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Magnetic anisotropy barrier for spin tunneling in Mn 12O12 molecules
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Electronic structure calculations on the nature of electronic states and the magnetic coupling in Mn-acetate
@Mn12O12(RCOO)16(H2O)4# molecules have been been carried out within the generalized gradient approxi-
mation to the density functional formalism. Our studies on this 100-atom molecule illustrate the role of the
nonmagnetic carboxyl host in stabilizing the ferrimagnetic Mn12O12 core and provide estimates of the local
magnetic moment at the various sites. We provide a first density-functional-based prediction of the second-
order magnetic anisotropy energy of this system. Results are in excellent agreement with experiment. To
perform these calculations we introduce a simplified exact method for spin-orbit coupling and magnetic
anisotropy energies in multicenter systems. This method is free of shape approximations and has other advan-
tages as well. First, it is valid for periodic boundary conditions or finite systems and is independent of basis set
choice. Second, the method does not require the calculation of electric field. Third, for applications to systems
with a finite energy gap between occupied and unoccupied electronic states, a perturbative expansion allows
for a simple determination of the magnetic anisotropy energy.@S0163-1829~99!04437-9#
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I. INTRODUCTION

The magnetic anisotropy energy, first explained by V
Vleck,1,2 represents a very important energy scale for
design of molecular scale magnetic memory devices. It
termines the temperature at which thermal processes
cause the spin projection of a molecule or cluster to r
domly reorientate itself. Further, the magnetic fields at wh
resonant spin tunneling is achieved is related to the ani
ropy energy and this relationship is especially simple
uniaxial systems where the barrier is dominated by seco
order effects. An example of current interest is the rec
observation of resonant quantum tunneling of magnetiza
~QTM! in Mn12O12-acetate crystals. This observation h
generated considerable excitement as it illustrates quan
phenomenon at a macroscopic scale.3–13 The crystal, first
discovered by Lis,3 consists of Mn12O12(RCOO)16(H2O)4
molecules withR5CH3 and six additional molecules of so
vation ~four water and two acetic acid molecules!. The unit
cell has a volume of 3716 Å,3 and its core is made of a
Mn12O12 cluster which is ferrimagnetic with a total spinSof
10 ~moment of 20.0mB). The magnetic Mn12O12 clusters in
different cells are separated by the nonmagnetic host w
prevents any exchange coupling between individual clust
@The dipolar interaction between neighboring clusters wh
are separated by 15 Å is estimated to be around 0.01 T~Ref.
5! which is two orders of magnitude smaller than the ma
netic fields used in experiments.# Further, the crystal is
marked by a uniaxial magnetic anisotropy which results
the energy depending on the orientation of the spin rela
to the symmetry axis. Upon application of a magnetic fie
hysterisis loops have shown a staircase structure propos
be associated with resonant quantum tunneling of spins
tween the different M states. Based on the Arrhenius beh
ior of the relaxation times, the total anisotropy barrier h
PRB 600163-1829/99/60~13!/9566~7!/$15.00
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been estimated to be in the range of 60–62 K.7 Recently,
Barraet al.12 have analyzed the high-field electron parama
netic resonance data and suggested that the second-
contributions to the anisotropy energy account for 55.6 K
the barrier. Fortet al.13 have performed a detailed analys
on measurements from both activated and tunneling tra
tions and have found that this second-order contribution p
two additional fourth-order contributions account for th
field dependence of the relaxation time.

To date, the only available theoretical electronic struct
studies are based on an isolated Mn12O12 cluster14 with the
bulk geometry. We have shown15 that a free Mn12O12 cluster
with the same geometry as in bulk acetate is unstable
transforms to the Ziemann-Castleman tower structure p
posed for free MnO clusters in beams.16 Our studies also
demonstrated that the nonmagnetic host, consisting of
teen carboxyl groups and four H2O molecules, performs a
key role in stabilizing the magnetic core and in determini
the local magnetic moments at the Mn sites. However, th
have been no first-principles predictions or explanatio
dealing with the large second-order contributions to the
isotropy energies. In this paper we present a detailed e
tronic structure of the molecule. We examine the magne
structure of the passivated Mn12O12 clusters and the state
involved in the spin tunneling. The calculated electron
states are used to carry out the firstab initio calculation of
the magnetic anisotropic energy of this passivated nanom
net.

