
FIG. 2. (a) The dominant contribution to the effective splitting mines the scale for the typical values&ft is proportional
A. The solid line represents the conduction-electron Green function[, the strength of the dimensionless Kondo couplingy
and the dashed line represents pseudofermions. The dot represe\r}(\?ﬁerev is thg density of states at the Fermi level apnd to the

the interaction verted, and the cross corresponds to impurity scat- itude of spi tteri Ea. (M. Th drati
tering. (b) The leading logarithmic ordefparquet contribution to magn_l ude of spin scattering[Eq. (4)]. The quadra 'ZC_SUp'
_pression ofP,,, at smallA results from the fact thah“ is a

the splitting.(c) The sum of parquet diagrams. The large dot repre ) 5 )

sents the renormalizetin the parquet approximatiorscattering SUm of three random variabledy, each possessing a

amplitudeJg. (d) Renormalization of splitting. smooth distribution neat ,=0. Crucially, the Kondo tem-
peratureT~Ere (") is exponentially small, so even in

impurity Hamiltonian. It is a Hermitian X 2 matrix in the  Systems with weak magnetic disordes/|6%,vg<1), yp

space of impurity states. In the magnetic case, it is convemay be comparable t®y .

nient to expand this matrix in the basis of Pauli matrices as In the orbital two-channel Kondo case, we will show in
Sec. Il thatP(A) is described by a more complicated ana-

3 lytical expression

Her= 2, A47%, ®)
a=1 27d6 K(0) Ay(6)
where theA , denote the com i i P(A):f 2w 2+ y%(0) % (19
N ponents of the impurity energy 0o 27 KKy [A“+y(6)]

in this basis. _ . 1

The discussion presented so far does not distinguish pdvhereK (6) = (cos' 6K +sir? 6/Kq) ™,
tween the one- and two-channel cases. This is natural since 2mc [K(0)
the high-temperature diagrammatic expansions in the two Y(0)= =3 \ /_F(g),
cases have identical structures, and differ only in factors of 2 3pr 2
(from the two channejsfor closed electronic loops. If the and
Kondo temperatureTy<A, spin-flip processes are sup-
pressed atT<A, the strongly correlated state is never 0 1
formed, and belowA all temperature dependences are of the F(o)=1+ m'n |tané| + m) 11

Fermi-liquid type. If, howeverT«>A, the behavior of the

one- and two-channel Kondo systems is very different. In theThe constant; and K3 depend on the strength of elec-
one-channel case a nonzero but snialis equivalent to a tronic coupling to the TLS and static scatterers,

weak polarizing field acting on the Kondo impurity, resulting 2 2 2

in finite but small changes in the values of the impurity sus- Ki=2(EeVirt)?, Ks=2(EgVsrt)*(2peb)?, (12
Ceptlblllty and conductance. HOWeVer, since these quantitieﬁlhere the scatterer Streng‘th's expressed in terms of the

depend orly¢, which is itself altered in a random way by scattering phase shifts, introduced in Eq(7):
disorder, no significant experimental consequences follow

from a small splittingA <Ty . | )

Conversely, in the two-channel case whiewt 0 there ap- tZEI (=1 (21+Dsin(27). (13
pear two distinct low-temperature regimes. A non-Fermi-
liquid regime survives in the interva* <T<Ty, whereT*  The functiony(#6) is the analog of the parametef, intro-
is a new characteristic temperatufie; =A2/27T, 3133 A duced in the magnetic case.
Fermi-liquid regime emerges beloWw*. Hence, the low- In the asymptotic IimitA>(c/p§)max{\/K_,\/K_3} the
temperature properties of an ensemble of two-channel Kondabove expression simplifies to
impurities will explicitly depend on the distribution of split-
tings A. DA N‘/ECKleJ'ZW F(o)de

If A>Ty, a non-Fermi-liquid regime does not exist, and (4) 3pEA? Jo (Kysirf 6+Kscos )%
at temperatures below the splitting becomes the only rel-
evant energy scale. In other words, the T(d®, rather, the The distribution function in Eq.(14) has the same
composite object comprised of the TLS and correlated elecasymptoticA ~2 behavior as Eq(9) for large A. However,
trons becomes frozen in its lowest-energy state. Excitationghe full distribution function given by Eq10) is linear rather
above this state result ii> dependences which blend with than quadratic at small because, in the absenceigfterms
other Fermi-liquid effects that are always present. As wasn the bare HamiltonianA? is a sum of two rather than three
demonstrated by Moustakas and Fisflea generic set of random variables. In physical models of TLS’s the couplings
TLS parameters almost always correspondsiteT,. In  are usually related vi&/;~V3(2peb)? (see Ref. 21 This

(14)
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~(c/p) VK3~ (vV5ct/pE)Eg, and corresponds to approxi-
mately linear decay of the distribution function from a con-
stant value. IfK,;~Kj3, the intermediate asymptotic regime
disappears.

The graph ofP(A) for the strongly anisotropic regime,
corresponding to the choice of parameters discussed in Ap-
pendix B ©/pi~10"*, K;=0.3&2, K;=3.7x10 °E2), is
shown in Fig. 3. The isotropic casé&{=K;=0.5E2) is
shown in the top inset. Note that both crossovers between
asymptotic regimes in the main graph occur at valued of
which are significantly smaller than the rms splitting quoted
00 ‘ . in Ref. 11 (see also Ref. 35 (A%)Y2~100K~10 °Eg,

0.0 05 10 15 2.0 where the valu€~8x 10* K for copper has been used.

