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Magnetic anisotropy barrier for spin tunneling in Mn 1,04, molecules
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Electronic structure calculations on the nature of electronic states and the magnetic coupling in Mn-acetate
[Mn1,0,5(RCO0),¢(H,0),4] molecules have been been carried out within the generalized gradient approxi-
mation to the density functional formalism. Our studies on this 100-atom molecule illustrate the role of the
nonmagnetic carboxyl host in stabilizing the ferrimagnetic,d0, core and provide estimates of the local
magnetic moment at the various sites. We provide a first density-functional-based prediction of the second-
order magnetic anisotropy energy of this system. Results are in excellent agreement with experiment. To
perform these calculations we introduce a simplified exact method for spin-orbit coupling and magnetic
anisotropy energies in multicenter systems. This method is free of shape approximations and has other advan-
tages as well. First, it is valid for periodic boundary conditions or finite systems and is independent of basis set
choice. Second, the method does not require the calculation of electric field. Third, for applications to systems
with a finite energy gap between occupied and unoccupied electronic states, a perturbative expansion allows
for a simple determination of the magnetic anisotropy en€i§9163-18209)04437-9

[. INTRODUCTION been estimated to be in the range of 60—62 Recently,
Barraet all? have analyzed the high-field electron paramag-
The magnetic anisotropy energy, first explained by Vametic resonance data and suggested that the second-order

Vleck,? represents a very important energy scale for thecontributions to the anisotropy energy account for 55.6 K of
design of molecular scale magnetic memory devices. It dethe barrier. Foriet al'® have performed a detailed analysis
termines the temperature at which thermal processes withnh measurements from both activated and tunneling transi-
cause the spin projection of a molecule or cluster to rantions and have found that this second-order contribution plus
domly reorientate itself. Further, the magnetic fields at whichtwo additional fourth-order contributions account for the
resonant spin tunneling is achieved is related to the anisofield dependence of the relaxation time.
ropy energy and this relationship is especially simple for To date, the only available theoretical electronic structure
uniaxial systems where the barrier is dominated by secondstudies are based on an isolated ;pDy, clustet* with the
order effects. An example of current interest is the recenbulk geometry. We have showtthat a free Mp,0;, cluster
observation of resonant quantum tunneling of magnetizatiomith the same geometry as in bulk acetate is unstable and
(QTM) in Mn;,0;,-acetate crystals. This observation hastransforms to the Ziemann-Castleman tower structure pro-
generated considerable excitement as it illustrates quantuposed for free MnO clusters in beaffsOur studies also
phenomenon at a macroscopic scafe. The crystal, first demonstrated that the nonmagnetic host, consisting of six-
discovered by Lis, consists of Mp,0;,(RCOO)«H,0),  teen carboxyl groups and four,B molecules, performs a
molecules withR=CHjz and six additional molecules of sol- key role in stabilizing the magnetic core and in determining
vation (four water and two acetic acid molecule$he unit  the local magnetic moments at the Mn sites. However, there
cell has a volume of 3716 Aand its core is made of a have been no first-principles predictions or explanations
Mn,,0,, cluster which is ferrimagnetic with a total spgof  dealing with the large second-order contributions to the an-
10 (moment of 20.&g). The magnetic MpO;, clusters in  isotropy energies. In this paper we present a detailed elec-
different cells are separated by the nonmagnetic host whictronic structure of the molecule. We examine the magnetic
prevents any exchange coupling between individual clusterstructure of the passivated NHO,, clusters and the states
[The dipolar interaction between neighboring clusters whichinvolved in the spin tunneling. The calculated electronic
are separated by 15 A is estimated to be around 0.(Ref.  states are used to carry out the fiadt initio calculation of
5) which is two orders of magnitude smaller than the mag-the magnetic anisotropic energy of this passivated nanomag-
netic fields used in experimentsFurther, the crystal is net.
marked by a uniaxial magnetic anisotropy which results in In Sec. Il we introduce a simplified albeit exact method
the energy depending on the orientation of the spin relativéor incorporating spin-orbit coupling into density-functional
to the symmetry axis. Upon application of a magnetic field,calculations and in Sec. lll we derive the necessary equations
hysterisis loops have shown a staircase structure proposed fiar determining the magnetic anisotropy barrier in a uniaxial
be associated with resonant quantum tunneling of spins besystem such as the Mpacetate molecule. The method in-
tween the different M states. Based on the Arrhenius behawroduced here is independent of the type of basis set that is
ior of the relaxation times, the total anisotropy barrier hasemployed and is applicable to both isolated and periodic sys-
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tems. Further it has several numerical and computational ackgonalizing (or effectively diagonalizing the Hamiltonian