In Sec. II we introduce a simplified albeit exact meth
for incorporating spin-orbit coupling into density-function
calculations and in Sec. III we derive the necessary equat
for determining the magnetic anisotropy barrier in a uniax
system such as the Mn12-acetate molecule. The method in
troduced here is independent of the type of basis set tha
employed and is applicable to both isolated and periodic s
9566 ©1999 The American Physical Society
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tems. Further it has several numerical and computational
vantages over the standardL•S representation for spin-orbi
coupling. It relies on the original Cartesian representation
the spin-orbit coupling interaction but with a simple integr
tion by parts we alleviate the need for the determination
the electric field. To make contact with the spin-tunneli
experiments we consider the problem of a uniaxial molec
in a magnetic field and write down the expressions that
needed to calculate the anisotropy energy. In Sec. IV
briefly outline the method used for determining the magne
ordering, equilibrium geometries, Kohn-Sham orbitals a
densities of states. In Sec. V, we present our all-elect
density-functional based calculations on the magnetic ani
ropy energy for the Mn12-acetate molecule and compare o
results to the experimental values. A summary follows
Sec. VI.

II. A SIMPLE EXACT FULL-SPACE APPROACH TO
SPIN-ORBIT COUPLING

To date, calculations of spin-orbit coupling have used
generalization of the standard spin-orbit coupling terms
spherical systems. This standardL•S representation for the
spin-orbit coupling requires the determination of the elect
field observed by the moving electrons and is not entir
straightforward to use in applications to nonspherical or m
ticenter systems.

The classical explanation of spin-orbit coupling is that
electron moving, with velocityv, in an external electric field
(E), observes a magnetic field given byv3E/c. To deter-
mine the quantum-mechanical operator within a Hartree
proximation it is common to note thatE52“F(r ), with F
the Coulomb potential and to replace the velocity (v) by the
momentum operatorp. Accounting for the fact that the elec
tron is not spinless, the interaction energy is then given b17

U~r ,p,S!52
1

2c2
S•p3“F~r !, ~1!

where the factor of 2 in the denominator, also derivable fr
the Dirac equation, is due to the Thomas precession. Giv
spherically symmetric potentialF(r ) and some simple alge
braic reductions the above expression is usually rewri
according to

U~r ,L ,S!5
1

2c2
S•L

1

r

dF~r !

dr
. ~2!

While the above equation is exact for spherical systems
attempt to approximate the spin-orbit coupling in multicen
systems as a superposition of such terms on a lattice c
omit nonspherical corrections that may be especially imp
tant for anisotropy energies.

Instead of using Eq.~2! for the spin-orbit coupling we
return to Eq.~1! and note that in all basis-set oriented mea
field approaches the single-electron wave functions are
mately expressed according to

c is~r !5S j sCj s
is f j~r !xs , ~3!

wheref j (r ) is a spatial basis function,xs is either a majority
or minority spin spinor, and the Cj s
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agonalizing ~or effectively diagonalizing! the Hamiltonian
matrix. In the above equation, we allow for the possibility
noncollinear magnetic wave functions. Regardless
whether one is working with the Dirac equation, a sca
relativistic methodology or nonrelativistic formulations th
determination of spin-orbit coupling matrix elements is
necessary ingredient to the numerical solution of the Shr¨d-
inger equation. To determine the generalized spin-orbit in
action from Eq.~1! it is simply necessary to calculate matr
elements of the form

U j s,ks85^ f jxsuU~r ,p,S!u f kxs8&

5Sx

21

i2c2
^ f j u@“3“F~r !#xu f k&^xsuSxuxs8&

5Sx

1

i
^ f j uVxu f k&^xsuSxuxs8& ~4!

with the operator Vx defined according to

^ f i uVxu f j&5
21

2c2 K f iU d

dy

dF

dz
2

d

dz

dF

dy U f j L
5

1

2c2 F K f iUS dF

dy

d

dz
2

dF

dz

d

dyD U f j L
1 K f iU d2F

dydz
2

d2F

dzdyU f j L G
5

1

2c2 K f iUS dF

dy

d

dz
2

dF

dz

d

dyD U f j L . ~5!

