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Magnetic and quantum disordered phases in triangular-lattice Heisenberg antiferromagnets
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We study, within the Schwinger-boson approach, the ground-state structure of two Heisenberg antiferro-
magnets on the triangular lattice: the-J, model, which includes a next-nearest-neighbor couplify@nd the
spatially-anisotropid;-J; model, in which the nearest-neighbor coupling takes a different \Hlaong one
of the bond directions. The motivations for the study of these systems range from general theoretical questions
concerning frustrated quantum spin models to the concrete description of the insulating phase of some layered
molecular crystals. For both models, the inclusion of one-loop corrections to saddle-point results leads to the
prediction of nonmagnetic phases for particular values of the paranigtels andJ;/J;. In the case of the
J;-J, model we shed light on the existence of such disordered quantum state, a question which is controversial
in the literature. For thd,-J; model our results for the ground-state energy, quantum renormalization of the
pitch in the spiral phase, and the location of the nonmagnetic phases, nicely agree with series expansions
predictions[S0163-182609)03437-2

[. INTRODUCTION with spatially anisotropic couplingst; along two bond di-
rections and; in the third one. It has been argdéthat this
The triangular-lattice  Heisenberg antiferromagnetmodel should describe the magnetic phases of the quasi-two-
(TLHA) has played a fundamental role in the understandinglimensional organic superconductoks- (BEDT-TTF),X.
of frustrated quantum spin systems. In particular, the exisFor these layered molecular crystals the relevant values of
tence of a nonmagnetic ground state in 8 1/2 system has J;/J; are around 0.3 1.0, with the ratio varying with the
been strongly debated in the literature, although there is nowinion X and with uniaxial stress along the layer diagonal.
a widespread conviction that it displays the classical 120° We have previously performed a study of both thel,
spiral order? In recent years, this particular problem was and J,-J; TLHA using the rotational invariant Schwinger-
linked to more general questions concerning spin-liquidhoson approacliSBA) in a mean-field approximatiohAt
states and their possible connections to Riglsuperconduc-  that time, our motivations for studying the latter model was
tivity. In this context, the most studied model has been thehe natural interpolation that it provides between the nearest-
square-lattice Heisenberg antiferromagnet with first- ancheighbor TLHA @;=J;) and the square-lattice antiferro-
second-neighbor interactions, the so-callédJ, model® magnet 0, =0). We obtained a good agreement between the
The introd_uction of frustrating second—neighbor interactionsground_state energy predicted in our approach and exact nu-
leads, at intermediate values of the couplings, to the eXiSygrical values on finite lattices. Furthermore, no indication
tence of a qllsordered s_p|n-I|qU|d state Wh_lch_ intervenes beat 4 disordered state was found for the values ofJ; and
“.’Vee” the Nel and ”?"'Ped" (ferromagneu; In-one d|re§:- Ji/J, of interest. In this work we extend the calculations in
tion, antiferromagnetic in the otﬁemggnenc orders._Th|s Ref. 9 to include one-loop corrections to the mean-field pic-
situation is by now fairly well established by a variety of y o “\ye have show® that these corrections bring the
numerical and analytical methodé.0n the other hand, an saddle-point results in line with exact diagonalization values

extension of the TLHA including second-neighbor interac-__ . . . g
. . i1 1 on finite clusters, which lends support to the SBA predictions
tions, theJ;-J, TLHA, has also been consideréd." This for the thermodynamic limit. In particular, for the square-

extension is a natural development after the thorough inveﬁéttice\] J, model we found that there is a quantum non
+- -

tlgatl?n fOf th_etmode(;_o? the sc?_uar_g Ia;t'ce'.blthFhe ex's.tenCPwagnetic phase for 0.53J,/J,=<0.64. This result was ob-
ornot oran intermediate spin-liquid pnase in this case IS Nof,; o 4 by considering the spin stiffness on large lattices and