10" A/E, Assuming that fluctuations of the Kondo temperatlige
can be neglectedsee Appendix ¢ the distribution of
T*—the temperature at which the crossover from non-
C/p3=10"%, K,=0.36E2, andK,=3.710 °E2: the Fermi en- Fermi-liquid to Fermi—liquid behavior occurs—is easily in-
ergy ozf Cu isEp=8x10%K. Insets: (a) Isotropic caseK;=Kj ferred from Eq.(10):
=0.5E¢ . (b) Distribution of the crossover temperaturé; the pa- - 5
rameter regime is the same as in the main grap: 8.2 K. ﬁ(T*): ? ﬁ K(6) 24 02)/ 2mT -

0 47 JK Ky [T*+y(0)/2mT]

typically corresponds tdK;>K;, so that the distribution This expression is applicable only far* <Ty, where the
function acquires a third asymptotic region. It extends berelationshipT* =A%/27 T, holds. The graph ofP(T*) is
tween the sharp maximum at A~(c/p2)VK;  shown in the bottom inset in Fig. 3. The corresponding lim-
~(vvlct/p§)EF and the beginning of tha ~? decay atA iting behaviors are

FIG. 3. The distribution function of splittings. The parameters
of the distribution function are chosen as folloggge Appendix B

(15

AT [2mc\ 2 (=2 d@ . 32
— ﬁ fo F20)" T* <(c/pp) min(K{,K3)/ Tk,
VK1K3

(T%)= 3 (16)
2mcl3pE (72 KA O)F(0) -
(C/pF) ma)(Kl,K3)/TK<T*<TK.

- 0—,
VT T*3 Jo VK1K3

N

In the intermediate regime c(p2)?K,/T<T* ansatz for the anomaly in the zero-bias conductance due to a

<(c/p2)?K /Ty the distribution functio®(T*) is propor- singlellzTLS* can be represented at<Tx as AG(T)
tional to 1AT*. Both the intermediate and the far —CT Y(T*/T), whereC is a constant and is a smooth

asymptotic regimes may not exist if the corresponding crossiUnction with the limiting behavior' (0)=1 andY (x>1)

over scales become comparable to, or larger tfign, —0. The signal fromN TLS's is then written as

B. Relevance of disorder to a two-channel Kondo-model

— 12 | Dr1* *
interpretation of zero-bias anomalies AGN(T)=NCT fP(T )Y (TH/T)dT*

If the parameters of TLS’s are randomly drawn from a o[~
certain distribution, the net contribution to conductance =NCT32f P(XT)Y (x)dx, (1739
AGy(T) from N TLS’s can be approximated as

AGH(T)~N(G)+O(\N), where x=T*/T, and P(T*) is a normalized distribution.
The functionY (x) reflects the “freezing out” of some im-

where(G) is the contribution of a single TLS averaged over Purity degree of freedom, and is likely to decay exponen-
the distribution of T*. It was estimated in Ref. 17 that at tially atlargex. Thus the convergence of the above integral
least 10 separate TLS in the vicinity of the nanoconstrictionat largex is provided by eithef’Y' or P depending on the
and up to 40 in some samples, must be present in order temperature.
explain the observed magnitude of the zero-bias anomaly. In It has been conjectured in Ref. 20 that the obsef¥tl
this regime the second term on the right-hand side in thacaling of Gy may be consistent with the existence of a
above expression would manifest itself as noise on the exdistribution of splittings because of an autoselection process,
perimental curves, and hence can be neglected. A scalinig which only impurities with sufficiently smalh contribute
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to conductance. Such a scenario would imply that the inte- -5.0 : . ' . —
gral in Eqg.(17a could be approximated as //
AGN(T)~N0T3’2Y(0)f P(xT)dx, (17b) -6.0 | 1

resulting inAGy=NCTY2 by virtue of the normalization of
P. However, this approximation is only valid P(T*) is
peaked so sharply that the integral in E§j739 is not much
different from its value in the limiting cas®(T* ) 8(T*). e

We will now consider under what circumstances such a be- 80| o~ 4

havior of P(T*) is possible and what consequences a differ-

ent behavior of(T*) would have.
Randomly formed TLS'’s in metallic glasses typically 9.0 w . .
have a broad distribution of asymmetrigs even in the ab- —40 30 —2.0 -1.0 0.0
sence of electronic disord&t Neglecting contributions from (T
randomA, at first, we can writeP(A) =1\, , whereW, is FIG. 4. Temperature dependence of the change in conductance
independent of\ in the region of interest. The corresponding due to scattering by an ensemble of TLS’, based on(E§. The
distribution of T* is P(T*)= 7 T«/2T*/W,, and conse- solid line is the result of numerical evaluation, and the dot-dashed
quently AGy must display a linear in temperature behavior, line is the linear fit INAGy/NC)=—4.83+0.84 In(T/Ty).

aTy_ (*dx 0.4K<T<4 K for Tg=8K, gives AGyxT*it with ag
AGy=NC WTJ TY(X)- ~0.84. The deviation from th@'? behavior expected for
z 70 VX degenerate TLS's is rather significant. While the measured

Nonzero values ofA, distributed with a widthw,<W,  exponent in the temperature dependence of zero-bias con-
would only exacerbate the discrepancy with the experimenductance does show deviations from1/2, they do not
tally observed\ Gy~ T2 behavior: specifically, the distribu- €xceed 0.25Ref. 20, so that the value 0.84 clearly lies
tion of A would acquire a linear dip ak<W,, yielding a  outside the experimental error.
flat distribution of T*, leading in turn taA Gy (T) ~ T2 from This result can be understood better by examining under
the integral in Eq(17a. Thus in order for the Kondo effect What conditions Eq(17b) can be valid. Let us assume, for
in its orbital two-channel realization to be the cause of thesimplicity, that? is characterized by a single parameter, its
observedT*? scaling, one must assume a set of nearly dewidth W. Formally, Eq.(17b) can be used whef<W. Let
generate TLS’s, at least before disorder is taken into accountis consider a hypothetical case of a sufficiently sharp distri-