We note that if one rewrites Eq.~1! as U(r ,p,S)
5(1/2c2)S•“F(r )3p we obtain the same final expressio
for Eq. ~5!. The most straightforward path to deriving Eq.~5!
is to follow Kittel18 and rewrite the spin-orbit interaction a
U(r ,p,S)5(1/2c2)S3“F(r )•p. The important point is that
all possible classical definitions of the spin-orbit term w
eventually lead to Eq.~5!. Now using the identity

K f iU dF

dy

d

dzU f j L 5E d3r
d

dy F f iF
d f j

dzG
2 K d fi

dyUFUd f j

dzL 2 K f iUFU d2f j

dzdyL ~6!

and a similar identity for thêf i u(dF/dz)(d/dy)u f j& term of
Eq. ~5! allows for the introduction of a simple expression f
the spin-orbit coupling matrix elements

^ f i uVxu f j&5
1

2c2 S K d fi

dzUFUd f j

dy L 2 K d fi

dyUFUd f j

dzL D . ~7!

The matrix elements forVy andVz are determined from cy-
clical permutations of the coordinate labels in the abo
equation. The above equation follows because the first t
of Eq. ~6! vanishes if the system is finite since the ba
functions vanish at infinity and the third term of Eq.~6! is
exactly cancelled by the third term of̂ f i u(dF/
dz)(d/dy)u f j&. Equation~7! is also appropriate for periodic
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systems since it is only necessary to evaluate the spin-o
coupling terms between states associated with the same
in the Brillioun zone.18 Therefore, for a periodic calculatio
we are only interested in evaluating Eq.~6! for functions
with the samek vector. For functions with the samek vector
the first term of Eq.~6! vanishes because the surface ter
cancel one another.

The above representation@Eq. ~7!# for the spin-orbit cou-
pling matrix offers several advantages over the more us
representation in terms of Eq.~2!. First, it does not require
the determination of the electric field and depends only
the ability to accurately determine the Coulomb potential a
the gradient of each basis function in the problem. This r
resentation for the spin orbit coupling matrix is especia
ideal for basis functions constructed from Gaussian-type
bitals, slater-type functions, and plane waves. For numer
basis functions it should still be useful since it is genera
necessary to determine the gradient of a numerical func
for determination of the kinetic energy matrix. Before tur
ing to many-electron systems, where second order effects
of primary interest, the veracity of Eq.~7! can be simply
tested by calculating the spin-orbit splitting of the 2p states
in the hydrogen atom. It is easily verified that Eq.~4! com-
bined with Eq.~7! predicts the exact first-order splitting o
1/32c2 between the2P3/2 and 2P1/2 states.17

III. CALCULATION OF MAGNETIC ANISOTROPY
ENERGIES

Especially in uniaxial systems the magnetic anisotro
energy is primarily due to spin-orbit coupling and is typica
on the order of microhartrees. For systems with a vanish
energy gap between the occupied and unoccupied electr
states, spin-orbit interactions can either rearrange the o
pied and unoccupied manifold or possibly open up sm
gaps. For systems with a finite energy gap such as insula
or nanoscale molecules and clusters, spin-orbit coupling
shift each occupied and unoccupied eigenvalue by O(1/2c2)
but will generally not cause energy crossings between oc
pied and unoccupied states. For such systems the aniso
barrier is related to the shift of thetotal energyas a function
of quantization axis rather than the single-electron energ
By making use of a perturbative expansion we show that
closed shell systems the first-order O(1/2c2) effects due to
spin orbit coupling vanish and it is the second ord
O(1/4c4) effects which account for the shift in total energie
the formation of magnetic anisotropy energies, and other
lective effects. We also develop a two-dimensional s
Hamiltonian, which when solved self-consistently, det
mines the stationary spin orientations as a function of ge
etry and magnetic-field orientation. A perturbative meth
for the determination of single-electron and collective sh
in total energies due to spin-orbit coupling is now outline
We include effects due to magnetic fields as well to ma
contact with the spin-tunneling experiments. Let us assu
that, in the absence of a magnetic field and spin-orbit c
pling, we have determined the wave functions@c is# within a
self-consistent field~SCF! approximation ~e.g., density-
functional theory or Hartree-Fock!. The SCF wave functions
satisfy

Huc is&5e isuc is&, ~8!
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where the spin-orbitaluc is& is a simple product of a spatia
function and spinor according touc is&5f is(r )xs . With the
inclusion of spin-orbit coupling and the introduction of
magnetic field the perturbed wave functions must satisfy

FH1S V

i
1

1

c
BD •SG uc is8 &5e is8 uc is8 & ~9!

with the operatorV defined according to Eqs.~7! and the
magnetic field (B) is assumed to be uniform. If we takeW
5(V/ i 1B/c), second order perturbation theory tells us th
trace of the Hamiltonian matrix is perturbed according to
following expression:

D5D11D2 , ~10!