Zosfﬁggr_'l‘{v'_lt_u.smqstsvg?;gﬁgavog?g dtct]e'cr;(l)n:?;:iteert]ﬁg ?_flj_:f%xtrapolating to the thermodynamic limit, a procedure that
' IS 1 WP xical, Si avoids the infinite-lattice infrared divergencies associated to

was considered for many years the best candidate to have se condensation. We show here that similar behaviors are

spin-liquid ground state just on the basis of the frustratin . i Y
lattice topology. One would expect that the introduction O?predlcted for both thdy-Jp andJ;-J; TLHA.

additional frustration through thé&, interaction should con-
tribute to melt the already weak order of the nearest-neighbor Il. THE CALCULATIONAL METHOD
model.

The study of theJ;-J, TLHA was mostly driven by
purely theoretical motivations. On the other hand, recent ex- 1
perimental results have produced a surge of int&estin H== z J(r—r’)ér.ér,, (1)
the ground-state properties of the nearest-neighbor TLHA 277

We consider a general Hamiltonian of the form
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wherer,r’ indicate sites on a triangular lattice. As usual, we

write spin operators in terms of Schwinger bo§8n§i 045 |

=3a] -0 a, wherea/=(a], ,a')) is a bosonic spinorg is '

the vector of Pauli matrices, and there is a boson-number 2 _g50 |
restrictionE,,aiT(,ai(,ZZS on each site. With this representa- g

tion the spin-spin interaction can be written &-S, S _055

=:B[Bij:—AJ/A;, where we defined th&U(2)-invariant >

order parametersh;;=;3,0a,,a;, and Bj=33,ala;, S -060

(;: —o,0==*1), and the notationO: indicates the normal

order of operatoiO. Thus, we can formulate the partition 065 4

function for the Hamiltoniar{1l) as a functional integral over

boson coherent states, which allows its evaluation by a 070 00 040 020 080 040 050
saddle-point expansion. Since the theory presents a local o

U(1) symmetry, we use collective coordinate methods —as _

developed in the context of relativistic lattice gauge FIG.1. Ground-state energer site Ess of the J;-J, TLHA as
theoried’— to handle the infinitely many zero modes asso-2 funct.lon of the frust.ratlon paramete!': J,/3,. Dashed and full
ciated to the symmetry breaking in the saddle point. Thesgnes give the mean-field and fluctuation-corrected results,_ respec-
modes without restoring forces, which correspond to Iocapvely. The lower curves correspond to the energy of a 12-site clus-

gauge transformations, are eliminated by the exact integra{(-alr (the values are shifted by 0.05 for clarity; the upper curves

! . . eqive the thermodynamic-limit results. Dots are exact numerical val-
tion of the collective coordinates. Such a program can bues from Ref. 6

carried out by enforcing in the functional integral measure

the so-called background gauge condition, or ‘“natural” ] ] o
gauget’ by means of the Fadeev-Popoff trick. In this way we SPacé. It is convenient to perform local rotation§;
restrict the integrations in the partition function to field fluc- —R;(6,)S; of angle ,=AQ-r, so that with the choice
tuations that are orthogonal to the collective coordinates. AAQ- T;=®; the boundary conditions become the standard
T=0, after carrying out the integrations on these genuingeriodic 0n95§r+Ti=§r- Then, we define theT(=0) stiff-
fluctuations, we o_btaln the one-loop correction to the ground—neSS tensop;, by

state energyer sitg

i PEcdQ+AQ)
1 (- Arelk,0) i vy el @
Ei=——| dw>, In( . ) (2 v AQ=0
2ml-= Tk || Vdet4 P (k, o) where Egg is the ground-state energger spin and 6,