Glassiness as a source of TLS’s in Ralph-Buhrman samplasytion, e.g., a Gaussiai®= \2/7W? ex{] — T*%/2W?]. Sub-
must, therefore, be ruled out. o _ stituting this form into Eq(17a we find that in the tempera-
Let us now turn to the case when electronic disorder is th@yre regionW<T<10W, the best fit gives a power-law
only source of TLS splitting; i.e., the TLS's are assumed toexponent of approximately 0.7, while the asymptotic behav-
be formed by some mechanism which, in the absence qpr 0.5 is approached within a 10% accuracy in the region
coupling to conduction electrons, ensures their degeneracyow<T<20W. Thus, even in the case of a sharp distribu-
The analytic form for the distribution oF*, Eq.(15), canbe  tjon, the relationT<W has to be understood as implying at
substituted into Eq173) together with an exponential ansalz jeast an order-of-magnitude difference. Returning to the ac-
Y(x)=e " Using the available experimental data to deter-ya distribution, Eq(10), we note that it is a much broader
mine the parameters of the distributi®{T*) in Eq.(15) is  function with a power-law Ir* *? tail so that the condition
not straightforward, and is discussed in detail in Appendix Bfor the validity of Eq.(17b) is even stricter. At the same
Integrating ovewx we obtain the following integral represen- time, the larger of the two parameters controlling the width

In(AG,/NC)
I8
o

tation for the TLS contribution to conductance: of P(T*) is W~ (c/p2)?K3/Tx~3 K~0.3T¢, so that the
asymptotic conditionV<T can never be satisfied for tem-
AG\(T)= NCTl/ZJZﬁ% K(8) _ ¥(0) peratures below y .
N o 2m JK,Kj V2T T It should be observed that the most optimistic choice of

parameters for the two-channel Kondo interpretation, corre-

Y%(6) v(6) sponding to scattering by nonequilibrium vacancies, leads to
X ex 2T T erf =il (18)  an estimate for the concentration of defectschi~10"*.
K

Using such a choice of parameters to support the two-
The remaining integral ovet is performed numerically, and channel Kondo interpretation also meets with a difficulty
the resulting graph for the temperature dependenck@yf;  concerning the fraction of defects which form two-level sys-
is shown in Fig. 4. As discussed in Appendix B, electronictems. Indeed, using the estimate made in Ref. 17 of up to 40
disorder is assumed to be caused by strongly scattering noseparate TLS's in the vicinity of the nanoconstriction, the
equilibrium vacancies. The plot in Fig. 4 does indicate acorresponding estimate for the density adtive TLS's is
behavior close to a power law. However, the best fit in thefound in Ref. 20 to be 10%/atom orcactive/p,§~2>< 107°. It
region 0.09<T<0.5T¢, corresponding to the interval can be assumed that TLS's wiffi* <T,, whereT, is the
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appropriately chosen cutoff temperature, are active. Then thghe distribution function ofA = /= A2 therefore takes the
ratio of the concentration of active TLS’s to their total con- form
centrationcy g is given by

Cactive

Nodr [ dS
To PAzzAf —'f — 51—
:f BT AT (19 (&) 5 157005
Cris 0
ChoosingTy~0.8 K, which is a slightly generous assump- X 6|
tion, since ther”2 behavior is traced experimentally down to

temperature§ ~0.4 K, we findc,ge/CT s~0.4. The totsal where K =2(7Jgr?Eg)? and f(r;)="f,=cos(@er)/(per)>.

density of TLS's is consequently estimated @ s/Pr  Exponentiating the second function and introducing a
~(1/0.4)Coch,e/ PE~0.5% 10 %, Comparing this to the shorthand notatiorF=3,f,S we rewrite the distribution
above estimate ort/pF~10 4 for the total concentration of function as

defects forces the improbable conclusion thalf of all the

defects in the constriction are two-level systems. In other dr;

words, in order for the autoselection mechanism to work, the Pm(A)=2AJ H 7'j H o

total number of TLS’s which would be degenerate in the ! boem

absence of disorder must be so large as to be inconsistent de o oo

with the results of measurements, indicating a rather small ><6(1—32)f Z—e"‘A — 1 KFo (24
overall density of defects in the nanoconstriction. Although .

indirect, this reasoning serves, in our view, as another indipecoupling the last term in the exponent with the help of a
cator of internal consistency problems with the two-channel'qybbard-Stratonovich” transformation we obtain

Kondo interpretation of zero-bias anomalies in Cu nanocon-

K
A= 2 f(n)f(r,-)ssj), (23

strictions. rd du
Pm(A)=2Af 15 23 S(1- sz)f%emz
Ill. DISTRIBUTION OF SPLITTINGS '
N2
A. Local spin in a spin-glass environment XJ dn ex IA —iNF
(27 k)32 2uK