D15(
xs

Sx
ss(

i
^f isuWxuf is&,

D25(
ss8

(
xy

Wxy
ss8Sx

ss8Sy
s8s ,

Wxy
ss85Wyx

ss8* 5(
i j

^f isuWxuf j s8&^f j s8uWyuf is&

e is2e j s8

,

Sx
ss85^xsuSxuxs8 &. ~11!

In the above equation thef is are occupied states and thef j s
are unoccupied states. The above equation follows becau
is only necessary to determine the first order mixing coe
cients between the occupied and unoccupied orbitals to
termine the first and second order changes of the trace o
Hamiltonian.

The above expression is valid for any set of spino
(x1 ,x2) which are constructed from a unitary transformati
on the Sz eigenstates (m1 ,m2) defined with respect to an
arbitrary axis.

ux1&5u11um1&1u12um2&,

ux2&5u21um1&1u22um2&. ~12!

In terms of the unitary matrix the total energy shift (D)
can then be rewritten according to

D5 (
smm8

usm* usm8Tm,m8
s

1 (
ss8mm8m9m-

usm* usm8us8m9
* us8m-Vmm8m9m-

ss8 ~13!

with theT andV matrices defined in terms of theW matrices
according to

Tm,m8
s

5(
x

^muSxum8&(
i

^f isuWxuf is&, ~14!

Vmm8m9m-
ss8 5(

xy
Wxy

ss8^muSxum9&^m-uSyum8&. ~15!

For the most general uniform magnetic field and a syst
with no symmetry the above equations allow us to find
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groundstate of a molecule as a function of quantization a
This is accomplished by finding the optimal unitary transf
mation that lead to stationary values of Eq.~13!. One ap-
proach to the generalized problem is to introduce Lagra
multipliers to maintain the orthonormality of the vecto
(u1,u2) and self-consistently minimize Eq.~13! using stan-
dard techniques. An alternative approach, applicable
uniaxial systems, is to parametrize a 232 unitary transfor-
mation in terms of two angles and minimize the above
pression as a function of these two angles. We discuss
latter approach within the context of the calculation of t
magnetic-anisotropy barriers in molecules.

We now turn to the case of a closed-shell molecule w
DN excess majority spin electrons which exists in a uniax
symmetry state. Since S if is* (r )f is(r 8) and
S i j f is* (r )f j s8(r ) f j s8

* (r 8)f is(r 8)/(e is2e j s8) are invariant
under the symmetry operations the first order and sec
order shifts are significantly simplified. The spin-orbit co
tributions to the first-order energy shiftD1 sum to zero which
leads to a first order contribution written according to

D15(
s

B

c
^xsuSuxs&3F(

i
^f isuf is&G

5
B

c (
s

^xsuSuxs&3Ns . ~16!

With respect to second order shifts theW matrices are
simplified to

Wxy
ss852(

i j

^f isuVxuf j s8&^f j s8uVyuf is&

e is2e j s8

1
BxBy

c2 (
i j

^f isuf j s8&^f j s8uf is&

e is2e j s8

. ~17!

The second term of the above expression is responsible
the magnetic susceptability of the system and is not of
mary interest to magnetic anisotropy barriers. At zero or v
small fields theW matrices simplify to

Wxy
ss8→Mxy

ss852(
i j

^f isuVxuf j s8&^f j s8uVyuf is&

e is2e j s8

.

~18!

For uniaxial symmetry the Cartesian off-diagonalM ma-

trices vanish andMxx
ss85M yy

ss8 and the second order contr
butions to the energy shiftD is given by

D25(
ss8

(
x

Mxx
ss8Sx

ss8Sx
s8s . ~19!

Assuming the states (m1 ,m2)5(↑,↓) are chosen to be par
allel to thez axis, the most general set of spinors are gen
ated from the following unitary transformation

ux1&5eigFcos
u

2
u↑&1eibsin

u

2
u↓&G

ux2&5e2 igF2e2 ibsin
u

2
u↑&1cos

u

2
u↓&G , ~20!
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whereu andb are variational parameters andg is an ignor-
able parameter. After performing a bit of algebra the to
second order shiftD2 becomes

D25~Mxx
111Mxx

221Mzz
121Mzz

21!
sin2~u!

