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Harper’s equation for two-dimensional systems of antiferromagnetically correlated electrons
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~Received 31 August 1998; revised manuscript received 11 March 1999!

Considering interacting~antiferromagnetically correlated! electrons, we derive a generalized Harper’s equa-
tion in a mean-field approximation for a square lattice of infinite size. In the present study with the aid of a gap
equation we explain the cause of the oscillatory behavior in staggered magnetization with the variation of an
applied magnetic field for two-dimensional systems of antiferromagnetically correlated electrons. Exact diago-
nalization calculations on small clusters show additional evidence for the oscillatory behavior of staggered
magnetization. We find that for systems of weakly correlated electrons both mean-field and exact diagonaliza-
tion calculations yield an identical behavior in the propensity of diminishing staggered magnetization for
even-denominator~but not for odd-denominator! values ofq in the magnetic flux quanta per plaquette, i.e.,
p/q. @S0163-1829~99!15533-4#
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I. INTRODUCTION

Since the discovery of high-temperature superconduc
and related insulating materials, there has been enhance
terest in two-dimensional spin-1

2 magnetic or antiferromag
netically correlated electron systems.1,2 However, not much
attention has been paid to the magnetic properties of th
systems coupled to an external magnetic field.3–5 The origi-
nal Harper’s equation6–8 is concerned with the energy dis
persion involving systems of noninteracting electrons due
an applied magnetic field. Hence it is of great interest
study how systems of interacting electrons behave unde
external magnetic field. Earlier we paid attention to the d
persion of antiferromagnetically correlated electrons by c
sidering a square lattice of finite size.9 In the present pape
we derive a generalized Harper’s equation which descr
the dispersion of antiferromagnetically correlated electr
in a square lattice of infinite size. An analytic expression
the density of states is derived from the generalized Harp
equation. Earlier we found from numerical calculations t
oscillatory behavior of staggered magnetization with a va
tion of the external magnetic field and its cause w
unexplained.9 Here we explain the cause of the oscillato
behavior with the aid of an analytically derived density
states. Lanczos exact diagonalization calculations on s
clusters also exhibit evidence for the oscillatory behavior
staggered magnetization. It is shown that below a criti
electron correlation strength the staggered magnetization
appears at even-denominator values ofq ~but not at oddq! of
given magnetic flux quanta per plaquette,p/q.

II. GENERALIZED HARPER’S EQUATION AND DENSITY
OF STATES

We write the Hubbard model Hamiltonian describing t
two-dimensional system of antiferromagnetically correla
electrons under an external magnetic field,8
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wheret is the hopping integral,A the electromagnetic vecto
potential,f05hc/e the elementary flux quantum,U the on-
site Coulomb repulsion energy, andm the chemical potential.
^ i j & stands for summation over nearest-neighbor sitesi andj.
cis

† (cis) is the creation~annihilation! operator of an elec-
tron of spins at sitei, andni↑ (ni↓) the number operator o
an up-spin~down-spin! electron at sitei.

The staggered magnetization~antiferromagnetic order! at
site i is written as mi5eiQ•r i(ss^cis

† cis&, where Q
5(p,p) and r i5( i x ,i y) with i x and i y being integers with
the lattice spacing of unity. We allow a uniform stagger
magnetizationm and a uniform doping rated, i.e.,

m5
1

N (
is

eiQ•r is^cis
† cis&, ~2a!

d512
1

N (
i

^ni&, ~2b!

with the number of lattice sites,N. By using the Landau
gaugeA5B(0,x,0), we obtain the mean-field~Hartree-Fock!
Hamiltonian in the momentum space,

H52t(
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@2 coskxcks
† cks1e2 ikyck2g,s

† cks

1eikyck1g,s
† cks#2

mU

2 (
ks

sck1Q,s
† cks

1FU

2
~12d!2mG(

ks
cks

† cks , ~3!

where g[(2pf/f0 ,0)5(2pp/q,0) with p/q the number
of flux quanta per plaquette. The first bracketed term in
~3! represents electron hopping; the first term in the brack
represents the nearest-neighbor hopping in thex direction
and the last two terms in the brackets the nearest-neigh
hopping in they direction. Because of the choice of the La
dau gaugeA5B(0,x,0), the electron gains no phase when
hops in thex direction, while it acquires a phase when it ho
in the y direction. The electromagnetic vector potentialA
9550 ©1999 The American Physical Society
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PRB 60 9551HARPER’S EQUATION FOR TWO-DIMENSIONAL . . .
shifts the wave vector of electron in thekx direction byg
[ugu52pp/q. The second term results from the antiferr
magnetic spin order of correlated electrons, which causes
wave vector to shift byQ. The last term represents the sh
of the chemical potential byU(12d)/2 as a result of hole
doping.