The coupling of the conduction electrons to the random
spins results in the appearance of a nonzero expectation qind? A2
= —palm
ZAJ J<2mm<>3’2

value of the conduction-electron spin density at a generic 2uK
point in the sample. When this spin density is coupled to the

dynamic impurity, the lowest-order effect is to generate a dr dS 2\ o if(FAS N
self-energy matrix, whose componenis, in the basis of f 5(1 Se (25
Pauli matrices and to the lowest order in impurity concentra-
tion c are[see diagram in Fig.(d)] The expression in the square brackets can be transformed as
follows:
) de
A,=—iJg> fﬂGz(é;ri)Sav (20) dr [ dS N
i J VJ’E&l—SZ)eXp{—if(r)AS}
where the zero-temperature Green function in the coordinate
representation is given by B fﬂ sin{ [A[f(r)]]N
L)y N
G(er)= e exp{i Per + < r)sgne] (21 in[A[f(r)]
ry=—— r+— . Si r
- N Nexp{ of o1 "G5 )) 29

Note thatA , is proportional to the RKKY-induced random
spin polarization in directiony at the position of the impu- To compute the last integral the following approximation is
rity. To the lowest order inJ, the distribution of splittings employed: since the dominant contribution to the distribution
follows the distribution of internal random magnetic fields in function is expected to come from~d, it is possible to
spin glasses. The latter has been derived in Ref. 16 using @ecouple fast oscillations ih(proportional to cosg-r) from
somewhat simplified RKKY interaction, in which its oscilla- the slow decay gr) 3. Formally, f(r) is replaced with
tory character is modeled by random signs. The derivatiori(¢,r) = cose/(per)® with a simultaneous replacement
below, while reproducing the essential results of Ref. 16,
serves primarily to introduce the more technically involved
derivation for the nonmagnetic two-channel case presented f dr—>f drf o
in the next subsection.

Integrating over energy we obtain Integration over now gives

de m2c|\||cosg] 2mc|A|
—ngZE )scos(ZpFr)S” (22) p{ J 302 } exp[— 3p3 } (27)
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Absorbing V| u|K into A we can rewrite the distribution _ de
function as 5++=—2|2 jﬂj de dr'G(r+b)Z(r—r;,r'—r;)
du . A XG(r'+b), 33
Pm(A):ZAJ Z—Me'“Azﬁ o : (333
m (2mi sgnu) and similarly fors__ . The off-diagonal termd, _ is
" fm)\zd)\ i Sgnu 5 2mcy| KX de
0 b 3p: ' 8, =-2i>, fﬁj drf dr'G(r+b)7(r—r;,r'—r;)
I
28
28 XG(r'—h). (33b
Etotatlng the contour of integration byr(4)sgnu we arrive The factor of 2 in front is due to summation over channels—
the two orientations of the real spin of the conduction elec-
trons. The resulting electronic contribution to the splitting is
P, A)—f%ei’mz\ﬁj x2dx
m(A)= | oo T A’=VIRe(6,,—6__)1°+4Vi(Res, )2 (34
1, 2mcl+isgnu After integrating overe and approximatingr;=b|=r;
Xexp — 5 X7 3p? 2 VIulKx;. +b-n;, n;=r;/r;, the distribution function fon is given by
an expression analogous to Eg2):
(29)
_ dr; , 1 ~
Performing another change of variablgé=2|u|A?, and P(A)_ZAJ H 75 AT 5% [Kafifj+Kshihj] |,
rotating the contour of integration ovgrwe obtain the fol- (35)

lowing integral representation for the distribution function: . 3
where h;=h(r;)= [sin 2oer; /(peri)°Isin(2gb- n;), and the

232 9 (= o constant¥K,, K3, andt were defined above in Eg€l2) and
Pm(A)= —(;) Reﬁ JO deL dy (13). K5 is related toK 5 via K3=(2pgb)?K 5.
m Following the technique used in the preceding section, the
1 Y distribution function can be represented as an integral over a
xexp{ — E(x2+y2)+| Xxy], (300  Lagrange multiplierx and two ‘“Hubbard-Stratonovich”
variables\; andi s,

where q dhedn
M2 1UA3
P(A)=2AJ —elrh J—~
" 3pf V2 2 ’
. )\1 . )\3 47TC ( )
) . . : . Xexp i +i——- u(hy,A3)
Using polar coordinate@, ) in the (x,y) plane and integrat 20Ky 2,K, 3p2 1,73

ing over p the distribution function can be rewritten as

(36)
2 Ja (w2 cosfd 6 I . .
Po(A)=— _Re_f . (31 where the functioru is defined by an expression analogous
T dyYmJo CYm to Eq.(26),
1-i 3 sin 20

47cC . .
The remaining integral can be performed by elementary 3p3 u()‘l’)‘3)ch dri1—exp{—ik,f(r)—iAsh(r)}].

means, leading to the expression for the distribution function (37

(cf. Ref. 16 quoted in Eq(9). i . i . )
Integrating over orientations of, and decoupling fast oscil-

B N i TLS's in th ¢ static def lations inf andh, we arrive, in the approximation simpgb
. Nonmagnetic s in the presence of static defects ~2pr' at an analog of EG(.Z?)Z

The electronic contribution to the splitting between the

energy levels of TLS’s is determined by the difference be- =d¢ (2nde sin()\ST) sing?)
tween the two eigenvalues of the self-energy métrix u()\l,)\g):f — | |l
0?2Jo 27 A3bsinel
Vabis  Vide | @) |
Vi6_, —Vib6__ X exp{—ik, cosel} |, (39

The components of this matrix are expressed in terms of the 5
scattering matrixZ corresponding to the potential(r) in-  whereb=2pgb and {=1/(pgr)3. Integration overe now
troduced in Eq(6) as gives
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A
1o {| 1|K

U(Np,Ng)= Bin
3

0 &

¢
(39

2b|Ng| (= dz[ (élxll
-1l =
bI\3]

singl

where K, is the modified Bessel function. Completing the

remaining integration ovef, and rescalingd\ ;— \3 so that
K in Eq. (36) is replaced withk ;=b?K 3, we obtain

x? + X2 +y?
u(x,y)= mln MTY + \/x7+y2.
Using polar coordinate@,,6) in the (\1,\3) plane, introduc-
ing another set of polar coordinatgs) in the (\,u) plane,
and integrating ovep we obtain the following integral rep-
resentation for the distribution function:

(40)

2 (2ndO K(O) _ o

M= o 2
wl2 dy
fo 1-iysin2y = O)IA (41)

The final result obtained after integrating ovgr together
with the definition ofy(6), has been presented in EGO).

