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Harper’s equation for two-dimensional systems of antiferromagnetically correlated electrons
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Considering interactin¢antiferromagnetically correlat¢@lectrons, we derive a generalized Harper's equa-
tion in a mean-field approximation for a square lattice of infinite size. In the present study with the aid of a gap
equation we explain the cause of the oscillatory behavior in staggered magnetization with the variation of an
applied magnetic field for two-dimensional systems of antiferromagnetically correlated electrons. Exact diago-
nalization calculations on small clusters show additional evidence for the oscillatory behavior of staggered
magnetization. We find that for systems of weakly correlated electrons both mean-field and exact diagonaliza-
tion calculations yield an identical behavior in the propensity of diminishing staggered magnetization for
even-denominatoftbut not for odd-denominatpwvalues ofqg in the magnetic flux quanta per plaquette, i.e.,

p/q. [S0163-182699)15533-4

[. INTRODUCTION wheret is the hopping integrali the electromagnetic vector
potential,po=hc/e the elementary flux quanturt) the on-
Since the discovery of high-temperature superconductorsite Coulomb repulsion energy, ajpdthe chemical potential.
and related insulating materials, there has been enhanced iflj ) stands for summation over nearest-neighbor sigexl].
terest in two-dimensional spih-magnetic or antiferromag- ¢!, (ci,) is the creationannihilation operator of an elec-
netically correlated electron systermsHowever, not much ron of sping at sitei, andn;; (n;|) the number operator of
attention has been paid to the magnetic properties pf thesg, up-spin(down-spin electron at site.
sy?tems cqupled t‘?(%r; gxternal magney(r:] ﬁﬁ he origr- The staggered magnetizatiéantiferromagnetic ordgmat
nal Harper's equati is concerned with the energy dis- site i is written as m=e "3 o(cl c,,), where Q
persion involving systems of noninteracting electrons due to_ P o . ol ;
an applied magnetic field. Hence it is of great interest to_ (™) andri=(ix.iy) with i, andiy being integers with
study how systems of interacting electrons behave under af€ lattice spacing of unity. We allow a uniform staggered
external magnetic field. Earlier we paid attention to the dis-Magnetizatiorm and a uniform doping raté, i.e.,
persion of antiferromagnetically correlated electrons by con- 1
sidering a square lattice of finite sizén the present paper m= — E eiQ~riO_<Cj‘ Ci) (2a)
we derive a generalized Harper’'s equation which describes N 75 lomtan
the dispersion of antiferromagnetically correlated electrons
in a square lattice of infinite size. An analytic expression for 1
the density of states is derived from the generalized Harper’s o=1-J > (my), (2b)
equation. Earlier we found from numerical calculations the '
oscillatory behavior of staggered magnetization with a variawith the number of lattice sited). By using the Landau

tion of the external magnetic field and its cause wasgaugeA=B(0x,0), we obtain the mean-fieltHartree-Fock
unexplained. Here we explain the cause of the oscillatory Hamiltonian in the momentum space,

behavior with the aid of an analytically derived density of
states. Lanczos exact diagonalization calculations on small

clusters also exhibit evidence for the oscillatory behavior of H=—t> [2 cosk,Ci,Cote el _g ,Cro
staggered magnetization. It is shown that below a critical ko
electron correlation strength the staggered magnetization dis- _ mu
appears at even-denominator values éut not at odd) of +e'vef, o Crol — > > 0Cl, 0.Cke
given magnetic flux quanta per plaquetpeg. ko
, U
Il. GENERALIZED HARPER'S EQUATION AND DENSITY + E(l_ 5)_142 Clockm ©)
OF STATES ko

We write the Hubbard model Hamiltonian describing thewhere g= (27 ¢/ ¢,0)=(27p/q,0) with p/q the number
two-dimensional system of antiferromagnetically correlatedof flux quanta per plaquette. The first bracketed term in Eq.
electrons under an external magnetic fféld, (3) represents electron hopping; the first term in the brackets

and the last two terms in the brackets the nearest-neighbor
(Do hopping in they direction. Because of the choice of the Lan-
+U a teo 1 hops in thex direction, while it acquires a phase when it hops
Ei Mty M% CioCio @) in the y direction. The electromagnetic vector potentfal

oo i represents the nearest-neighbor hopping in xhdirection
s |
H=—t>, ex;{ —i (/)—f A~d|)ciTgch+ H.c.
0J]j
dau gaugA=B(0,x,0), the electron gains no phase when it
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shifts the wave vector of electron in tlig direction byg
=|g|=2mp/q. The second term results from the antiferro- NOPPINg electrons due to the influence of the external field.
magnetic spin order of correlated electrons, which causes thEhe off-diagonal matrix/,, in Eq. (4) represents the anti-
wave vector to shift byQ. The last term represents the shift ferromagnetic electron correlation.

of the chemical potential by (1— 6)/2 as a result of hole

doping.

