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Dynamics of the random one-dimensional transverse Ising model

J. Florencio and F. C. Sa´ Barreto
Departamento de Fı´sica, Universidade Federal de Minas Gerais, 30.161-970 Belo Horizonte, Minas Gerais, Brazil

~Received 22 December 1998!

We study the dynamics of the spin-1/2 random transverse Ising model in the high-temperature limit by
means of the method of recurrence relations. We analyze two types of disorder: a disorder on the transverse
field, and a disorder on the exchange coupling. We find that the dynamics undergoes a crossover from a central
peak behavior onto a collective mode behavior as a function of the disorder.@S0163-1829~99!04937-1#
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One class of problems of great interest in statistical ph
ics is the time evolution of disordered systems. One of
simplest yet nontrivial examples of such systems is ths
51/2 random transverse Ising model~RTIM!, where the ex-
change couplingsJi or the transverse fieldsBi are random
variables. The model is relevant to the dynamic proper
of hydrogen ~deuteron!-bond order-disorder ferroelectrics
such as the quasi-one-dimensional ferroelect
Cs(H12xDx)2PO4,PbH12xDxPO4, etc. It is well-known that
hydrogen and deuteron have different tunneling frequen
within the bonds of those ferroelectrics crystals. The nonu
form deuterization of the hydrogen bonds is then modeled
a random site-dependent transverse fieldBi , whereas the
intra-chain interactionsJi remain unaltered, that is,Ji5J.1–3

On the other hand, in the case of spin glasses one take
exchange couplings as the random variables. A system
study of the effects of a transverse magnetic field on
three-dimensional spin glass LiHo0.167Y0.833F4 was carried
out by means of neutron diffraction4 and has triggered a
renewed interest in the RTIM.5–7 The system seems to ex
hibit a quantumphase transition at zero temperature, wh
is driven by the relative strength between the transverse
and the average exchange parameter. Such a transition
been predicted some time ago independently by Griffit8

and McCoy.9 Near the critical point, the time-dependent co
relation functions decay as a power law, whereas the s
susceptibilities present unusual singularities even in the p
magnetic phase.7,9–13

In general, the dynamic properties ofpure quantum spin
models, such as the transverse Ising model, theXY model,
the Heisenberg model, etc., have proven much harder to
tain than the thermodynamic quantities. For instance, the
a rather long history on the attempts to obtain the tim
dependent spin correlation functions of thes51/2 Heisen-
berg model in one dimension. To the best of our knowled
this problem remains unsolved, albeit there exist a few
orous results for the short time behavior of the spin autoc
relation functions.14–16 There are, however, some exact r
sults for the dynamics of the transverse Ising andXYmodels
in one dimension. The longitudinal time-dependent corre
tion functions were obtained by Niemeijer17 for any tempera-
ture, by using a mapping of the spin variables onto a coll
tion of noninteracting fermions.18 The transverse correlatio
functions show a Gaussian behavior at infin
temperatures19–22 and a power-law behavior at zer
temperature.23–26 There are also numerical results for th
PRB 600163-1829/99/60~13!/9555~6!/$15.00
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time-dependent correlation functions for the pure27–29as well
as for the disordered13,30 transverse Ising andXY models.

Calculations based on Mori’s continued fraction meth
using only three moments1 have been used to describe th
dynamics of the quasi-one-dimensional hydrogen-bon
ferroelectric crystals CsH2PO4 and PbHPO4, which are mod-
eled by the transverse Ising model. Another three-mom
based calculation was carried out by Tonegawa31 for the
classicalHeisenberg chain with impurities to obtain the ne
tron inelastic magnetic scattering cross section for the r
dom one-dimensional antiferromagn
(CD3)4NMn12xCuxCl3 ~TMMC: Cu!, and reproduced wel
the qualitative features of the experimental data.32,33

In the present work, we investigate the dynamic prop
ties of thes51/2 RTIM,

H52
1

2 (
i

Jis i
xs i 11

x 2
1

2 (
i

Bis i
z , ~1!

at the high temperature limit, wheres i
a (a5x,y,z) are

Pauli matrices, andJi andBi are the exchange couplings an
transverse fields, respectively. The couplings and fields m
be regarded as random variables. The model is equivale
the two-dimensionalclassical transverse Ising model with
correlated disorder along one spatial direction.9,34 We are
mainly interested in the average spin correlation function

C~ t !5^s j
x~ t !s j

x&, ~2!

where an average over the random variables is perform
after the statistical average. We use the method of recurre
relations35 to calculate exactly up to the eighteenth mome
of C(t),

C~ t !5 (
k50

`

m2kt
2k, ~3!

m2k5
1

~2k!!
Tr s i

x@H,@H,•••@H,s i
x#•••##. ~4!

We also calculate the spectral density by using the so-ca
Gaussian terminator36,37 for the continued fraction represen
tation of the Laplace transform ofC(t).

