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Dynamics of the random one-dimensional transverse Ising model

J. Florencio and F. C. SRarreto
Departamento de Bica, Universidade Federal de Minas Gerais, 30.161-970 Belo Horizonte, Minas Gerais, Brazil
(Received 22 December 1998

We study the dynamics of the spin-1/2 random transverse Ising model in the high-temperature limit by
means of the method of recurrence relations. We analyze two types of disorder: a disorder on the transverse
field, and a disorder on the exchange coupling. We find that the dynamics undergoes a crossover from a central
peak behavior onto a collective mode behavior as a function of the dis¢8(63-1829)04937-1

One class of problems of great interest in statistical phystime-dependent correlation functions for the giré’as well
ics is the time evolution of disordered systems. One of thes for the disorderéd*’ transverse Ising andY models.
simplest yet nontrivial examples of such systems is gshe Calculations based on Mori’'s continued fraction method
=1/2 random transverse Ising mod&TIM), where the ex- using only three momenithave been used to describe the
change couplings; or the transverse fieldB; are random dynamics of the quasi-one-dimensional hydrogen-bonded
variables. The model is relevant to the dynamic propertiederroelectric crystals CsjO, and PbHPQ, which are mod-
of hydrogen (deuterop-bond order-disorder ferroelectrics, €led by the transverse Ising model. Another three-moment
such as the quasi-one-dimensional ferroelectricdased calculation was carried out by Tonegdwiar the
Cs(H,_,D,),PO,,PbH, _,D,PQ,, etc. It is well-known that classicalHeisenberg chain with impurities to obtain the neu-
hydrogen and deuteron have different tunneling frequencieion inelastic magnetic scattering cross section for the ran-
within the bonds of those ferroelectrics crystals. The nonunidom one-dimensional antiferromagnet
form deuterization of the hydrogen bonds is then modeled byCD3)sNMn; _,Cu,Cl; (TMMC: Cu), and reproduced well
a random site-dependent transverse fiBjd whereas the the qualitative features of the experimental dat&.
intra-chain interactiond; remain unaltered, that ig;=J.13 In the present work, we investigate the dynamic proper-
On the other hand, in the case of spin glasses one takes tkigs of thes=1/2 RTIM,
exchange couplings as the random variables. A systematic
study of the effects of a transverse magnetic field on the 1 < x 1 ,
three-dimensional spin glass Liglgs;Yg3d4 was carried H=— > 2. Jioi Ti+17 5 Z Biai, @
out by means of neutron diffractibrand has triggered a
renewed interest in the RTINL’ The system seems to ex- at the high temperature limit, where® (a=x,y,z) are
hibit a quantumphase transition at zero temperature, whichPauli matrices, and, andB; are the exchange couplings and
is driven by the relative strength between the transverse fielttansverse fields, respectively. The couplings and fields may
and the average exchange parameter. Such a transition hbd regarded as random variables. The model is equivalent to
been predicted some time ago independently by Griffithsthe two-dimensionatlassical transverse Ising model with
and McCoy® Near the critical point, the time-dependent cor- correlated disorder along one spatial directidh.We are
relation functions decay as a power law, whereas the statimainly interested in the average spin correlation function
susceptibilities pgegent unusual singularities even in the para-
malgnetlc phasé’ . . _ CH)={oX Do, @)