C. Higher-order contributions

The scaling ansatz used in E4.79 depends crucially on
the shape of the distribution functidnin the region of small
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bare scattering amplitudkis replaced with the renormalized
amplitudeJg(€,€). The renormalized amplitude is singular
at small energies, but the singularity is integrable, and after
the integration over energies in EO) it only manifests
itself in finite logarithmic terms like the first term in square
brackets in Eq.42). The inequality(43) ensures that the
contribution of these terms is small in the parameter
(vJ)In[Eg/(ve/d)] <1, and can be ignored.

In contrast, the diagrams of the second class correspond to
a further renormalization of the scattering amplitude by
particle-hole pairs, and retain the usual logarithmically diver-
gent factors. These terms were previously analyzed perturba-
tively using the renormalization groyRG) approach in Ref.

21, where it was established that in anisotropic models the
effect of these terms may be to renormalize downwards the
effective splittingat the scale just abovegl. We argue that
this analysis cannot be straightforwardly extended through
the crossover region into the low-temperature regime. In-
stead, we show that the effective splitting at temperatures
below the Kondo temperature can be deduced from the
lowest-order perturbative result on the basis of universality
properties of the two models under consideration, the one-
and two-channel Kondo models. We employ the language of
the underlying Anderson model, as it affords a unified de-
scription of the high- and low-energy regintes.

The simplest diagram of the second class is shown in Fig.
2(d). These graphs correspond to linéar A) screening of
the splitting by the Kondo interaction. In the perturbative
renormalization group analysis by Vladand Zawadowskt

splitting A. Thus, the applicability of the above analysis it was found that the splitting tends to be renormalized

hinges on whether the perturbative calculationAofn the
preceding subsection is sufficient fafs smaller thanTy .

downwards, and in the case of strong anisotropy, at least one
component of the splitting may be renormalized signifi-

Only the lowest-order diagram in Kondo coupling has beerfantly,
retained in the calculation so far, and we now turn to the

consideration of higher-order contributions.

These higher-order contributions can be conveniently

AX,eff(-l—z-I—K),-VAX 4V\]3

V‘]l ) 1/4vd4

separated into two classes. The diagrams belonging to the

first clasg Fig. 2(c)] correspond to the renormalization of the However, the perturbative analysis in Ref. 21 cannot be ex-
Kondo scattering amplitude with parquet diagrams, whichtended to energy scales beld . An extrapolation of the
collect the leading order logarithmic terms. They produceperturbative RG results from the energy sdate Ty to pre-
corrections toA which are smaller by powers of the Kondo dict the values ofA at T<Ty (Ref. 20 is unjustified because
coupling and, importantly, unlike the Kondo scattering am-splitting is a relevant operator in the RG sense.

plitude itself, do not contain any logarithmically divergent

terms. These contributions can therefore be neglected.

Let us consider first the isotropic one-channel magnetic
case. The perturbative renormalization group calculation of

Indeed, the contributions of the diagrams belonging to theRef. 21, although formulated in terms of the orbital two-

first class is typified by that of the diagram in Fighp

7TE|:
SA = J)?
Zi (v9)(»J) (Peri)®
Er
X|In +constcog 2per;) S . (42
VF/ri
This expression is valid as long as
Vel <Tg, (43

which, for T¢/Ex~10"%, would be violated only at un-
physically small concentrations/p2<10~*2 It is seen that

channel Kondo model, can be transferred, with minor modi-
fications, to the one-channel case as well because of the iden-
tical structures of the corresponding high-temperature
perturbation expansions. When graphs of the type shown in
Fig. 2(b) are neglected, the splitting has the literal meaning
of an external magnetic field acting on the impurity. The
unrenormalized impurity Green function has the form
G=(w—egt+h-o)7 %, (44)
whereeg is the energy of the singly occupied impurity state.
The ground state of the model can be described as an effec-
tive Fermi liquid, in which the Green function of the impu-

this contribution does not contain any uncontrolled logarith-rity spin retains its form under strong renormalization. The
mic divergences. The reason is that the sum of all diagramilly renormalized G will contain additional self-energy

of this type can be written in the form of EO0), where the

contributions’
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G=[w—eg+iTIz+h-o—3(w,h)] L (45y  dependent renormalization constamfsandX. . Coupling
anisotropy is an irrelevant operaton both one-channel and
where I is the width of the Kondo resonance. The self- two-channel Spin_l/z Kondo models: see, e.g., Re}, and
energyS =3,+3 o is expanded at smalb andh as the invariance of the Wilson ratio demands that