. =AQ-¢ (i=1,2) are the twist angles along the basis vec-

Here the Fadeev-Popoff determinatits(k,)=|¢g(k,®)  torse . In the next two sections we will apply this formalism
-oR(k,w)|, wheregj(k,w) is theleft zero mode of the dy- to the models under consideration.
namical matrixA® in the k- subspace, andt(? is the
projection of this matrix in the subspace orth((nzg)onal to the . THE J;-J> TLHA
collective coordinates. The dynamical mattk'<’ is the L . ,
Hessian of the effective action as a function of the decou-_JTh§ ‘]#"]2 TLHdA, IS given byt_Eq. (1)tW|§hh.lJ)(r—(t)
pling (Hubbard-Stratonovighfields (see Ref. 4 for details 1(J2) for r andr’ nearesi(next-nearestneighbor sites,

In the ordered phases of the model the Bose condensa?é]d 0 oiherwise. For cIassmaj spm.vec_tors,.wheﬂ.lzl\_]l
breaks the globaU(2) symmetry and its density gives the <1/8 the lowest-energy configuration in this model is the

o ; ; te spiral with magnetic wave vect@
local magnetizatiod® The associated physical Goldstone commensura .
modes ak=0,+Q (Q is the magnetic wave vectolead to =(4=/3a,0); for 1/8<a<1 there is a degeneracy between

serious infrared divergencies of intermediate quantitiesthe two-sublattice and four-sublattice lerders. Quantum

which have to be cured by standard renormalization prescriJ—lucmat'onS. it thls”degeneracy and select, through an or-
er from disorder ” phenomenon, the two-sublattice collin-

tions. In order to avoid these problems we have compute - .
P P ear ground-state with magnetic wave vectQr=(m/a,

physical quantitiegwhich are free of divergencigsn large : ) , . :

by finite lattices, and finally extrapolated these values to the w/\/3a). This scenario was first proposed using spin-wave
thermodynamic limit. We considered clusters with the spatitheowg and . 'a_tef confirmed by a study of the
symmetries of the infinite triangular lattice, corresponding tot"€rmedynamic-limit collapse to the ground state of low ly-

translation  vectors T,=(n+m)e,+me,, T,=ne,+(n ing levels!! The correction(2) to the saddle-point valug
+m)e,. 18 %Heree, = (a,0) ande,=[ — 1a,(1/3/2)a] are the leads to the ground-state eneff§ys= Ey+ E; shown in Fig.

basic triangular lattice vectors. To fit to the cluster shapes thé: This f|gqrg contains the resylt . t_he infinite lattice anq
expectedspiral) magnetic orders, and also to allow the cal- also for a finite cluster of 12 sites, W.h'Ch allows a compari-
culation of the stiffness, we impose arbitrary boundary conSoN W'.th . exact results obtamgd by numenpal
iy 2 . 2 X _ diagonalizatior!. We see that the addition of the Gaussian
ditions Sf”i:Rn(q)i)sf (i=1.2), WhereR"(CDiA) is the correctionE,; improves the saddle-point valug,, particu-
matrix that rotates an angle; around some axis [notice  larly for the 120° spiral phase. Moreover, the departure of

that we are using boldfagarrows for vectors in realspin) the fluctuation-corrected results from the exact values in the
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range 0.5 «=<0.2 hints to the possible existence of a disor-

dered phase in this region. In the thermodynamic limit, at 0.20
saddle-point order the theory predicts a first order transition
between the two magnetic ground states at some intermedi- &
ate frustration «=0.16, with no intervening disordered
phasé After the inclusion of the Gaussian fluctuations there

0.10 [

is a window 0.1Z ¢#=<0.19 where the stiffness vanishege 0.00 : : :

below) and the magnetic order is melted by the combined b) g
action of quantum fluctuations and frustration. This result 0.30 r 27
should be compared with the linear spin wave results of Ref. o | =7 ]
7, which predict a quantum nonmagnetic phase in the range “