n general, the dynamic properties pfire quantum spin
models, such as the transverse Ising model,XNemodel, = where an average over the random variables is performed
the Heisenberg model, etc., have proven much harder to olafter the statistical average. We use the method of recurrence
tain than the thermodynamic quantities. For instance, there ielations® to calculate exactly up to the eighteenth moment
a rather long history on the attempts to obtain the time-of C(t),
dependent spin correlation functions of the 1/2 Heisen-
berg model in one dimension. To the best of our knowledge, o
this problem remains unsolved, albeit there exist a few rig- Ct)=2, uut?, ©))
orous results for the short time behavior of the spin autocor- k=0
relation functiong*~® There are, however, some exact re-
sults for the dynamics of the transverse Ising Xtimodels 1 B ~
in one dimension. The longitudinal time-dependent correla- Mzk:WTr oilH,[H,---[H,o7]---1]. 4
tion functions were obtained by Niemeiféfor any tempera- '
ture, by using a mapping of the spin variables onto a collecWe also calculate the spectral density by using the so-called
tion of noninteracting fermion¥ The transverse correlation Gaussian terminatdh>’ for the continued fraction represen-
functions show a Gaussian behavior at infinitetation of the Laplace transform @(t).
temperaturédS=22 and a power-law behavior at zero  The method of recurrence relations has proved to be very
temperaturé>=2° There are also numerical results for the useful in the determination of the dynamic correlation func-
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FIG. 1. Recurrants for the Ising model in a random transverse g5 2. Time-dependent correlation functions for the Ising

field B; which can take the values 0.6 and 1.4 with probabilies ,de| in a random transverse field, with the same parameters as in
and 1—q, respectively. The fields are given in units of the exchangeFig. 1.

couplingJ.

The remaining=, are obtained by using the recurrence rela-

tions of systems such as the electron Fahge classical har- tion

monic chain®® spin chains??23"*%tc. In order to apply the
method to disordered systems, we need to modify it to ac- .

count for the averages over the random variall|esndB; . Fora=ILF,+AF, -1, »=0, ©
Notice that the time-dependent correlation function of interyhereL s the Liouville operator

est involves two averageél) the statistical mechanics aver-
age for a given set of values of the random variables(@hd

the average over the random variables. The method must be
modified so that, among other things, it will yield the aver- The recurrantsA , are defined by
aged correlation functions of interest.

LA=[H,A]=HA—AH. (10)

Let us consider the operator for a tagged S@]‘nwhose (F,.F.)
dynamics is governed by the Hamiltoniéh. The time evo- V:#, (12)
lution of a}‘ is given in the Heisenberg representation as (Fo-1.Fyn)
_ ' with Ag=1, andF _;=0.
of(t)=eole™™, (5) By taking »=0 in Eq.(9) we obtain the first basis vector

F1=Bjo}’. Its norm is then obtained, that isE{,Fl)zB_jZ.
Since Fo,Fo)=1, the first recurrant is readily obtained,
A= BJ-Z. By proceeding in a similar fashion we obtain

in a system of units wher=1. In the method of recurrence
relations ojx(t) is expressed as an expansion in a Hilbert
spaceS,

_ 2 X X z Z X
d-1 Fo=(A1=Bj)oj+BjJj_10]_107+BJjojoj. 1,

af()= 2 a,(vF,, (6)
. Fa=—Bj(J? 1+ J2+B?—A—Ay)o)
whered is the dimension of, F, are orthogonal basis vec-

. ! o — -] g~ Y X ) J. y z
tors spanningS, anda,(t) are time-dependent coefficients. 2BjJj-1Jjoj 107071+ Bj-1BjJj10] 10

J J

We_ define the inner product_is at the high—temp(_ara_\ture +Bij+1Jja-Zay+l, (12)
limit (T=<) in such way that it includeboththe statistical 1
and the random averages etc. We have calculated the basis vectors upg8° The first
three recurrants are then obtained
(A,B)=(AB")—(A)(BT). (7) _
The above definition of the inner product keeps the original Ar=Bj,
form of the recurrence relations. o
The zeroth basis vector is chosen as the dynamic variable - = B]f‘
of interestF o= o, without loss of generality. It follows that Ap=2J-Bj+=,
the coefficientag(t) can be identified as the time-dependent Bj

correlation functionC(t) o o
A B+ 2J72B7 +2JB7 + 2J7B2~ B{%/B?
ag(t)=(j(t)o)=C(1). 8 s 27 B7—BZ+B}

(13
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TABLE I. First nontrivial moments oC(t) case of a disordered transverse field. Here, the field can take
two valuesB;=0.6 (q=1), andB,=1.4 (Q=0). The coupling energy i§,=1.