The method of recurrence relations has proved to be v
useful in the determination of the dynamic correlation fun
9555 ©1999 The American Physical Society
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9556 PRB 60J. FLORENCIO AND F. C. SA´ BARRETO
tions of systems such as the electron gas,35 the classical har-
monic chain,38 spin chains,16,22,37,39etc. In order to apply the
method to disordered systems, we need to modify it to
count for the averages over the random variablesJi andBi .
Notice that the time-dependent correlation function of int
est involves two averages:~1! the statistical mechanics ave
age for a given set of values of the random variables and~2!
the average over the random variables. The method mus
modified so that, among other things, it will yield the ave
aged correlation functions of interest.

Let us consider the operator for a tagged spins j
x whose

dynamics is governed by the Hamiltonian~1!. The time evo-
lution of s j

x is given in the Heisenberg representation as

s j
x~ t !5eiHts j

xe2 iHt , ~5!

in a system of units where\51. In the method of recurrenc
relations s j

x(t) is expressed as an expansion in a Hilb
spaceS,

s j
x~ t !5 (

n50

d21

an~ t !Fn , ~6!

whered is the dimension ofS, Fn are orthogonal basis vec
tors spanningS, and an(t) are time-dependent coefficient
We define the inner product inS at the high-temperature
limit ( T5`) in such way that it includesboth the statistical
and the random averages

~A,B!5^AB†&2^A&^B†&. ~7!

The above definition of the inner product keeps the origi
form of the recurrence relations.

The zeroth basis vector is chosen as the dynamic vari
of interestF05s j

x , without loss of generality. It follows tha
the coefficienta0(t) can be identified as the time-depende
correlation functionC(t)

a0~ t !5^s j
x~ t !s j

x&[C~ t !. ~8!

FIG. 1. Recurrants for the Ising model in a random transve
field Bi which can take the values 0.6 and 1.4 with probabilitieq
and 12q, respectively. The fields are given in units of the exchan
couplingJ.
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The remainingFn are obtained by using the recurrence re
tion

Fn115 iLF n1DnFn21 , n>0, ~9!

whereL is the Liouville operator

LA5@H,A#5HA2AH. ~10!

The recurrantsDn are defined by

Dn5
~Fn ,Fn!

~Fn21 ,Fn21!
, ~11!

with D051, andF21[0.
By taking n50 in Eq. ~9! we obtain the first basis vecto

F15Bjs j
y . Its norm is then obtained, that is, (F1 ,F1)5Bj

2.
Since (F0 ,F0)51, the first recurrant is readily obtained
D15Bj

2. By proceeding in a similar fashion we obtain

F25~D12Bj
2!s j

x1BjJj 21s j 21
x s j

z1BjJjs j
zs j 11

x ,

F352Bj~Jj 21
2 1Jj

21Bj
22D12D2!s j

y

22BjJj 21Jjs j 21
x s j

ys j 11
x 1Bj 21BjJj 21s j 21

y s j
z

1BjBj 11Jjs j
zs j 11

y , ~12!

etc. We have calculated the basis vectors up toF9.40 The first
three recurrants are then obtained

D15Bj
2,

D252Jj
22Bj

21
Bj

4

Bj
2

,

D35
Bj

612Jj
22Bj

212Jj
4Bj

212Jj
2Bj

222Bj
42/Bj

2

2Jj
2 Bj

22Bj
221Bj

4
. ~13!

e

e

FIG. 2. Time-dependent correlation functions for the Isi
model in a random transverse field, with the same parameters
Fig. 1.
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TABLE I. First nontrivial moments ofC(t) case of a disordered transverse field. Here, the field can
two valuesB150.6 (q51), andB251.4 (q50). The coupling energy isJi51.

Moment q50 q50.25 q50.5 q50.75 q51

m0 1.0 1.0 1.0 1.0 1.0
m2 20.98 20.78 20.58 20.38 20.18
m4 0.3234 0.2514 0.1794 0.1074 0.0354
m6 26.4248831022 24.8139531022 23.291931022 21.8587531022 25.144831023

m8 9.879231023 6.9383131023 4.3936431023 2.2451631023 4.9287431024

m10 21.3547931023 28.6736731024 24.8971631024 22.1422231024 23.3266931025

m12 1.7251231024 9.9618531025 4.9153031025 1.7662831025 1.6956331026

m14 21.9885831025 21.0474431025 24.5429031026 21.3268531026 26.8994131028

m16 2.0129031026 9.8604831027 3.8391031027 9.2695831028 2.3523631029

m18 21.7677031027 28.1841431028 22.9252231028 26.0182331029 27.05746310211
cu
ri-
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-
r-

he
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a

e
c-
dis-
We then use the remaining basis vectors to obtain the re
rants D4 ,D5 , . . . ,D9. The averages over the random va
ables can be calculated once their distribution functions
specified.