4

1~Mzz
111Mzz

221Mxx
121Mxx

21!
cos2~u!

4

1~Mxx
121Mxx

21!
1

4

5A1
g

2 FDN cosu

2 G2

~21!

with A5(Mxx
111Mxx

221Mzz
121Mzz

211Mxx
121Mxx

21)/4 and

g5~2/DN2!~Mzz
111Mzz

221Mxx
121Mxx

212Mxx
11

2Mxx
222Mzz

122Mzz
21!.

In the above equation we have used the fact that fo

uniaxial system,Mxx
ss85M yy

ss8 . It is convenient to defineg
in this way becausêSz&5DN cosu/2. While this is formally
a classical expectation value of a spin projection and a c
tinuous function ofu, it is clear that̂ Sz& exhibits the appro-
priate boundsu^Sz&u<DN/2. The difference between th
maximum energy orientation and the minimum energy o
entation is given by (DN2/4)(g/2). A positive gamma cor-
responds to an easy plane~no barrier! and a negative gamm
corresponds to an easy axis with a barrier at^Sz&50 and
minima at ^Sz&51/2DN/2. It is the latter case that is o
interest to spin tunneling experiments.

To make contact with spin tunneling experiments we n
consider the case where the magnetic field is taken along
z axis. Combining Eqs.~16! and ~21! leads to

D5A1
B

c

DN cosu

2
1

g

2 FDN cosu

2 G2

5A1
B

c
^Sz&1

g

2
^Sz&

2. ~22!

Assumingg is positive and equating the total azimuth
quantum numberMS5^Sz& several different effects due t
small magnetic fields can be experimentally observed. M
relevent to spin tunneling is to imagine preparing a collect
of the molecules in a stateMS5S with the total spinS
5DN/2. Over a period of time the spin projections will re
orientate and the relaxation time for redistribution is rela
to the classical barrier which isS2(g/2). If one measures the
relaxation time in the presence of a magnetic field the rel
ation time changes because the barrier height changes
tinuously with field. However it is easily verified that fo
integer multiples of the field strengthB05gc/2, states on
one side of the barrier will be degenerate with states on
other side of the barrier. Under these conditions quant
tunneling of spins occurs which leads to discontinuities
the relaxation times. For a discussion of actual transit
mechanisms see Ref. 19. For a perfectly quadratic sys
these discontinuities would provide a more accurate way
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measuring the parameterg and, therefore, the classical e
ergy barrier. Alternatively, deviations between the barri
determined from the Arrhenius law and those deduced b
harmonic analysis of the resonance field strengths provid
measure of the strength of the higher-order contributions
the anisotropy barriers.

IV. ELECTRONIC, MAGNETIC AND GEOMETRICAL
STRUCTURE

The theoretical studies were carried out using a lin
combination of Gaussian orbitals molecular orbital appro
within the density functional formalism using the generaliz
gradient approximation20 ~GGA! of the density functional
theory.21 Discussion of this methodology~NRLMOL! has
appeared elsewhere22 and discussion specific to the Mn12O12
core~e.g., basis sets! appears in Ref. 14. For the first iteratio
of the first geometry, we used a starting potential which
vored the ferrimagnetic ordering suggested by experim
After the first iteration and for all subsequent geometri
this external potential was removed and the Kohn-Sham
bitals and atomic positions were optimized to minimize t
energy of the system. In accord with the experimental und
standing, we found a ferrimagnetic structure which cons
of an inner Mn4O4 core of minority spin atoms and an out
Mn8O8 ring of majority spin atoms. The cluster carries a n
moment ofS520mB in agreement with experiment. We hav
calculated the moment captured by a sphere of radius
Bohr centered about each Mn atom and found local mom
of 22.6 and 3.6mB on the four inner and eight outer M
atoms, respectively. While the magnetization density is
localized entirely on the Mn atoms, the simple experimen
interpretation of four Mn atoms with moments of23.0 and
eight Mn atoms with moments of 4.0mB is quite reasonable