vantages over the standatd S representation for spin-orbit matrix. In the above equation, we allow for the possibility of

coupling. It relies on the original Cartesian representation fononcollinear magnetic wave functions. Regardless of

the spin-orbit coupling interaction but with a simple integra-whether one is working with the Dirac equation, a scalar

tion by parts we alleviate the need for the determination ofelativistic methodology or nonrelativistic formulations the

the electric field. To make contact with the spin-tunnelingdetermination of spin-orbit coupling matrix elements is a

experiments we consider the problem of a uniaxial moleculeecessary ingredient to the numerical solution of the &hro

in a magnetic field and write down the expressions that aringer equation. To determine the generalized spin-orbit inter-

needed to calculate the anisotropy energy. In Sec. IV weaction from Eq.(1) it is simply necessary to calculate matrix

briefly outline the method used for determining the magnetielements of the form

ordering, equilibrium geometries, Kohn-Sham orbitals and

densities of states. In Sec. V, we present our all-electron  Ujo ko ={fix,/U(r.p,S)|fix,)

density-functional based calculations on the magnetic anisot- 1

ropy energy for the My-acetate molecule and compare our - _ —Jf

results to the experir%ental values. A summary follows in 02 NIV X VRN 1 fio (ol Sl xor

Sec. VI. .
IIl. A SIMPLE EXACT FULL-SPACE APPROACH TO ] (VAT Ol Sdxo) @

SPIN-ORBIT COUPLING with the operator Y defined according to

To date, calculations of spin-orbit coupling have used a

generalization of the standard spin-orbit coupling terms for -1 ddb ddo
spherical systems. This standdrdS representation for the (filvid )= < ''dy dz dzdy fi >
spin-orbit coupling requires the determination of the electric-
field observed by the moving electrons and is not entirely 1 dd d do d
straightforward to use in applications to nonspherical or mul- =5 < ,‘( v dz dz d_) f. >
ticenter systems. 2¢ y y

The classical explanation of spin-orbit coupling is that an e d2d
electron moving, with velocity, in an external electric field + < fil 7—=— fjH
(E), observes a magnetic field given byE/c. To deter- dydz dzdy
mine the quantum-mechanical operator within a Hartree ap- 1 db d do d
proximation it is common to note th&= — Vd(r), with ® :_< ( — _) f. > (5)
the Coulomb potential and to replace the velocity by the 2c? dy dz dzdy

momentum operatqgs. Accounting for the fact that the elec-

tron is not spinless, the interaction energy is then givelf by ~ We note that if one rewrites Eq(l) as U(r,p,S)
=(1/2c?)S- V®(r) Xp we obtain the same final expression

1 for Eq. (5). The most straightforward path to deriving Ef)
u(r,p,S=- —ZS- pxVd(r), (1) is to follow Kittel*® and rewrite the spin-orbit interaction as
2c U(r,p,S)=(1/2c?)SX V®(r) - p. The important point is that
where the factor of 2 in the denominator, also derivable fronll possible classical definitions of the spin-orbit term will
the Dirac equation, is due to the Thomas precession. Given@ventually lead to Eq(5). Now using the identity
spherically symmetric potentia@(r) and some simple alge-

braic reductions the above expression is usually rewritten <f ‘ do d fi > stri fq)df
according to dy dz dy dz
dfi| _|df; d?f;
1 1 dd(r) _<_'q)_1>_<fi‘q;. J> (6)
U(r,L,S)—ESLF ar (2) dy dz dZdy

and a similar identity for théf;|(d®/dz)(d/dy)|f;) term of

While the above _equation is exaCt for sph_ericgl syst_ems, aEq. (5) allows for the introduction of a simple expression for
attempt to approximate the spin-orbit coupling in multicenter. he spin-orbit coupling matrix elements
systems as a superposition of such terms on a lattice coufd
® df df; ® df; .
dy dy| |dz/ )’ @)