Moment g=0 g=0.25 q=0.5 g=0.75 gq=1

o 1.0 1.0 1.0 1.0 1.0

o -0.98 -0.78 —-0.58 —-0.38 -0.18

o 0.3234 0.2514 0.1794 0.1074 0.0354
e —6.42488 10 %2 —4.81395<10°2 —3.2919<10 %> —1.85875<10° 2 —5.1448<10 °
g 9.8792<10°°  6.93831X10°°  4.39364x10° %  2.24516<10°°  4.92874< 104
1o —1.3547% 10" % —8.6736% 10 4 —4.89716<10 % —2.1422% 104 —3.32669%<10 °
1o 1.72512<10°%  9.96185<10°°  4.91530x10° %>  1.7662810°  1.69563< 10 ©
g —1.98858 10 ° —1.04744<10°° —4.54290x10 ® —1.32685<10 % —6.89941x10 8
s 2.01290x 10 ®  9.86048<10 7  3.83910x10 7  9.26958<10°8  2.35236<10°°
g —1.76770x10 7 —8.18414<10°8 —2.92522% 10 8 —6.01823<10°° —7.05746<10 *

We then use the remaining basis vectors to obtain the recur- As can be seen in Ed6), the time dependence is con-

rantsA,,As, ... ,Ag. The averages over the random vari- tained entirely in thea,(t)’s. These obey a second recur-
ables can be calculated once their distribution functions areence relation
specified.
3.0 da,(t)
— N=9 A1/‘*-1a1/+ 1(t) == T+av—l(t)v v=0, (14)
N=8
---- N=7
——-N=6 with a_;=0. Note that the only ingredients that enter the
TNS determination of,(t) are the recurrants. Of particular inter-
1 est is the Laplace transform af(t),
3
o e ]
ao(z)zf e “ay(t)dt, Rez=0, (15)
0
which can be cast as a continued fraction
1
20 3.0 a(2) = A (16)
(@) © Z+ —Az
T T z+ zZ+ .-
— N=9
N=8
- N=7 3.0 T T T
20 7 ——- N=6 T —— =100
X —-— N=5 - g=o.7s
——- g=0.50
---- g=0.25
e (=0.00
) 2.0 |
w
1.0 - . .
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FIG. 3. Sequence of approximants for the spectral density ac-
cording to the leveN of the continued fraction ofy(z) (see text
where a Gaussian termination is employed. Notice the agreement FIG. 4. Spectral density for the cade=1,B,=0.6 (1.4) with
between the approximants fdt=8 andN=9. (a) Pure case); probabilityg (1—q). Notice that the system moves from a collec-
=1 andB;=0.6.(b) Disorder in the transverse fielB;=0.6 or 1.4  tive mode dynamics to a central peak type of dynamics as the dis-
with same probability, and uniform exchange coupliher 1. order parameteq varies from 0 B>J) to 1 (B<J).
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100 ‘ - ‘ - rameters used in Fig. 1. Next we use the moments to con-
struct Padeapproximants for the time-dependent correlation
functionsC(t). The highest-order Padgproximants are de-
picted in Fig. 2. We distinguish two different behaviors: for
transverse field weaker than the exchange coupligg (
=1,B,=0.6),C(t) shows an oscillatory behavior; for trans-
verse field stronger than the exchange coupling-0,B,
=1.4), the correlation function behaves monotonically.