The matrix form of the Hamiltoniag3) is written as

H=Hy+H,,

U
Ho=[5<1—6>—u}k2 ChoChor

Hi=2" CiHiCuor (42
where
[ Ck+g,0' i
Ck+(g-1)g.0
Cko
Cka ) (4b)
Ck+g+Q,¢r
Ck+(a-1)g+Q.c
L Ck+Q,U’
’ clcTy V, .
ko™ Va- _Tk ’ ( C)
TM; e 0 0 e'y 1
eky M, - 0 0
0 0 Mg-1 €'
le™ 0 0o €% My
and
" omU
- 0 0 0 0
2
0 AL 0
2
V,= 0 0 0 0
0 0 omU 0
2
mU
0 o o o -ZZ
- 2 -
(4¢)
with M,=2 cosk+ng). The summatior®, is over the re-
duced Brillouin zone{(ky k)| — m/a<k,=<m/q, —m/2

<ky=</2}. The Brillouin zone is reduced byddue to the
presence off plaquettes per magnetic unit cell, and is furthertained by Hasegawat al® In the presence of a magnetic
reduced by 1/2 as a result of antiferromagnetic spin orderfield with the flux quanta per plaquetf@q, a single band
The diagonal matrixT, in Eq. (4c) represents electron hop- splits intoq subbands. This is analogous to the energy level

9551

ping and contains information on the phase modulation of

From the eigenvalue equation of the Hamiltonian matrix

ko »

de(Hy,—E)=0, (5)

with | the identity matrix, we obtain the quasiparticle energy
dispersionE, of the antiferromagnetically correlated elec-
trons in the presence of a magnetic field. In the limiting case
of noninteracting electrond=0) the “generalized” Harp-
er's equation(5) above is reduced to the original Harper's
equation derived by Hasegawaal.? that is,

de(T,—¢&,1)=0, (6)

whereeg, is the energy dispersion of noninteracting electrons
in the presence of a magnetic field.

Following Hasegawat al.® Eq. (6) can be rewritten in a
simplified form

y(e)=codqgk,) +cogqky), )

where y(¢g) is given in Table | for various values qi/q
which are not presented in the study of Hasegawal®
Now for the case of antiferromagnetically correlated elec-
trons we obtain, from the diagonalization of the Hamiltonian
matrix H,, in Eq. (4c) above,

Ei=sf+4% ®

with 2A=mU the band gap. Thus the band gap is linearly
dependent on both the staggered magnetizatioand the
electron correlation strengii€oulomb repulsionU. It is of
great interest how such a linear dependence obtained from
the mean-field approximation is modified with accurate cal-
culations.

From the use of the energy dispersion relati@n we
obtain an analytic form of the density of states,

(E)—zj/d2k S(E—Ey)
g(e)= (2m)? k
2 |dy(e) y(e)|\“||E
~qn?| de - 2) P

where|s| = VE?—(mU/2)? andK is a complete elliptic in-
tegral of the first kind?

/2 d¢

K(a)= j ————
Equation(9) above represents the density of states for the
systems of correlated electrons in the presence of a magnetic
field. In the limiting case ot =0, it correctly reproduces the
results of Hasegawat al® for noninteracting electrons. Al-
though not shown here, the analytic result of E®). for U
=0 is in excellent agreement with the numerical results ob-
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TABLE 1.
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y(¢e) for various values of magnetic flux quanta per plaqueitg, The energy dispersion of

noninteracting electrons at a giv@ihq is determined from the Harper's equatigfe) = cos(k) +cos(k).
For other values op/q the reader is referred to the results of Hasegawal. (Ref. 8.