omit nonspherical corrections that may be especially impor-
-The matrix elements fov, andV, are determined from cy-

tant for anisotropy energies. (FIVilf;)= ! (<
Instead of using Eq(2) for the spin-orbit coupling we
return to Eq.(1) and note that in all basis-set oriented mean-
field approaches the single-electron wave functions are uIt|Cllcal permutations of the coordinate labels in the above
equation. The above equation follows because the first term
S(N=3, LCISf (M) xus 3 of Eg. (6) vanishes if the system is finite since the basis
Yislr) = johi(Nx ® functions vanish at infinity and the third term of E@) is
wheref;(r) is a spatial basis function,, is either a majority ~ exactly cancelled by the third term of(f[(d®/
or m|nor|ty spin spinor, and the]§; are determined by di- dz)(d/dy)|f;). Equation(7) is also appropriate for periodic

df;
dz

mately expressed according to
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systems since it is only necessary to evaluate the spin-orbithere the spin-orbitaly; ;) is a simple product of a spatial
coupling terms between states associated with the same poifunction and spinor according t@; ;) = ¢;,(r) x,, . With the
in the Brillioun zone'® Therefore, for a periodic calculation inclusion of spin-orbit coupling and the introduction of a
we are only interested in evaluating E@) for functions  magnetic field the perturbed wave functions must satisfy
with the samek vector. For functions with the sankevector
the first term of Eq(6) vanishes because the surface terms
cancel one another.

The above representatipkq. (7)] for the spin-orbit cou-

vV 1
H+| =+ =B 8| lui,) =€l lui,) ©)

pling matrix offers several advantages over the more usué’f"th the ofpekrjator\( defined 30002?'”9 th Eq$|¥) and I;Ez!e
representation in terms of EQ). First, it does not require magn'etlc leld B) is assumed to be unitorm. It we ta
=(V/i+B/c), second order perturbation theory tells us that

the determination of the electric field and depends only on f the Hamiltoni L bed di h
the ability to accurately determine the Coulomb potential am;race 0 the aml_toman matrix Is perturbed according to the
ollowing expression:

the gradient of each basis function in the problem. This rep-

resentation fpr the §pin orbit coupling matrix is.especially A=A +A,, (10)

ideal for basis functions constructed from Gaussian-type or-

bitals, slater-type functions, and plane waves. For numerical

basis functions it should still be useful since it is generally A= S;’”Z (Dil Wy D1 ),

necessary to determine the gradient of a numerical function i :

for determination of the kinetic energy matrix. Before turn-

ing to many-electron systems, where second order effects are A,= E W;T;’S;(W’S;f’v,

of primary interest, the veracity of Eq7) can be simply oo’ XY

tested by calculating the spin-orbit splitting of thp 2tates

in the hydrogen atom. It is easily verified that E4) com- -y (Diol Wil 10 )i | Wyl i)
ij

O'O" — O'O"*
bined with Eq.(7) predicts the exact first-order splitting of Wiy =Wyx

€, €yt

1/3x? between the’P5), and 2P, states"’ e
oo’ — . 11
Ill. CALCULATION OF MAGNETIC ANISOTROPY 7 = (XolSdxo) (D
ENERGIES In the above equation thg;, are occupied states and tipe,

£ ally i axial ¢ th i isot are unoccupied states. The above equation follows because it
specially In uniaxial systems the magnetic anisolropyg only necessary to determine the first order mixing coeffi-
energy is primarily due to spin-orbit coupling and is typically cients between the occupied and unoccupied orbitals to de-

on the order of microhartrees. I_:or systems W'th_ a Van'Sh'ngermine the first and second order changes of the trace of the
energy gap between the occupied and unoccupied eleCtronﬁamiltonian

states, spin-orbit interactions can either rearrange the occu- The above expression is valid for any set of spinors

ied and unoccupied manifold or possibly open up smal . . )
pa s. Fors stemsp with a finite enerp a ysucph as iﬁsulatok 1:X2) WhI.Ch are constructed from a un|.tary transformation
gaps. Y gy 9ap suc ; -oh the S eigenstates i,,u,) defined with respect to an
or nanoscale molecules and clusters, spin-orbit coupling wil r

shift each occupied and unoccupied eigenvalue by @¢)/2 bitrary axis.

but will generally not cause energy crossings between occu- |x1)=Ugd )+ Ugd o),

pied and unoccupied states. For such systems the anisotropy

barrier is related to the shift of thetal energyas a function |x2) = Upql i) + Ungl ). (12)

of quantization axis rather than the single-electron energies.