FIG. 3. Sequence of approximants for the spectral density
cording to the levelN of the continued fraction ofa0(z) ~see text!
where a Gaussian termination is employed. Notice the agreem
between the approximants forN58 and N59. ~a! Pure case,Ji

51 andBi50.6. ~b! Disorder in the transverse field,Bi50.6 or 1.4
with same probability, and uniform exchange couplingJi51.
r-

re

As can be seen in Eq.~6!, the time dependence is con
tained entirely in thean(t)’s. These obey a second recu
rence relation

Dn11an11~ t !52
dan~ t !

dt
1an21~ t !, n>0, ~14!

with a21[0. Note that the only ingredients that enter t
determination ofan(t) are the recurrants. Of particular inte
est is the Laplace transform ofa0(t),

a0~z!5E
0

`

e2zta0~ t !dt, Rez>0, ~15!

which can be cast as a continued fraction

a0~z!5
1

z1
D1

z1
D2

z1•••

. ~16!

c-

nt FIG. 4. Spectral density for the caseJi51,Bi50.6 (1.4) with
probabilityq (12q). Notice that the system moves from a colle
tive mode dynamics to a central peak type of dynamics as the
order parameterq varies from 0 (B.J) to 1 (B,J).
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9558 PRB 60J. FLORENCIO AND F. C. SA´ BARRETO
The above expression shall be useful in the calculation of
spectral density.

Consider now the case where the transverse fieldsBi are
randomly distributed on the lattice sites whereas the
change couplings are uniform,Ji5J. Let us assume the
transverse fields are independent variables drawn from
bimodal distribution

r~B!5)
i

@qd~Bi2B1!1~12q!d~Bi2B2!#, ~17!

whereq takes values from 0 to 1. We can now use the ab
distribution to obtain the configuration averages of the nor
of the basis vectors. The first nine recurrants are show
Fig. 1 for several values ofq. We have setJi51, which fixes
the energy scale, and varied the transverse field from
value B150.6 (q51) to B251.4 (q50). This allows the
system to move from a situation in which the transverse fi
has a lower value than the exchange coupling to the situa
where the strength of the transverse field is higher than
exchange coupling. Notice the irregular pattern of the rec
rants in the figure, what makes it difficult to infer the beha
ior of the higher order recurrants. The first nine nontriv
moments of Eq.~4! are given in Table I, for the same pa

FIG. 5. Recurrants for the spin glass case ofJi51(0.4) with
probabilityp (12p) andBi51. The pure casep51 reproduces the
known Gaussian behavior.
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rameters used in Fig. 1. Next we use the moments to c
struct Pade´ approximants for the time-dependent correlati
functionsC(t). The highest-order Pade´ approximants are de
picted in Fig. 2. We distinguish two different behaviors: f
transverse field weaker than the exchange couplingq
51,B150.6),C(t) shows an oscillatory behavior; for trans
verse field stronger than the exchange coupling (q50,B2
51.4), the correlation function behaves monotonically.

These different dynamic behaviors will become more e
dent if we look at the spectral functionF(v), given by

F~v!5ReE
0

`

C~ t !e2ztdt5 lim
e→0

1

2p
Rea0~e1 iv!. ~18!

We shall use the continued fraction representation ofa0(z),
Eq. ~16!, to calculateF(v). Generally, the continued fractio
has an infinite number of levels which, incidentally, is t
case with the present problem. That means that its calc
tion involves the knowledge of the infinite number ofD ’s.
Since it is usually impossible to obtainall the D ’s, it be-
comes necessary to use a scheme to terminate the cont
fraction, yet preserving the moments sum rules. Several t
cation schemes have been used in the literature. The one
serves best our problem is the so-called Gauss
terminator.36 Suppose one knows only the firstN recurrants.
In that approximation, the unknown coefficients of the co
tinued fraction are assumed to be of the formDn
5(DN /N)n for n.N. Such a scheme provides a smoo
approximation to the spectral function. As long as the tr
spectral function does not have any singularities, as it se
to be the case with the present model, the Gaussian term
tion works reasonably well. In order to check convergence
the Gaussian terminators, we calculate a sequence of
proximants corresponding toN51,2,. . . ,9, for a given set of
parameters. The results are shown in Figs. 3~a! and 3~b!. In
Fig. 3~a! we have the pure case (q51), whereas in Fig. 3~b!
we have maximum disorder (q50.5). In both figures we
have usedJi51,B150.6,B251.4. Notice that the sequence
of approximants have already attained reasonably good
vergence atN59 for both the pure and disordered cases. T
highest order approximants for the spectral function are p
ted in Fig. 4, for several values ofq. From that figure, one
can infer that the system shows a central-peak type of be
ior at q51(B,J) and moves onto a collective-mode type
TABLE II. Moments ofC(t) for the spin glass in a homogeneous transverse fieldBi51.0. The coupling
energies take up the valuesJ151.0 (p51) andJ250.4 (p50).