The choice of only two different renormalization con-
S=3/h, (46) stantsz, and z, corresponds tal;=J,#J; in the Kondo
effective Hamiltonian. If the field now is chosen in thg
whereX andz are the renormalization constants, &iyis  plane (1, in the above notationsthe corresponding value
the constant term which, in the case of symmetric Andersowf the self-energy at zero temperature is still
model, is equal tasy4 ensuring that the Kondo resonance is
centered at the Fermi energy. h‘(leﬁ:hu\/ﬁ(l_z"u)ZZhw-
Factoring out the quasiparticle weightthe effectivefield
hes takes the form

So(w,h)=3 g0t w+i0(w?),

1
1—-=
Z

The temperature dependence of this self-energy may be quite
nonmonotonic, as the transverse susceptibility deviates
her=2(1— S ). (47) stron_g_ly from the _free-spin value at temperatures above the
eff h specific heat maximum.
The perturbative RG calculation of renormalized splitting in  Let us turn now to the two-channel Kondo case. The

Ref. 21 is equivalent to computing the same prefactor above analysis cannot be transferred verbatim because the
ground state is not a Fermi liquid, aidfd does not have the
1-9%/9h meaning of the renormalized Fermi-liquid quasiparticle

R(w)=2(1-Xp)= 1-03/dw self-energy’’ In particular, the renormalization fact&®{ )

- . can no longer be identified with the Wilson ratio of an
at afinite frequencyw [see Eqs(3.5—(3.10 in the second  apgerson-like model. Nevertheless, the salient features of

reference of Ref. 2l The frequency dependence of both g analysis survive. Once again, we can identify the self-
derivatives in this region is logarithmic, so that, with loga- energy contribution of Fig. (@) with an external fielch act-
rithmic accuracy, frequency can be identified with energying on the impurity. The effective field in the high-
scale in the RG sense. Such scale-dependent quantities C{@'mperature regime is renormalized downwards, in the
termine the properties of the system at temperatures of thgnisotropic case stronghy.However, in the low-temperature

order of the energy scale. regime the weight of the quasiparticle excitations for which

The perturbative RG analysis cannot be continued beyonghis effective field represents the self-energy is zero, so that
some intermediate scat&, =Ty, and its usefulness for de- thjs self-energy term does not define any physical low-
termining low-temperature properties relies on the assUMPremperature energy scale. It has been demonstrated
tion that further renormalization frola~E, to E<Ty do_es recentl”*® that impurity thermodynamics in the low-
not change the value of the renormalized quantity in anjemperature regime can be described in terms of three vector
essential way. This assumption may be violated when renorzng one scalar Majorana quasiparticles. An external field
malization of relevant operators is considered, as is indeegenerates a self-energy contribution for the scalar Majorana
the case in the models considered here. o fermion 3, =h2/27T,=T* which is universal apart from

At zero temperature, the prefactor in Hg7) is just the  jis gependence offi .32 The universality® ensures that

universal Wilson ratioR (Ref. 2. Substituting its known T* is controlled by the unrenormalized valuetof-namely,
value, R=2, we obtain a seemingly counterintuitive result {he pare splittinga.

that, despite the downwards renormalization of the splitting
at E>Ty, the splitting is actually increased BTy by a
factor of 2 compared to its bare value. Of course, at zero
temperature the role of the weak effective magnetic field The results of our model calculation of the splitting be-
acting on the impurity is to polarize the Kondo screenediween the states of magnetic impurities and nonmagnetic
complex(as long asA <Ty,) andhgy induces a “splitting”  two-level systems in the presence of spin disorder can be
only in this sense. summarized as follows. First, the main feature of the distri-
To explain the nonmonotonic behavior of the effective bution functions of the splittings is their strong asymmetry.
splitting as a function of energy scaler temperaturg one  Formally the distribution functions in Eq$9) and (11) do
should note that, in the Anderson model, the renormalizatiomot even possess finite first moments. This is a manifestation
of the splitting is proportional to the ratio of the impurity of the fact that all the moments of the splittings are domi-
magnetic susceptibilityy to C/T, whereC is the impurity  nated by disorder configurations with one or more scatterers
specific heat. This ratio is a nonmonotonic function of tem-located very close to the dynamic impurity. In real systems
perature neaf , essentially because of the maximum in thethe shortest possible separation between the dynamic impu-
temperature dependence ©fat T~ Tk . rity and the nearest scatterer is determined by the lattice
The Anderson model is less well suited for a discussion ospacing. Therefore one has to introduce a short-distance, lat-
anisotropic Kondo models. Nevertheless, anisotropy can btice cutoff into the coordinate integration in E@6). In the
modeled, at the price of additional potential scattering in thegresence of such a cutoff all the moments are dominated by
corresponding s-d Hamiltonian, by introducing spin- distances of the order of the cutoff, and thus, for example,

IV. DISCUSSION
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the average rms spliting/(A?) is of the order of B B
EF(.ngZ)\/c/pgF the

for magnetic case or

EF(ma>{V1,V3pr})tv\/c/p3F for the nonmagnetic TLS case.
These values are larger than the typical ones by a factor of
\/pg,:/c~(p,:d)3/2> 1. This confirms the result obtained inde-  FIG. 5. The lowest-order logarithmic contribution to suscepti-
pendently by Cox! bility in the magnetic Kondo problem. The wavy lines correspond
Second, since the splitting is the difference between twd® the external magnetic field.

eigenvalues of a random Hermitian<2 matrix, at small
splittings one observes the equivalent of level repulsion lea
ing to a vanishing probability density to observe zero split-
ting. In the nonmagnetic TLS case the matrix is real and
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A4(T), can be reduced at intermediate temperatdres ¢

compared to the bare valuk (Refs. 21 and 20Since the APPENDIX A

distribution of splittings is very asymmetric, with the root-

mean-square splitting much larger than the typical value, a To illustrate the small effects of spin disorder on the stan-
proper renormalization analysis would necessarily treat théard logarithmic terms in the perturbation-theory expansion,
full distribution rather than just the first few moments. To We consider the well-known lowest-order logarithmic contri-
what extent the distributions found here preserve their shapeution to the spin susceptibility given by the diagram shown
under renormalization is an open question. in Fig. 5.