By making use of a perturbative expansion we show that for In terms of the unitary matrix the total energy shift)(
closed shell systems the first-order O(@R effects due to can then be rewritten according to

spin orbit coupling vanish and it is the second order

O(1/4c*) effects which account for the shift in total energies, A= 2 * To
. . . . ) = u(r,uuo'M' !
the formation of magnetic anisotropy energies, and other col orn!
lective effects. We also develop a two-dimensional spin
Hamiltonian, which when solved self-consistently, deter- n 2 U U Ut U Voo (13)
mines the stationary spin orientations as a function of geom- S e

etry and magnetic-field orientation. A perturbative method . _ ) )
for the determination of single-electron and collective shiftsWith the T andV matrices defined in terms of th& matrices
in total energies due to spin-orbit coupling is now outlined.&ccording to

We include effects due to magnetic fields as well to make

contact with the spin-tunneling expe_riments. LeF us assume TZ M,:E <M|S><|M'>2 (| Wy bio), (14)
that, in the absence of a magnetic field and spin-orbit cou- ’ X i

pling, we have determined the wave functi¢ns,] within a

self-consistent field(SCH approximation (e.g., density- oo’ _ oo’ myoom /
functional theory or Hartree-FogkThe SCF wave functions Vi Ey Wy (SN 1Slwh). (A9
satisfy

For the most general uniform magnetic field and a system
H|¢i ) = €l Yio)s (8)  with no symmetry the above equations allow us to find the
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groundstate of a molecule as a function of quantization axiswhere§ and 8 are variational parameters ands an ignor-
This is accomplished by finding the optimal unitary transfor-able parameter. After performing a bit of algebra the total
mation that lead to stationary values of H@3). One ap- second order shifA, becomes

proach to the generalized problem is to introduce Lagrange

multipliers to maintain the orthonormality of the vectors " - ” 21 Sirt(6)

(u,u,) and self-consistently minimize E¢13) using stan- A= (MG MG M+ M) —4—

dard techniques. An alternative approach, applicable to
uniaxial systems, is to parametrize &2 unitary transfor-
mation in terms of two angles and minimize the above ex-
pression as a function of these two angles. We discuss the
latter approach within the context of the calculation of the
magnetic-anisotropy barriers in molecules.

We now turn to the case of a closed-shell molecule with
AN excess majority spin electrons which exists in a uniaxial At Y
symmetry  state. Since 3¢5 (r) il (r') and 2
3 i) b1 (1) &1, (1) bio(r') (€1, €j,0) are invariant
under the symmetry operations the first order and secon
order shifts are significantly simplified. The spin-orbit con-
tributions to the firsgt—order e};ergypshml sum togero which Y= (2IAN?)(MZz+ MZZ+ Mig+ ME— My
leads to a first order contribution written according to —M2-M2-Mm2

XX Y4 77"

cog( )
4

11, pg22 12 21
+(Mz;+ Moo+ M+ My

1
+ (MM

AN cos6]?

2

(21)

With A= (MGt M+ M2+ M2+ Mg+ ME)/4 and

In the above equation we have used the fact that for a

uniaxial system ;’;T/= M)‘fj/ . It is convenient to define/
B in this way becauséS,) = AN cos#/2. While this is formally
=— E (XolSxe) XN, . (16) a classical expectation value of a spin projection and a con-
Co tinuous function off, it is clear thatS,) exhibits the appro-
priate bounds|(S,)|<AN/2. The difference between the
maximum energy orientation and the minimum energy ori-
entation is given by AN?/4)(y/2). A positive gamma cor-
bio ) Dior|Vyl dig) responds to an easy plafre barriej and a negative gamma
corresponds to an easy axis with a barrie{&f)=0 and
€io™ €jo’ minima at(S,)=+/—AN/2. It is the latter case that is of
o . ‘ interest to spin tunneling experiments.
BBy > (Siol bio N bio| bio) . @ To make contact with spin tunneling experiments we now
c? €ig— €jgr consider the case where the magnetic field is taken along the
(;raxis. Combining Eqs(16) and (21) leads to