The matrix form of the Hamiltonian~3! is written as

H5H01H1 ,

H05FU

2
~12d!2mG(

ks
cks

† cks ,

H15(
ks

8 Cks
† HksCks , ~4a!

where

Cks53
ck1g,s

A

ck1(q21)g,s

cks

ck1g1Q,s

A

ck1(q21)g1Q,s

ck1Q,s

4 , ~4b!

Hks5FcucTk Vs

Vs 2Tk
G , ~4c!

Tk52tF M1 e2 iky 0 0 eiky

eiky M2 � 0 0

0 � � � 0

0 0 � Mq21 e2 iky

e2 iky 0 0 eiky Mq

G , ~4d!

and

Vs53
2

smU

2
0 0 0 0

0 2
smU

2
0 0 0

0 0 � 0 0

0 0 0 2
smU

2
0

0 0 0 0 2
smU

2

4
~4e!

with Mn52 cos(kx1ng). The summation(k8 is over the re-
duced Brillouin zone,$(kx ,ky)u2p/q<kx<p/q, 2p/2
<ky<p/2%. The Brillouin zone is reduced by 1/q due to the
presence ofq plaquettes per magnetic unit cell, and is furth
reduced by 1/2 as a result of antiferromagnetic spin ord
The diagonal matrixTk in Eq. ~4c! represents electron hop
he

r
r.

ping and contains information on the phase modulation
hopping electrons due to the influence of the external fie
The off-diagonal matrixVs in Eq. ~4c! represents the anti
ferromagnetic electron correlation.

From the eigenvalue equation of the Hamiltonian mat
Hks ,

det~Hks2EkI !50, ~5!

with I the identity matrix, we obtain the quasiparticle ener
dispersionEk of the antiferromagnetically correlated ele
trons in the presence of a magnetic field. In the limiting ca
of noninteracting electrons (U50) the ‘‘generalized’’ Harp-
er’s equation~5! above is reduced to the original Harper
equation derived by Hasegawaet al.,8 that is,

det~Tk2«kI !50, ~6!

where«k is the energy dispersion of noninteracting electro
in the presence of a magnetic field.

Following Hasegawaet al.,8 Eq. ~6! can be rewritten in a
simplified form

g~«!5cos~qkx!1cos~qky!, ~7!

where g(«) is given in Table I for various values ofp/q
which are not presented in the study of Hasegawaet al.8

Now for the case of antiferromagnetically correlated ele
trons we obtain, from the diagonalization of the Hamiltoni
matrix Hks in Eq. ~4c! above,

Ek5A«k
21D2, ~8!

with 2D5mU the band gap. Thus the band gap is linea
dependent on both the staggered magnetizationm and the
electron correlation strength~Coulomb repulsion! U. It is of
great interest how such a linear dependence obtained f
the mean-field approximation is modified with accurate c
culations.

From the use of the energy dispersion relation~8!, we
obtain an analytic form of the density of states,

g~E!52E 8 d2k

~2p!2
d~E2Ek!

5
2

qp2 Udg~«!

d« UKFA12S g~«!

2 D 2GUE«U, ~9!

where u«u5AE22(mU/2)2 and K is a complete elliptic in-
tegral of the first kind,10

K~a!5E
0

p/2 df

A12a2 sin2f
.

Equation~9! above represents the density of states for
systems of correlated electrons in the presence of a mag
field. In the limiting case ofU50, it correctly reproduces the
results of Hasegawaet al.8 for noninteracting electrons. Al-
though not shown here, the analytic result of Eq.~9! for U
50 is in excellent agreement with the numerical results
tained by Hasegawaet al.8 In the presence of a magnet
field with the flux quanta per plaquettep/q, a single band
splits intoq subbands. This is analogous to the energy le
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TABLE I. g(«) for various values of magnetic flux quanta per plaquette,p/q. The energy dispersion o
noninteracting electrons at a givenp/q is determined from the Harper’s equationg(«)5cos(qkx)1cos(qky).
For other values ofp/q the reader is referred to the results of Hasegawaet al. ~Ref. 8!.

p q 2g(«)