p q 2y(e)
2 5 2T
—&°+10s3+¢| —20-10 co<?ﬂ
1 7 27 27 37
—e'+14e%+| —49+14co 2 &3+|42—28 co 2 —28co =
2 7 37 27 377
—e’+14e%+| — 49— 14 cos—- 2 &3+|28—28co 2 +56 co -
3 7 27 3 27 37
—&’+14¢%+| —56— 14 co$—- | +14 co$—- | |°+| 56+ 56 co$—- | —28 cos—- | |
7 7 7 7]
1 9 T T
—e94+18:7+| —99+ 43 CO{lS) +6 co{ +4\/§cos<—) &5
4ar
+|186-24/3 cos< g 36 co{ +44/3 cos( ) 283 cos{ +24c¢ {9)83
27 7 4r
—126+3643 cos( T +36c05{ 5 +36\3 cos( s 5400{?)8
2 9 47
—e%4+18s7+ 99+4\/—005< ) 4\/—co< +6 cos{ 5 ) &
T 41
+|186—4+/3co 24co —28\3co +24J’ 3co —60cos—| |3
18 18 9
21 4
—126+54 co{ 5 +3613 cos{ ) 363 coS{ +90 co% 9)
4 9 4
—e9418¢7+| — 99— 4\/—cos<18 6co< ) 43¢ oS{ ) 600{;) &°
2 4ar
+/186+28\3 cos( 8)+60 co{ 5 +24./3 cos{ +43 cos{ +3600s{ 9> 3

—126-3643 cos(ls) 90005{ ) 36V3 co< ) seco{%w)s

splitting into Landau levels for electrons embedded in a connetic field for the system of weakly correlated electrons, i.e.,

tinuum state under a magnetic field.

Ill. STAGGERED MAGNETIZATION AT ZERO
TEMPERATURE AND AT HALF FILLING IN EXTERNAL
MAGNETIC FIELDS

Now we investigate the staggered magnetization at

filling (6=0) and at zero temperature in a magnetic fiel

The chemical potential is given by.=U/2. The self-
consistent equatio2a) for the staggered magnetization
can be expressed as

izfo de 308 ! (10)
U J= 2 2+ (mui2)?

small U values. In Fig. 1 the oscillatory behavior of stag-
gered magnetization is predicted particularly for small values
of correlation strengtty=<1. It is of note that the Hartree-
Fock results are not reliable for large valueslbfThus its
reliability at highU values is diminished. Various symbols

hal|Eepresent the results obtained from the use of the newly de-

d. rived analytic gap equation above for the square lattice of
infinite size. They are in good agreement with the self-
consistent numerical calculations for a>2R0 finite square
lattice?

In the following with the aid of the gap equatidikq.
(10)] we explain the cause of the oscillatory behavior of the
staggered magnetization for the case of weakly correlated
electrons. At even-denominator valuescpin p/q the stag-

Here go(e) is the density of states of noninteracting elec-gered magnetization is predicted to disappeag., see the
trons in the presence of a magnetic field. It is readily ob-case ofp/q=1/2). This feature is well depicted in Fig. 1. We
tained from Eq.(9). It is of interest to note that the “gap now define the critical electron correlation streng@ou-

equation” above[Eq. (10)] is in a form similar to the one

lomb repulsion U, to be a value below which the stag-

that appears in the spin density wave theory of cupratgered magnetization vanishes, ira5 0. The predicted stag-
materialst>*? It will be used for the determination of the gered magnetization from E¢LO) vanishes at eveq values

staggered magnetizatiam varying with the external mag- below a critical valueU

piqs €., U<Ugyq. On the other
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FIG. 1. Staggered magnetizatigantiferromagnetic ordgrat
zero temperature as a functionfg, the magnetic flux quanta per
plaquette. Various symbols represent the results calculated from
analytic gap equatiofEg. (10)] for a square lattice of infinite size.
The interpolating lines are guides to the eye.

hand, in the absence of the magnetic field the staggered m
netization tends to appear even at small valuet) ¢f The
critical correlation strengthJ ,, is obtained by substituting
m=0 in Eq.(10), and is shown for various values pfq in
Table Il. For oddq in p/q, the integral in Eq(10) is loga-
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FIG. 2. Staggered magnetization as a function of magnetic flux

quanta per plaquette on a tiltedx /8 square lattice. The inset
indicates the appropriateness of the magnetic flux quanta per
r&laquette,p/qzl/Z, by satisfying the periodic boundary condition
for the magnetic unit cell. Ther and — signs represent the ac-
quired Aharonov-Bohm phase. The thick solid box denotes a unit
cell of the 8x /8 lattice and the dotted box is a magnetic unit cell
for p/gq=1/2.
ag-

of exd —i2m(p/q)iy] when it hops in they direction. The
acquired phase is-1 or —1 for p/q=1/2. It is indicated by