8= ClnlSxn | S (il

With respect to second order shifts thi¢ matrices are
simplified to

, WV
g -3, (el

The second term of the above expression is responsible f

the magnetic susceptability of the system and is not of pri- 2

mary interest to magnetic anisotropy barriers. At zero or very A=At B AN cosé Z[AN cosé
small fields thew matrices simplify to c 2 2 2
’ ’ io V io! io! V io B ’)/
IJ 60—_ 6-0—’ . . e . .
' . (18 Assumingy is positive and equating the total azimuthal

quantum numbeMs=(S,) several different effects due to

For uniaxial symmetry the Cartesian off-diagoMima-  small magnetic fields can be experimentally observed. Most
trices vanish and3Y =My and the second order contri- relevent to spin tunneling is to imagine preparing a collection
butions to the energy shifs is given by of the molecules in a stat® =S with the total spinS
=AN/2. Over a period of time the spin projections will re-
orientate and the relaxation time for redistribution is related
to the classical barrier which B(y/2). If one measures the
, relaxation time in the presence of a magnetic field the relax-
Assuming the statesu(;, ) =(T,|) are chosen to be par- ation time changes because the barrier height changes con-
allel to thez axis, the most general set of spinors are genergnyously with field. However it is easily verified that for
ated from the following unitary transformation integer multiples of the field strengtB,= yc/2, states on
one side of the barrier will be degenerate with states on the
other side of the barrier. Under these conditions quantum
tunneling of spins occurs which leads to discontinuities in
) ) the relaxation times. For a discussion of actual transition
B mechanisms see Ref. 19. For a perfectly quadratic system

€ sm§|T>+co§|l)}, (20 these discontinuities would provide a more accurate way of

Bp=2 X M SIS (19

—alY o iBai o
[x1)=¢"7| coss [ 1) +ePsing | 1)

[x2)=e""
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measuring the parameter and, therefore, the classical en-
ergy barrier. Alternatively, deviations between the barriers
determined from the Arrhenius law and those deduced by a et

Oxygen 2p

)
harmonic analysis of the resonance field strengths provide a Q© | Outer Mn 3d
) o lat
measure of the strength of the higher-order contributions to E Y
the anisotropy barriers. =
8 Inner Mn 3d
<
IV. ELECTRONIC, MAGNETIC AND GEOMETRICAL =