Since the Kohn-Sham orbitals contain the informati
that is required for determination of the tunneling barrier,
first discuss the electronic structure of the passiva
Mn12O12 molecule. For the passivated structure, the ener
of the minority spin HOMO and lowest unoccupied molec
lar orbital ~LUMO! levels are found to be26.08 and24.00
eV, respectively, while the majority spin HOMO and LUM
levels are found to be24.89 and24.45 eV, respectively.
The passivated molecule approaches a half metallicferri-
magneticsystem with a large minority-spin gap~2.08 eV!
and a small majority-spin gap~0.45 eV!, respectively. It
would be nice if photoemission experiments on the crys
can be carried out to verify this feature. The majorit
minority and minority-majority spin flip gaps~1.63 and 0.89
eV, respectively! are both positive which ensures that t
system is stable with respect to the total magnetic mom
Pictured in Fig. 1 are plots of the relevent densities of sta
~DOS! for the majority and minority electronic states. F
each spin the total densities of states is decomposed fu
into ‘‘inner and outer Mn 3d’’ contributions and the ‘‘oxy-
gen 2p’’ contributions. The inner Mn 3d contributions cor-
respond to the projection of the densities of states onto
Mn 3d states of the Mn atoms that form the inside cube. T
outer 3d contributions correspond to a projection of the DO
onto the one of the eight Mn atoms which form the ou
ring. The oxygen 2p contributions correspond to the proje
tion onto the 2p states of the twelve core oxygen atom
s
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pictured in Fig. 2. The projected Mn 3d densities of states
clearly show that the system exhibits ferrimagnetic orderi
The minority spin valence electrons are composed ofd
electrons on the four inner Mn atoms while the majority sp
valence electrons primarily reside on the outer ring. The p
jected densities of states for the O(2p) levels clearly show

FIG. 1. Pictured above are the electronic densities of sta
~DOS!, broadened by 0.54 eV of the Mn12O12(HCOO)16(H2O)4

molecule. For each spin, the total DOS, projected inner and o
Mn(3d) DOS, and projected O(2p) DOS of the 12 core O atoms
are presented. The two vertical lines at26.08 and24.89 eV rep-
resent the energy of the highest occupied molecular orbi
~HOMO’s! for each spin. Units are arbitrary, but the same scale
been used for all projected DOS plots.

FIG. 2. Geometry of Mn12O12(HCOO)16(H2O)4 determined
from NRLMOL. The four minority spin Mn atoms form a cube a
the center of the molecule and the eight majority spin Mn from
puckered ring around the inner cube. The O atoms associated
the HCCO ligands and water molecules coordinate themselves
the Mn atoms so that each of the metal atoms is sixfold coordina
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that the interaction between the Mn and O states is not
tirely ionic. In addition to ionic bonding, there is some d
gree of covalency and also some exchange coupling betw
the like-spin Mn(3d) and O(2p) states. The covalent bond
ing and exchange coupling are responsible for reducing
local Mn moments from1/24.2mB in the isolated magnetic
core14 to 22.6 and 3.6mB in the passivated structure.

In the energy region between the minority spin HOM
and the majority spin HOMO (26.08 to24.89 eV), there
is a forbidden region for the minority spin electrons, b
there is significant weight from the majority spin electron
The projected densities of states show that these state
primarily associated with the outer eight Mn 3d electrons,
but some weight also appears in the O 2p channels.

V. DENSITY-FUNCTIONAL-BASED DETERMINATION OF
SPIN TUNNELING BARRIERS AND RESONANCE

FIELDS: THE Mn-ACETATE MOLECULE

We now turn to a discussion and of our calculations
the anisotropy barrier for this molecule. In a previous pape15

we showed that a simple electronic spin flip costs an ene
of 0.90 eV ~4900 K! which is large compare to the energ
scale for the transitions observed in the spin tunneling
periments. We have calculatedg using the formalism dis-
cussed in Sec. III. As shown in Table I, our calculated va
for the quadratic term gives a barrier of 100(g/2)555.7 K
in good agreement with the experimental Arrhenius res
which finds a barrier in the range of 60–62 K. Of course
Arrhenius behavior samples the full barrier rather than
quadratic part of the barrier that we have calculated.
cently Barraet al.have analyzed electron paramagnetic re
nance data and have determined both the quadratic
higher order contributions to the anisotropy energy. Th
value ofg/2 ~referred to aa in Ref. 12! is found to be 0.556
K. Thus the experimentally determined second order con
butions to the anisotropy energies are 55.6 K in excell
agreement with our calculated value. We now turn to
analysis of the electronic states that form the barrier an
discussion of the convergence tests that we have perfor
in our calculations.