Nevertheless, the zero-temperature behavior of the split- As in other similar logarithmic diagrams, there appears a
ting, or, more precisely, of the corresponding self-energyset of terms due to the off-diagonal in spin index parts of the
terms, is dictated by the universality properties of the oneGreen function. The corresponding analytical expression is
and two-channel Kondo models, and can be extracted di-
rectly. This, in turn, made it possible to derive a correspond-
ing temperature dependence of conductance for a collection Sx(T)
of two-level systems. We findcf. Ref. 1) a T* behavior =
with @~0.84 in contrast to th&? dependence observed
experimentally:’1829The concentration of the TLS’s which € €
must be degeneratén the absence of disordein order to tanh;— —tanh,—
sustain the two-channel Kondo interpretation is also found to =27 3
be unphysically large. Both these arguments suggest that the (€1-€2)
two-channel Kondo model does not provide a consistent in-
terpretation of the zero-bias anomalies observed in Ref. 17. X

In conclusion, we have computed the distribution func-

tions of the splittings of magnetic impurities and nonmag-

. . : : hereo;(e€) is the electron spin density of states at the im-
- m i
netic two-level systems induced by disorder scattering 0%Nurity site, andy, is the susceptibility of a free spin. Since

conduction electrons. In the magnetic case these splittin the averagéo;)=0, there is no positive definite contribution
only appear if the disorder breaks time-reversal symmetry A S .
fo the logarithmic integral similar to that coming from the

i.e., if the disorder is itself magnetic. In the nonmagnetic,. e
case the degeneracy between the levels of a TLS is due g)rst term (ey)p(ez). Moreover, the absence of diffusive

geometric symmetry about its center, and therefore i ehavior forg; (due to the_ absence 9f an equivalent of_the
strongly broken by any type of disorde} We find that theparncle—number conservation law which enforces the univer-

probability distribution of splittings vanishes as a power IawSal d|ffu5|or1 pole in the 9?”5'“’ correlatignkeads to the

at small splittings, making nearly degenerate impurities aabsence of f'?? structure” in the cqrrelat(xrjgj) at's'cales
rarity. The typical values of splittings are found to be smallerSmaller thans, = In the quEI of isolated impurities the
than the average estimated previously in Ref. 11. Howevet‘?ffeCt (?f the second term in EdA1) rgduces toa small
even in quite clean systems such as the ones studied in tf@Tection to the coefficient of the leading logarittifn. .
experiments of Ref. 17, the broad profile of the distribution Indeed, in the Iowest order_ln concentration of magnetic
of splittings results in a temperature dependence of the corfléf€CtsSa, the local spin density of states is given by
ductance which is substantially different from the square-

root law expected in the absence of disorder. Consequently, o(e)=— gz ( TV
experimental observation of the square-root temperature and ™ Pela

d\_/oltage dependences may not be a reliable indicator of two-
channel Kondo physics.

1-tanh-+ tanh—2
tan 2Ttan oT

1 2
§J jdfldfz

Xo (61_62)2

3
3p<el>p<ez>—j§1 oj(e))oj(e) |, (Al)

2
Irne*2i(p,:+e/V,:)raSa7 (AZ)

a
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wherer, are the coordinates of the defects. Usif®S))  [which would make it possible to infer the concentration
:éﬁabgij , we find from Eq.(B2)]. Even allowing for an independent measure-
ment of defect concentratiofione not available for the

ar\4 1 Ralph-Buhrman samplgsinformation about phase shifts is
<Ui(€1)gi(52)>:(;92f dr(—) —sin2(pe+ €1 /ve)r] still needed if more than one of them is nonzero.
Per/ @ It is seen from Eq(10) that the scale for the typical val-
X Sif2(pe+ €, /Ve)r] ues ofA is set by the combinations:(pﬁ) K;, 1I=1,3, and,
for small %, itis linear in bothc and %, . Together with Eq.

e1te, |e1—e (B2), this implies that, for a fixed value of,,, smaller val-

Er  Ef | ues of », result in a broader distribution functio”(A). For
example, the choice d&in 7|=1/6 leads to typical values of

(A3) T* exceedingTx. Conversely, if scatterers are strong, (

_— . ~1), fewer of them are needed to produce the same value of
Substituting the last expression into A1) we see that and the distribution function is narrowed, implying

the second and third terms in square brackets produce irres_r;[n’aller woical disorder-induced splittinas
evant constants and terms which are as small/&s , while yp PItings.

the first term results simply in a correction to the effectiveSmlgllsr\]/gmzsbifgﬁ)tgﬁl tha;rgecggsiilgfggf li:r:I(?[g(eal :;Sn; rgfle,
density of statesp?/v?=(—4mc/3p3 ) m*(gv)>. Y P y

neutral defects. If defects are charged, at least one of the
phase shifts cannot be small.
APPENDIX B A typical neutral defect is a combination of a self-
The Kondo temperature in the TLS model is givertby interstitial and a neighboring vacancs .so-called Frenkel
defec). We are not aware of any studies of whether such
defects are more or less common in vacuum-deposited films
(B1) than simple nonequilibrium vacancies, which are charged,