AVAN
STRUCTURE Total
M\/M

The theoretical studies were carried out using a linear
combination of Gaussian orbitals molecular orbital approach Oxygen 2p
within the density functional formalism using the generalized
gradient approximatidi (GGA) of the density functional
theory?! Discussion of this methodologgNRLMOL) has
appeared elsewhéfeand discussion specific to the M@,
core(e.g., basis setappears in Ref. 14. For the first iteration
of the first geometry, we used a starting potential which fa-
vored the ferrimagnetic ordering suggested by experiment. = ———
After the first iteration and for all subsequent geometries, W
this external potential was removed and the Kohn-Sham or- e ‘/v\ﬁ
bitals and atomic positions were optimized to minimize the 15.0 10.0 5.0 0.0
energy of the system. In accord with the experimental under- ENERGY (eV)
standing, we found a ferrimagnetic structure which consists
of an inner MnO, core of minority spin atoms and an outer  FIG. 1. Pictured above are the electronic densities of states
MngOg ring of majority spin atoms. The cluster carries a net(DOS), broadened by 0.54 eV of the NyD;,(HCOO),4(H,0),
moment ofS=20ug in agreement with experiment. We have molecule. For each spin, the total DOS, projected inner and outer
calculated the moment captured by a sphere of radius 2.8n(3d) DOS, and projected O DOS of the 12 core O atoms
Bohr centered about each Mn atom and found local momeni@'e presented. The two vertical lines-a6.08 and—4.89 eV rep-
of —2.6 and 3.4z on the four inner and eight outer Mn resent the energy o_f the_ highest pccupied molecular orbitals
atoms, respectively. While the magnetization density is nO{HOMO’s) for each spin. Units are arbitrary, but the same scale has
localized entirely on the Mn atoms, the simple experimentaP&en used for all projected DOS plots.
interpretation of four Mn atoms with moments of3.0 and
eight Mn atoms with moments of 443 is quite reasonable. Ppictured in Fig. 2. The projected Mnd3densities of states
Since the Kohn-Sham orbitals contain the informationclearly show that the system exhibits ferrimagnetic ordering.
that is required for determination of the tunneling barrier, weThe minority spin valence electrons are composed of 3
first discuss the electronic structure of the passivate@lectrons on the four inner Mn atoms while the majority spin
Mn,,0;, molecule. For the passivated structure, the energie%alence electrons primarily reside on the outer ring. The pro-
of the minority spin HOMO and lowest unoccupied molecu-jected densities of states for the Q2levels clearly show
lar orbital (LUMO) levels are found to be-6.08 and—4.00
eV, respectively, while the majority spin HOMO and LUMO
levels are found to be-4.89 and—4.45 eV, respectively.
The passivated molecule approaches a half metédhid-
magneticsystem with a large minority-spin gaj2.08 e\j
and a small majority-spin gaf0.45 eV}, respectively. It
would be nice if photoemission experiments on the crystal
can be carried out to verify this feature. The majority-
minority and minority-majority spin flip gap&l.63 and 0.89
eV, respectively are both positive which ensures that the
system is stable with respect to the total magnetic moment.
Pictured in Fig. 1 are plots of the relevent densities of states
(DOY for the majority and minority electronic states. For
each spin the total densities of states is decomposed further
into “inner and outer Mn 8" contributions and the “oxy-
gen 20" contributions. The inner Mn &8 contributions cor-
respond to the projection of the densities qf s'tates onto the g5 2. Geometry of MpO;(HCOO),(H,0), determined
Mn 3d states of the Mn atoms that form the inside cube. Thgrom NRLMOL. The four minority spin Mn atoms form a cube at
outer A contributions correspond to a projection of the DOSthe center of the molecule and the eight majority spin Mn from a
onto the one of the eight Mn atoms which form the outerpuckered ring around the inner cube. The O atoms associated with
ring. The oxygen P contributions correspond to the projec- the HCCO ligands and water molecules coordinate themselves with
tion onto the 2 states of the twelve core oxygen atomsthe Mn atoms so that each of the metal atoms is sixfold coordinated.

Quter Mn 3d

Inner Mn 3d

MINORITY DOS
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TABLE |. Magnetic anisotropy energparriep as a function of  barrier since the energy denominators in E) are small.
cutoff energyE.; (aboveer) for truncation of unoccupied state As discussed below we have ascertained that states within an
summation Eq.. (2)]. Also included is the number of occupied and 8.0 eV window of the Fermi level account for 98% of the
unoccupied states used in E®). The experimental data is from anisotropy barrier. However, contrary to what is expected

Ref. 13. from considering energy denominators alone, our calcula-
: tions show that it is the matrix elements between occupied
Eou (V) Noce Nunoce Barrier (K) majority spin electrons and unoccupiadinority spin elec-
6.8 804 381 55.8 trons that account for 65% of the second-order anisotropy
13.6 804 730 55.7 barrier. The matrix elements between occupied minority-spin
27.2 804 1258 55.7 electrons and unoccupied majority-spin electrons account for
13.6 (valence only 460 730 55 7 21% of the barrier. The smallest energy denomlr_1ato_rs in
Experiment 55.6 these sums are 0.89 and 1.63 eV, respectively, which is sig-

nificantly larger than the smallest energy gépajority-
majority) of 0.45 eV in the problem. Even with this small

that the interaction between the Mn and O states is not erfl@P, interations between the majority occupied and majority
tirely ionic. In addition to ionic bonding, there is some de- Unoccupied electrons contribute only 13% to the anisotropy
gree of covalency and also some exchange coupling betweé}?mer: The mteragtmns between the mmorlty unoccupied
the like-spin Mn(2l) and O(2)) states. The covalent bond- and minority occup_ned electrons, fo.r which the smallest en-
ing and exchange coupling are responsible for reducing th§dY denominator is 2.08 eV, contribute only 1% to the an-
local Mn moments fromt/—4.2ug in the isolated magnetic 'SOUF’F’V barrier. Th's analys_ls TQ’hOWS t'hat while energy de-
coré“ to —2.6 and 3.Gg in the passivated structure. nominators are important it is spatial overlap between
In the energy region between the minority spin HOMO occup_led and unoccupied states of c_hfferent spins that are
and the majority spin HOMO £ 6.08 to —4.89 eV), there most important for enhancing the anisotropy barrier in the
is a forbidden region for the minority spin electrons, put VIn-acetate molecule. To increase the size of _the barrier one
there is significant weight from the majority spin electrons.WOUId want to concentrate on further enhancing the spatial