These different dynamic behaviors will become more evi-
dent if we look at the spectral functidi(w), given by

5.0

Av

o 1
F(w):Ref C(t)e ?'dt=lims—Reag(e+iw). (18
0 EH0277

0.0

0.0 10.0

We shall use the continued fraction representationft),

) . Eq.(16), to calculate=(w). Generally, the continued fraction
FIG. 5. Recurrants for the spin glass caseJp#1(0.4) with  hag an infinite number of levels which, incidentally, is the
probabilityp (1—p) andB;=1. The pure casp=1 reproduces the  ca5e with the present problem. That means that its calcula-

known Gaussian behavior. tion involves the knowledge of the infinite number bfs.
. _ ) Since it is usually impossible to obtaall the A’s, it be-
The above expression shall be useful in the calculation of the ;e necessary to use a scheme to terminate the continued
spectral density. _ fraction, yet preserving the moments sum rules. Several trun-
Consider now the case where the transverse fiBlde  (4ion schemes have been used in the literature. The one that
randomly distributed on the lattice sites whereas the eXggryes best our problem is the so-called Gaussian
change couplings are unifornd;=J. Let us assume the terminator® Suppose one knows only the fifstrecurrants.
transverse flt_alds_ are independent variables drawn from thg, ihat approximation, the unknown coefficients of the con-
bimodal distribution tinued fraction are assumed to be of the form,
=(An/N)n for n>N. Such a scheme provides a smooth
approximation to the spectral function. As long as the true
P(B):H [q5(Bi—By)+(1-0q)4(Bi=By)], (17 spectral function does not have any singularities, as it seems
to be the case with the present model, the Gaussian termina-
whereq takes values from 0 to 1. We can now use the abovéion works reasonably well. In order to check convergence of
distribution to obtain the configuration averages of the normghe Gaussian terminators, we calculate a sequence of ap-
of the basis vectors. The first nine recurrants are shown iproximants corresponding t=1,2,. . .,9, for a given set of
Fig. 1 for several values af. We have sef;=1, which fixes  parameters. The results are shown in Figs) and 3b). In
the energy scale, and varied the transverse field from thEig. 3(@) we have the pure casg€ 1), whereas in Fig. ®)
valueB;=0.6 (q=1) to B,=1.4 (g=0). This allows the we have maximum disordergE&0.5). In both figures we
system to move from a situation in which the transverse fieldhave used;=1,B;=0.6B,=1.4. Notice that the sequences
has a lower value than the exchange coupling to the situatioaf approximants have already attained reasonably good con-
where the strength of the transverse field is higher than theergence aN=9 for both the pure and disordered cases. The
exchange coupling. Notice the irregular pattern of the recurhighest order approximants for the spectral function are plot-
rants in the figure, what makes it difficult to infer the behav-ted in Fig. 4, for several values of From that figure, one
ior of the higher order recurrants. The first nine nontrivial can infer that the system shows a central-peak type of behav-
moments of Eq(4) are given in Table |, for the same pa- ior atq=1(B<J) and moves onto a collective-mode type of

v

TABLE Il. Moments of C(t) for the spin glass in a homogeneous transverse Bekl1.0. The coupling
energies take up the valuds=1.0 (p=1) andJ,=0.4 (p=0).

Moment p=0 p=0.25 p=0.5 p=0.75 p=1

o 1.0 1.0 1.0 1.0 1.0

o -0.5 -0.5 -0.5 -0.5 -0.5

ha 5.5x10 2 7.25<10°2 0.09 0.1075 0.125

e —3.0066%10°° —6.36083%10°° —1.045<10°2 —1.52742% 102 —2.08333% 10 2
g 1.13767% 10°%  4.58116K 10" % 9.8796% 10 %  1.7033%10°°  2.60417% 103
1o —4.1412%10°® —3.165166<10 ° —8.29627% 10 ° —1.5893%10 4 —2.60417% 10 4
1o 1.82266<10 7 2.09525¢10 ®  6.17108& 10 ® 1.2632%10°° 217014 10°°
ia —8.5520810 ° —1.24706<10 7 —3.99168 10 7 —8.63568<10 7 —1.55010<10 ©
s 3.56256<10 1°  6.43698 10 °  2.23825¢10 8  5.14016<10°®  9.6881 108

g —1.2406% 10 —2.8722% 101 —1.09846<10°° —2.70197% 10 °® —5.38229%< 10 °
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FIG. 6. Time-dependent correlation function for the same pa- " . -
rameters as in Fig. 5. FIG. 7. Spectral densities fal;=1(0.4) with probabilityp(1