' and thus scatter strongly. However, the formation energy of

such neutral defects in Cu is 2—3 times larger than the for-

yvhereJl andJ, are_electron-TLS coqpllng constants, am_d mation energy of a vacan&}.Consequently, we concentrate
is the local conduction-electron density of states. Assuming Bn the nonequilibrium vacancies as the dominant source of

two-channel Kondo. |nter.pretat|o.n of the anomalies, the cattering. Since one of the aims of this work is to explore
Kondo temperature is estimated in Ref._17 to be between g pather the two-channel Kondo interpretation of the Ralph-
and 10 K. The ch0|_ce .Of the bare_ coupling valqe3§~0.2 . Buhrman zero-bias anomalies can be compatible with the
and»J;~0.007, which is adopted in the calculations leadingy, esence of the static scattering in their samples, the assump-

to the graphs in Figs. 3 and 4, corr_esponds to the Kond on that the bulk of disorder is caused by strongly scattering
temperature offy~8.2K. The respective values of the Cou- nqnequilibrium vacancies is also quite appropriate. It leads to
plings Vs andV, in Eq. (2) areV3=0.74, andv;~0.0012, o gmallest values of splittings, and is, therefore, the most
corresponding to the dimensionless distance between thgygraple for the two-channel Kondo interpretation of the
TLS minima set at BFwa.;S. _ experiments in Ref. 17.

_ The nature of defects in quenched vacuum-deposited ‘gcaitering by vacancies in Cu has been studied by several
films is not well understood, and is likely to vary depend'ngtechniques(experimental, numerical, and their combinajion
on the details of a particular experimental setup. As a rough, Ref. 45. The results of the fitting procedure combining
measure of disorder, the transport mean free path near thgnerimental and numerical techniques quoted in Ref. 45
opening of the constriction is estimated in Ref. 19 tohe  give for the differences between the vacancy and the host

~30nm in unannegledsamples. '_I'he mean free pat_h is re- phase shifts the following set of valuesy,~0.92, 7,~
lated to the scattering phase shifjs and concentration of _ 7 andz,—,=0.

defectsc via*®

C
=w2v2(wgv>2—3[4+
Pr

TK~EF¢(vJ1><vJ3>(—1

14034
4J3)

APPENDIX C

3
1
= Pe - , (B2) Fluctuations of the Kondo temperatufg due to static
PE/ = ame S 4 Sire( 7, — ) : ;
e 2= = M-1 disorder can be addressed in the same framework used for

wherel denotes angular momentum channels. The transpthe (.:alculatio.n of_the distribution of splittings. Indeed, in th_e

mean free path iannealedsamples is shown in Ref. 19 to be leading logarithmic Qrder, th_e Kondo temperature can be in-

close to 300nm: i.e., it increases by a factor of 10 uporférred from the scaling relatiéh

annealing. Therefore, most of the disorder in the constriction

is likely to be caused not by substitution impurities which dys

cannot anneal, but by localized structural inhomogeneities in D) —dInD, (Cy

stressed deposited films. Spatially extended defects, such as

dislocations and grain boundaries, are unlikely to be a majowhere D is the renormalized band cutoff; is a homoge-

cause of scattering for the same reason. neous degree-1 function of dimensionless couplihgs and
The coefficientsK,; and K5 in Eq. (10) cannot be ex- ® is a homogeneous function of degree 2 which depends on

pressed in terms of the transport mean free path alone. Thejr and bare values of the couplings. The effect of disorder is

computation requires knowledge of the phase shifis contained in the energy-dependent density of sta{d3).




9688

The homogeneity of bothy and ® allows one to make a
substitutiony(Jv) — (Jv), wherev is the average density
of states, while transferring the energy dependence tf
the right hand side of EqC1). The implicit equation foiT ¢
takes the form

folq:: i) -

fDo[V(D)-l-v(—D)]dD

73D . (C2

Tk

IGOR E. SMOLYARENKO AND NED S. WINGREEN

PRB 60

T+ 6T t
In—& K+2 7 SIN(2per;)ci(2Tgr/ve) =0.
Tk 7 (PErj)

(C4

(p

The argument of the integral cosine ci is as small as
(Tk/Eg)(p2/c)Y3~10"3, where the valueSy /Ep~10*
andc/p,‘°-_‘~10‘4 are usedsee Sec. Il B It can therefore be
approximated as ci(Br;/vg)~—C—In(2Tkr;/vg), where

where Do~ Eg is the unrenormalized bandwidth, and the C is the Euler constant. Typical values 6T /Ty are thus

boundary conditiorg/{ J(Dy)]=0 was used. Following the

seen to be of the order daf{c/pg)?3In[(Tk/E)(c/pd) 7],

consideration in Sec. Il B, the correction to the density ofand we estimateT, /T~ 10 2. Therefore random varia-

states as a function of energyis expressed as

ov(e)=v(e)—v= —2

]

—\ 2
TV t )
( ) 5 V|meZ|(pF+e/vF)rJ,

et
(C3

tions of T due to static disordecan be safely neglected for
the parameter regime of Ref. 17.

Intrinsic variation of Tx among different randomly
formed TLS's is, of course, a possibility. However, it has
been established in the main text that all TLS’s have to be
degenerate in order for the two-channel Kondo interpretation

wherer; are the coordinates of random scatterers. Substituto have a chance of succeeding. Thus one must assume that

ing the above expression into E&2) we obtain the follow-
ing condition for the disorder-induced shfly :

the TLS’s are formed by the same nonrandom mechanism,
again excluding large variations @i .
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