The projected densities of states show that these states & ertlap of th% majority O(EEUp'ed and dmlnorlf[y E[Jnoc%u;zled
primarily associated with the outer eight Mrd 3lectrons, electrons or decreasing the energy denominators between

. . these states.
but some weight also appears in the @ éhannels. .
9 PP P We now show that our results are converged with respect

to the number of occupied and unoccupied electrons used in

V. DENSITY-FUNCTIONAL-BASED DETERMINATION OF the perturbative expansidrEq. (18)]. The results are pre-
SPIN TUNNELING BARRIERS AND RESONANCE sented in Table I. For the first three lines of Table |, we have
FIELDS: THE Mn-ACETATE MOLECULE used all of the occupied states and a variable number of

We now turn to a discussion and of our calculations Onunoccupied states that are within 6.8, 13.6, and 27.2 eV of

the anisotropy barrier for this molecule. In a previous p&per the Fermi_level. For the .Iast line we haye neg.Iected the core
we showed that a simple electronic spin flip costs an energ lectrons in the summation over occupied orbltal_s and_used a
of 0.90 eV (4900 K) which is large compare to the energy 3.6 eV cutoff for the unoccupied state summation. Finally,
scale for the transitions observed in the spin tunneling ex/Ve report that if we only |_nc_|ude the OCQUP'ed and unoccu-
periments. We have calculated using the formalism dis- pied electrons that are within 8.0 eV window of the Fermi
cussed in Sec. lll. As shown in Table I, our calculated valueleveI (.160 occupied and 116 unoccpple_d elections find

for the quadratic term gives a barrier of 1602)=55.7 K an anisotropy energy of 54.7 K which is close to our con-

in good agreement with the experimental Arrhenius result§’erged value. This shows that it is indeed the delocalized

which finds a barrier in the range of 60-62 K. Of course themajo_ri'gy spin valenc_e states that are most important for de-
ermining the tunneling barriers.

Arrhenius behavior samples the full barrier rather than thd
qguadratic part of the barrier that we have calculated. Re-
cently Barraet al. have analyzed electron paramagnetic reso-
nance data and have determined both the quadratic and
higher order contributions to the anisotropy energy. Their In summary, we have shown that the building block of the
value ofy/2 (referred to ax in Ref. 12 is found to be 0.556 Mn-acetate molecule is intrinsically ferrimagnetic with an
K. Thus the experimentally determined second order contrielectronic density of states that approaches a half-metallic
butions to the anisotropy energies are 55.6 K in excellenferrimagnetic behavior. The moments on the Mn atoms and
agreement with our calculated value. We now turn to arthe overall stability of the molecule is significantly impacted
analysis of the electronic states that form the barrier and &y the presence of the carboxyl groups. We have used a new
discussion of the convergence tests that we have performambmputational strategy to perform a calculation of the spin-
in our calculations. tunneling barrier for this molecule which manifests itself due
The excess majority spin electrons are very delocalizedo spin-orbit coupling. Our results are in excellent agreement
which facilitates their observation of the anisotropy of thewith experiment and show that the coupling between the
molecule. Since they are are also energetically closest to thmajority-spin valence and minority-spin conduction are pri-
Fermi level, one would generally expect that interactions bemarily responsible for the second order anisotropy barrier.
tween these states and unoccupied states close to the FeWile suggest that pressure-dependent experiments which
level would give the largest contributions to the anisotropychange the shape of the electronic wave functions and the

VI. SUMMARY
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band gaps could be used to control the anisotropy barriersdence on the atomic positions. While implemented within
While less important in uniaxial systems, higher orderperturbation theory here, a complete variational treatment is

corrections to anisotropy barriers are believed to require thalso easily achievable.

inclusion of the Breit-Darwin interactiofiSee Refs. 12
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