Moment p50 p50.25 p50.5 p50.75 p51

m0 1.0 1.0 1.0 1.0 1.0
m2 20.5 20.5 20.5 20.5 20.5
m4 5.531022 7.2531022 0.09 0.1075 0.125
m6 23.0066731023 26.3608331023 21.04531022 21.5274231022 22.0833331022

m8 1.1376731024 4.58116731024 9.8796731024 1.7033231023 2.6041731023

m10 24.1412331026 23.16516631025 28.2962731025 21.5893231024 22.6041731024

m12 1.8226631027 2.0952531026 6.1710831026 1.2632331025 2.1701431025

m14 28.5520831029 21.2470631027 23.9916831027 28.6356831027 21.5501031026

m16 3.56256310210 6.4369831029 2.2382531028 5.1401631028 9.6881231028

m18 21.24069310211 22.87222310210 21.0984631029 22.7019731029 25.3822931029
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behavior~resonant structure! at q50 (B.J). For values of
qÞ0,qÞ1, i.e., for the disordered case, both behaviors
present in the dynamics of the system~see, e.g., the case
q50.75 orq50.25).

Consider now the case of a spin glass in a homogene
transverse field. Let us analyze the effects of the random
of the exchange couplings on the dynamics. We keep
transverse fieldB51, which sets the energy scale, and a
sume a bimodal distribution for the exchange couplings

r~J!5)
i

@pd~Ji2J1!1~12p!d~Ji2J2!#, ~19!

where the bond concentrationp varies from 0 to 1. We elec
to considerJ151.0 andJ250.4. Hence, whenp51 the ex-
change couplingsJi515B, a case with known exact solu
tion. There, the recurrants have a linear behavior with
order, and the time-dependent correlation function is Gau
ian. Asp is lowered toward zero, bonds with coupling ene
gies J15B are replaced randomly by bonds with weak
coupling energiesJ2,B. When p50, all the bonds will
have the same coupling energyJ2. By using the above dis
tribution to calculate the norms of the basis vectors, we
tain the first nine recurrants, which are shown in Fig. 5,
several values of the bond concentrationp. Note that apart
from the expected linear behavior of the pure casep51, the
structure of the recurrants has an irregular pattern. The
ments ofC(t) are given in Table II and are used to constru
the Pade´ approximants forC(t). The highest-ordered ap
proximants are displayed in Fig. 6, for several values ofp.
That figure indicates an oscillatory behavior forC(t) for
values ofp,1. For casep51,C(t) is a Gaussian. The spec
tral function is shown in Fig. 7. Again, we see that the s
tem shows a central-peak dynamics for the pure casp
51 (Ji5B) and moves into a collective-mode dynamics
the other extreme pure case,p50 (Ji,B). In disordered
configurations such asp50.5 the dynamics cannot be sing
characterized by either behavior.

FIG. 6. Time-dependent correlation function for the same
rameters as in Fig. 5.
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To summarize, we have studied the time evolution of
spin variables j

x(t) in the one-dimensional disordered tran
verse Ising model at infinite temperature by the method
the recurrence relations. We obtained the autocorrela
function and the spectral function for different concent
tions of either the transverse field or the exchange coupl
We found that the dynamics of the system changes accor
to the concentration ofB or J. For the pure cases, two dis
tinct behaviors appear, according to the concentrations oB
or J. Basically, whenJ.B, a central-peak behavior dom
nates the dynamics, while forJ,B a collective-mode behav
ior is the main mode. The physical interpretation of the
behaviors can be obtained by analyzing the root-mean sq
internal field associated with the exchange coupling and
transverse frequency. The field due to the exchange coup
in the infinite temperature limit is

Gi j
2 5(

j ,k
Ji j Jik^s i

xs j
x&5(

j
Ji j

2 ^~s i
x!2&5J2~q50!.

~20!

So, the root-mean-square goes asJ. Roughly speaking, for
large B (B.J) the system behaves as independent sp
precessing about the fieldB. The fluctuating internal field
causes a damping of the precessing spins and gives to
spectral line its width. The resonant structure~collective-
mode! disappears when the transverse field is less than
root-mean-square internal field (B,J). Now, for the disor-
dered situations the general dynamic behavior of the sys
is neither central-peak- nor collective-mode-like, but som
thing in between those behaviors.

This work was partially supported by CNPq, FINE
FAPEMIG, and MCT~Brazilian agencies!.

-
FIG. 7. Spectral densities forJi51(0.4) with probabilityp(1

2p), and uniform transverse fieldBi51. Again, the system move
from a collective mode type of dynamics to a central peak type
dynamics asp is raised from 0 to 1.
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