2 5
2«5110«31«F220210 cosS2p

5 DG
1 7

2«7114«51F249114 cosS2p

7 DG«31F42228 cosS2p

7 D228 cosS3p

7 DG«
2 7

2«7114«51F249214 cosS3p

7 DG«31F28228 cosS2p

7 D156 cosS3p

7 DG«
3 7

2«7114«51F256214 cosS2p

7 D114 cosS3p

7 DG«31F56156 cosS2p

7 D228 cosS3p

7 DG«
1 9

2«9118«71F29914A3 cosS p

18D16 cosS2p

9 D14A3cosS7p

18D G«5

1F186224A3cosS p

18D236 cosS2p

9 D14A3cosS5p

18D228A3cosS7p

18D124 cosS4p

9 DG«3

1F2126136A3cosS p

18D136 cosS2p

9 D136A3cosS7p

18D254 cosS4p

9 DG«
2 9

2«9118«71F29914A3cosS5p

18D24A3cosS7p

18D16 cosS4p

9 DG«5

1F18624A3cosS p

18D224 cosS2p

9 D228A3cosS5p

18D124A3cosS7p

18D260 cosS4p

9 DG«3

1F2126154 cosS2p

9 D136A3cosS5p

18D236A3cosS7p

18D190 cosS4p

9 DG«
4 9

2«9118«71F29924A3cosS p

18D26 cosS2p

9 D24A3cosS5p

18D26 cosS4p

9 DG«5

1F186128A3cosS p

18D160 cosS2p

9 D124A3cosS5p

18D14A3cosS7p

18D136 cosS4p

9 DG«3

1F2126236A3cosS p

18D290 cosS2p

9 D236A3cosS5p

18D236 cosS4p

9 DG«
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splitting into Landau levels for electrons embedded in a c
tinuum state under a magnetic field.

III. STAGGERED MAGNETIZATION AT ZERO
TEMPERATURE AND AT HALF FILLING IN EXTERNAL

MAGNETIC FIELDS

Now we investigate the staggered magnetization at
filling ( d50) and at zero temperature in a magnetic fie
The chemical potential is given bym5U/2. The self-
consistent equation~2a! for the staggered magnetizationm
can be expressed as

1

U
5E

2`

0

d«
g0~«!

2

1

A«21~mU/2!2
. ~10!

Here g0(«) is the density of states of noninteracting ele
trons in the presence of a magnetic field. It is readily o
tained from Eq.~9!. It is of interest to note that the ‘‘gap
equation’’ above@Eq. ~10!# is in a form similar to the one
that appears in the spin density wave theory of cupr
materials.11,12 It will be used for the determination of th
staggered magnetizationm varying with the external mag
-

lf
.

-
-

te

netic field for the system of weakly correlated electrons, i
small U values. In Fig. 1 the oscillatory behavior of sta
gered magnetization is predicted particularly for small valu
of correlation strengthU&1. It is of note that the Hartree
Fock results are not reliable for large values ofU. Thus its
reliability at high U values is diminished. Various symbo
represent the results obtained from the use of the newly
rived analytic gap equation above for the square lattice
infinite size. They are in good agreement with the se
consistent numerical calculations for a 20320 finite square
lattice.9

In the following with the aid of the gap equation@Eq.
~10!# we explain the cause of the oscillatory behavior of t
staggered magnetization for the case of weakly correla
electrons. At even-denominator values ofq in p/q the stag-
gered magnetization is predicted to disappear~e.g., see the
case ofp/q51/2). This feature is well depicted in Fig. 1. W
now define the critical electron correlation strength~Cou-
lomb repulsion! Up/q to be a value below which the stag
gered magnetization vanishes, i.e.,m50. The predicted stag
gered magnetization from Eq.~10! vanishes at evenq values
below a critical valueUp/q , i.e., U,Up/q . On the other
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hand, in the absence of the magnetic field the staggered m
netization tends to appear even at small values ofU.12 The
critical correlation strengthUp/q is obtained by substituting
m50 in Eq. ~10!, and is shown for various values ofp/q in
Table II. For oddq in p/q, the integral in Eq.~10! is loga-
rithmically divergent, and thus the critical correlatio
strengthUp/q does not exist. Although not numerically pre
cise for the case of our earlier finite-size calculations~solid
lines!,9 a propensity of vanishing staggered magnetizat
for the even-denominator values ofq in p/q is correctly ob-
served belowUp/q as shown in Fig. 1. The oscillatory behav
ior is found to occur owing to the disappearance of stagge
magnetization distinctively at the even-denominator valu
of q in p/q below the critical value ofUp/q .