+ for +1 and — for —1 in the inset of Fig. 2. The thick
solid square represents a unit cell of ti@x /8 square lat-

tl

rithmically divergent, and thus the critical correlation tice and the dotted box in the solid square denotes a magnetic

strengthU ,,, does not exist. Although not numerically pre-

cise for the case of our earlier finite-size calculati¢saslid

unit cell. The magnetic unit cell satisfies the periodic bound-
ary conditions. Hopping of an electron from sitdo siteB is

lines),® a propensity of vanishing staggered magnetizatiorequivalent to hopping from sitd’ to site B’. In the exact

for the even-denominator values @fn p/q is correctly ob-

diagonalization treatment, the staggered magnetization is de-

served belowJ /4 as shown in Fig. 1. The oscillatory behav- fined by

ior is found to occur owing to the disappearance of staggered
magnetization distinctively at the even-denominator values

of g in p/q below the critical value otJ 4.

(11

(i3 e,

We now investigate the oscillatory behavior of staggeredyith Q= (, 7). We show the predicted staggered magneti-

magnetization in the Lanczos exact diagonalizatio
scheme. To incorporate
[exp(—i2wf}A-dI/¢o)] it is necessary to choose a suffi-
ciently large size of square lattice to meet the periodi

Nzation in Fig. 2. In agreement with the mean-field result, the

the Aharonov-Bohm phasetaggered magnetization is found to be reduced at the even-

denominator value op/q=1/2. It is noted that the nonvan-
dshing value of staggered magnetization for small values of

boundary conditions of magnetic unit cells for various valuesU is due to the finite-size effect.

of magnetic fields corresponding pdqg. The exact diagonal-
ization calculations are not presently able to treat such

In order to study the behavior of staggered magnetization
for additional values of magnetic flux quanta, we are led to

large-size square lattice. For the present study we chooseC@nsider a X6 ladder system owing to a difficulty of meet-

tilted /8% /8 square lattice for a system of antiferromag-
netically correlated electrons. The only allowed value of
magnetic flux quanta to satisfy the periodic boundary condi

tions with the above square lattice q=1/2. For the
choice of Landau gaugd=B(0x,0), the electron gains no
phase when it hops in thedirection and it acquires a phase

TABLE II. Critical correlation strengtilJ,,,q as a function of
magnetic flux quanta per plaquettgg.

Al

1
6

oo

1
8
2

C

1.29 1.49

p/q

ing satisfactory periodic boundary conditions with computa-
tionally accessible small-size square lattices. The values of
magnetic flux quanta satisfying the periodic boundary condi-
tions arep/q=1/6, 1/3, and 1/2. In Fig. 3 the oscillatory
behavior of staggered magnetization is satisfactorily pre-
dicted for the above chosen values of correlation strength.
This trend is in agreement with the mean-field result shown
in Fig. 1, by showing a propensity of vanishing staggered
magnetization only for the even-denominator values) aif

p/q.

IV. CONCLUSION

We derived a generalized Harper’'s equation for the en-
ergy dispersion relation of interactirigntiferromagnetically
correlated electrons in an external magnetic field. Unlike the
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< 03 the numerical results of H<'slsegemvtalal.8 For the case of half

= filling, we derived a gap equation for the determination of
= staggered magnetization for antiferromagnetically correlated
= electron systems in the presence of a magnetic field. As a
§ 02 r ] comprehensive and improved version over our earlier pre-
§ liminary study? we were able to find from the gap equation
cb the cause of the oscillatory behavior in staggered magnetiza-
= [ ] tion under a varying external magnetic field for systems of
3 01 3 ] weakly correlated electrons, that is, smalvalues. We dem-

§0 . onstrated that below a critical electron correlation strength
o0 s (Coulomb repulsionthe staggered magnetization in the pres-
a ot L ence of a magnetic field vanishes at even-denomircatail-

=l
QI fe
=

0 5 ues(but not at oddy) of magnetic flux quanta per plaquette,
Magnetic Flux Quanta Per Plaquette (p/q) p/q. We find that for systems of weakly correlated electrons
both mean-field and exact diagonalization calculations yield
an identical behavior in the propensity of diminishing stag-
FIG. 3. Staggered magnetization as a function of magnetic ﬂ”’bered magnetization for the even-denominataut not for
quanta per plaquette on acb ladder system. the odd-denominatpralues ofg in the magnetic flux quanta
per plaquette, i.ep/q.
original Harper's equation which deals only with noninter-
acting electron systems, the generalized Harper's equation ACKNOWLEDGMENTS
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