—p), and uniform transverse fieB;=1. Again, the system moves
from a collective mode type of dynamics to a central peak type of

behavior(resonant structujeat q=0 (B>J). For values of . A
gynamlcs ap is raised from 0 to 1.

g#0,9+#1, i.e., for the disordered case, both behaviors ar
present in the dynamics of the systdeee, e.g., the cases
q=0.75 orqg=0.25). To summarize, we have studied the time evolution of the
Consider now the case of a spin glass in a homogeneowpin variableo;(t) in the one-dimensional disordered trans-
transverse field. Let us analyze the effects of the randomnes®rse Ising model at infinite temperature by the method of
of the exchange couplings on the dynamics. We keep théhe recurrence relations. We obtained the autocorrelation
transverse field3=1, which sets the energy scale, and as-function and the spectral function for different concentra-
sume a bimodal distribution for the exchange couplings  tions of either the transverse field or the exchange coupling.
We found that the dynamics of the system changes according
to the concentration oB or J. For the pure cases, two dis-
p()=II [p6(3—31)+(1-p)8(3i—32)], (19 tinct behaviors appear, according to the concentratior® of
' or J. Basically, whenJ>B, a central-peak behavior domi-
where the bond concentratigrvaries from 0 to 1. We elect hates the dynamics, while fr<B a collective-mode behav-
to consider];=1.0 andJ,=0.4. Hence, whep=1 the ex- ior is the main mode. The physical interpretation of these
change couplings;=1=B, a case with known exact solu- behaviors can be obtained by analyzing the root-mean square
tion. There, the recurrants have a linear behavior with itgnternal field associated with the exchange coupling and the
order, and the time-dependent correlation function is Gausdransverse frequency. The field due to the exchange coupling
ian. Asp is lowered toward zero, bonds with coupling ener-in the infinite temperature limit is
gies J;=B are replaced randomly by bonds with weaker
coupling energiesl,<B. When p=0, all the bonds will
have the same coupling enerdy. By using the above dis- 2 XX\ 2, X2\ a2,
tribution to calculate the norms of the basis vectors, we ob- i _§ Jij i UJ>_; Jii{(07)9)=3%q=0).
tain the first nine recurrants, which are shown in Fig. 5, for (20)
several values of the bond concentratipnNote that apart

from the expected linear behavior of the pure casel, the .
structure of the recurrants has an irregular pattern. The m 20, the root-mean-square goesJakoughly speaking, for

ments ofC(t) are given in Table Il and are used to construct arge B (B>J) the system behaves as independent spins

the Padeapproximants forC(t). The highest-ordered ap- precessing about the field. The fluctuating internal field
. , Ay causes a damping of the precessing spins and gives to the
proximants are displayed in Fig. 6, for several valueg.of

. S . ) spectral line its width. The resonant structumllective-
That figure indicates an oscillatory behavior fG(t) for , o
_ ; ) mode disappears when the transverse field is less than the
values ofp<1. For casg=1,C(t) is a Gaussian. The spec- . . .
L A . root-mean-square internal fiel@&J). Now, for the disor-
tral function is shown in Fig. 7. Again, we see that the sys- S . )
tem shows a central-beak dvnamics for the pure Gase dered situations the general dynamic behavior of the system
PE y ! P 9BSE s neither central-peak- nor collective-mode-like, but some-
=1 (J;=B) and moves into a collective-mode dynamics on

the other extreme pure case=0 (J;<B). In disordered thing in between those behaviors.
configurations such gs=0.5 the dynamics cannot be singly ~ This work was partially supported by CNPq, FINEP,
characterized by either behavior. FAPEMIG, and MCT(Brazilian agencies
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