The excess majority spin electrons are very delocali
which facilitates their observation of the anisotropy of t
molecule. Since they are are also energetically closest to
Fermi level, one would generally expect that interactions
tween these states and unoccupied states close to the F
level would give the largest contributions to the anisotro

TABLE I. Magnetic anisotropy energy~barrier! as a function of
cutoff energyEcut ~aboveeF) for truncation of unoccupied stat
summation@Eq. ~2!#. Also included is the number of occupied an
unoccupied states used in Eq.~2!. The experimental data is from
Ref. 13.

Ecut (eV) Nocc Nunocc Barrier ~K!

6.8 804 381 55.8
13.6 804 730 55.7
27.2 804 1258 55.7
13.6 ~valence only! 460 730 55.7
Experiment 55.6
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barrier since the energy denominators in Eq.~18! are small.
As discussed below we have ascertained that states withi
8.0 eV window of the Fermi level account for 98% of th
anisotropy barrier. However, contrary to what is expec
from considering energy denominators alone, our calcu
tions show that it is the matrix elements between occup
majority spin electrons and unoccupiedminority spin elec-
trons that account for 65% of the second-order anisotr
barrier. The matrix elements between occupied minority-s
electrons and unoccupied majority-spin electrons accoun
21% of the barrier. The smallest energy denominators
these sums are 0.89 and 1.63 eV, respectively, which is
nificantly larger than the smallest energy gap~majority-
majority! of 0.45 eV in the problem. Even with this sma
gap, interations between the majority occupied and majo
unoccupied electrons contribute only 13% to the anisotro
barrier. The interactions between the minority unoccup
and minority occupied electrons, for which the smallest e
ergy denominator is 2.08 eV, contribute only 1% to the a
isotropy barrier. This analysis shows that while energy
nominators are important it is spatial overlap betwe
occupied and unoccupied states of different spins that
most important for enhancing the anisotropy barrier in
Mn-acetate molecule. To increase the size of the barrier
would want to concentrate on further enhancing the spa
overlap of the majority occupied and minority unoccupi
electrons or decreasing the energy denominators betw
these states.

We now show that our results are converged with resp
to the number of occupied and unoccupied electrons use
the perturbative expansion@Eq. ~18!#. The results are pre
sented in Table I. For the first three lines of Table I, we ha
used all of the occupied states and a variable numbe
unoccupied states that are within 6.8, 13.6, and 27.2 eV
the Fermi level. For the last line we have neglected the c
electrons in the summation over occupied orbitals and us
13.6 eV cutoff for the unoccupied state summation. Fina
we report that if we only include the occupied and unocc
pied electrons that are within 8.0 eV window of the Fer
level ~160 occupied and 116 unoccupied electrons! we find
an anisotropy energy of 54.7 K which is close to our co
verged value. This shows that it is indeed the delocaliz
majority spin valence states that are most important for
termining the tunneling barriers.

VI. SUMMARY

In summary, we have shown that the building block of t
Mn-acetate molecule is intrinsically ferrimagnetic with a
electronic density of states that approaches a half-met
ferrimagnetic behavior. The moments on the Mn atoms a
the overall stability of the molecule is significantly impacte
by the presence of the carboxyl groups. We have used a
computational strategy to perform a calculation of the sp
tunneling barrier for this molecule which manifests itself d
to spin-orbit coupling. Our results are in excellent agreem
with experiment and show that the coupling between
majority-spin valence and minority-spin conduction are p
marily responsible for the second order anisotropy barr
We suggest that pressure-dependent experiments w
change the shape of the electronic wave functions and
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band gaps could be used to control the anisotropy barrie
While less important in uniaxial systems, higher ord

corrections to anisotropy barriers are believed to require
inclusion of the Breit-Darwin interaction~See Refs. 1,2!.
However, the simplified Cartesian representation introdu
here will accurately describe all collective effects that ar
from the spin-orbit interaction and the Hartree potential. T
Cartesian representation is more convenient then the s
dard L•S representation because it does not require
evaluation of electric fields and there is no explicit depe
ti
R
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ur

d

ro

ch
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r
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d
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dence on the atomic positions. While implemented with
perturbation theory here, a complete variational treatmen
also easily achievable.
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