We now investigate the oscillatory behavior of stagger
magnetization in the Lanczos exact diagonalizati
scheme. To incorporate the Aharonov-Bohm pha
@exp(2i2p* j

iA•dl/f0)# it is necessary to choose a suffi
ciently large size of square lattice to meet the perio
boundary conditions of magnetic unit cells for various valu
of magnetic fields corresponding top/q. The exact diagonal-
ization calculations are not presently able to treat suc
large-size square lattice. For the present study we choo
tilted A83A8 square lattice for a system of antiferroma
netically correlated electrons. The only allowed value
magnetic flux quanta to satisfy the periodic boundary con
tions with the above square lattice isp/q51/2. For the
choice of Landau gaugeA5B(0,x,0), the electron gains no
phase when it hops in thex direction and it acquires a phas

FIG. 1. Staggered magnetization~antiferromagnetic order! at
zero temperature as a function ofp/q, the magnetic flux quanta pe
plaquette. Various symbols represent the results calculated from
analytic gap equation@Eq. ~10!# for a square lattice of infinite size
The interpolating lines are guides to the eye.

TABLE II. Critical correlation strengthUp/q as a function of
magnetic flux quanta per plaquette,p/q.

p

q

1

8

1

6

1

4

3

8

1

2

Up/q 1.29 1.49 1.87 0.897 3.11
g-

n

d
s

d
n
e

c
s

a
a

f
i-

of exp@2i2p(p/q)ix# when it hops in they direction. The
acquired phase is11 or 21 for p/q51/2. It is indicated by
1 for 11 and2 for 21 in the inset of Fig. 2. The thick
solid square represents a unit cell of theA83A8 square lat-
tice and the dotted box in the solid square denotes a magn
unit cell. The magnetic unit cell satisfies the periodic boun
ary conditions. Hopping of an electron from siteA to siteB is
equivalent to hopping from siteA8 to site B8. In the exact
diagonalization treatment, the staggered magnetization is
fined by13

^M2&5K S 1

N (
i

eiQ•r iSi D 2L , ~11!

with Q5(p,p). We show the predicted staggered magne
zation in Fig. 2. In agreement with the mean-field result,
staggered magnetization is found to be reduced at the e
denominator value ofp/q51/2. It is noted that the nonvan
ishing value of staggered magnetization for small values
U is due to the finite-size effect.

In order to study the behavior of staggered magnetiza
for additional values of magnetic flux quanta, we are led
consider a 236 ladder system owing to a difficulty of mee
ing satisfactory periodic boundary conditions with compu
tionally accessible small-size square lattices. The value
magnetic flux quanta satisfying the periodic boundary con
tions arep/q51/6, 1/3, and 1/2. In Fig. 3 the oscillator
behavior of staggered magnetization is satisfactorily p
dicted for the above chosen values of correlation stren
This trend is in agreement with the mean-field result sho
in Fig. 1, by showing a propensity of vanishing stagger
magnetization only for the even-denominator values ofq in
p/q.

IV. CONCLUSION

We derived a generalized Harper’s equation for the
ergy dispersion relation of interacting~antiferromagnetically
correlated! electrons in an external magnetic field. Unlike th

he

FIG. 2. Staggered magnetization as a function of magnetic
quanta per plaquette on a tiltedA83A8 square lattice. The inse
indicates the appropriateness of the magnetic flux quanta
plaquette,p/q51/2, by satisfying the periodic boundary conditio
for the magnetic unit cell. The1 and 2 signs represent the ac
quired Aharonov-Bohm phase. The thick solid box denotes a
cell of theA83A8 lattice and the dotted box is a magnetic unit c
for p/q51/2.
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original Harper’s equation which deals only with noninte
acting electron systems, the generalized Harper’s equa
derived in Eq.~5! @with Eq. ~4c!# has the definite merit o
studying the physical properties of correlated electron s
tems in the presence of the external magnetic field. From
Harper’s equation we derived an analytic expression for
density of states of antiferromagnetically correlated electr
in a magnetic field. For the limiting case of noninteracti
electrons, the analytic density of states is found to reprod

FIG. 3. Staggered magnetization as a function of magnetic
quanta per plaquette on a 236 ladder system.
.
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the numerical results of Hasegawaet al.8 For the case of half
filling, we derived a gap equation for the determination
staggered magnetization for antiferromagnetically correla
electron systems in the presence of a magnetic field. A
comprehensive and improved version over our earlier p
liminary study,9 we were able to find from the gap equatio
the cause of the oscillatory behavior in staggered magne
tion under a varying external magnetic field for systems
weakly correlated electrons, that is, smallU values. We dem-
onstrated that below a critical electron correlation stren
~Coulomb repulsion! the staggered magnetization in the pre
ence of a magnetic field vanishes at even-denominatorq val-
ues~but not at oddq! of magnetic flux quanta per plaquett
p/q. We find that for systems of weakly correlated electro
both mean-field and exact diagonalization calculations yi
an identical behavior in the propensity of diminishing sta
gered magnetization for the even-denominator~but not for
the odd-denominator! values ofq in the magnetic flux quanta
per plaquette, i.e.,p/q.
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