(0.1,0.14). Notice, however, that within spin-wave theory 010 oz

this window closes when corrections to the leading-order 0.00 —— ‘ ‘
calculations are includetiWe stress that the same happens 000 010 020 030 040 050
in this approach for the;-J, model on the square lattice, o

where, hpwever, other methods confirm the existence of a 5 ». (a) Parallel stiffnesg; and(b) perpendicular stiffnep.
nonclassical phase. . . for the J;-J, TLHA as a function of the frustration parameter

As stated above, the existence or not of magnetic Iongpashed and full lines give the saddle-point and fluctuation-
range order in the thermodynamic limit was investigated bycorrected results, respectively. The thin vertical lines separate the
considering the spin-stiffness teng@j.“” For spins lying on  yegions with magnetic order from the middle parameter range
the xy plane, it is necessary to consider both the parallelvhere there is a quantum disordered phase.
stiffnessp|=p; under a twist around and the perpendicular . .
stiffnessp, = p,,, for twists around an arbitrary versaron ~ Magnetic arrangement of the spins along the weakly coupled
this plane. However, on clusters with periodic boundary con®s direction. For;>1/2 the preferred spin configuration be-
ditions our approach is rotational invariant and we only havef0mes an incommensurate spiral, with the arig. be-
access tg= %(PWZPL)- On the other hand, we found that tween neighboring spins along tlee,e, directions given by

the largeS Schwinger-boson prediction for this quantity is QC'EI‘_Sﬁ: ?rchosienllﬁr)]' ntum nature of spins by means of
exactly 4/3 smaller than the corresponding classical resul € Inclusion ot the quantum nature of Spins by means o
As discussed in Ref. 15, to solve these problems we consi he SBA produces the results for the ground-state energy

ered clusters that fit the magnetic orders inxlyglane with Shown in Fig. 3'. In this figure we give the mean-field value_s
appropriate twisted boundary conditiof€? In this case, and the fluctuation-corrected results, and compare them with

since the rotational invariance is explicitly broken by thethe series expansion predictions from Ref. 14. We see that

boundary conditions, one is able to compute the paralleﬁhe fluctuations produce regions in which the saddle-point

stiffnessp| and, moreover, the largg-predictions have the SOIUU(;”S b(ra]comtehunstable.tp n thhe other hqu, f(ér thoset VSI'
correct behavioi(no ad hocfactors are required to correct ues ot» wheré the magnelc pnases considered are stable
: 15 _ — . there is a very good agreement between both methods. It is
this quantity.™ Finally, using the values fgs obtained from 515 of interest to compare the quantum renormalization of
clusters with periodic boundary conditions it is possible toihq spiral pitch; in Fig. 4 we plot the classical result for
determinep, =35 p—3p. The corresponding results are pre- given above, and the corresponding angle that minimize the
sented in Fig. 2, both at saddle-point and one-loop orders fauantum ground-state energy. Again, in the region where the
comparison. Notice that in the 120° spiral phagesoftens  magnetic phases are stable the results nicely agree with those
first thanp, , while the behavior is the opposite for the colin-
ear state. Since the indirect calculatiorpefrequires the use -0.45

of ad hocfactors to renormalize, the determination of the ® series
. . . . FL

upper limit for the disordered phase might be unreliable. ——- MF

However, based on our previous experience with the SBA, N

. . . . . L ]
we believe the existence of an intermediate nonmagnetic -0.55 - ;1““\\\
/ \\\
\\
\.
AY

phase can be trusted.
065 | N

For theJ;-J; TLHA, in Eq. (1) we takeJ(r—r")=J, for \
r—r'=g (i=1,2) andJ(r—r')=J; forr—r’'=e;=e, +e,. N
As mentioned above, this model is interesting in view of its
connections to the spin degrees of freedom in the insulating -0.75 ' :
phase of some layered organic superconducfoxery re- 0.50 1.00 1.50
cent works have investigated its ground-state phase diagram n
and other properties, using spin-wave thédrgnd series FIG. 3. Ground-state energyer site ;s of the J;-J; TLHA as
expansions? For classical vectors, wity=J3/J,<1/2 the & function of »=1J;/J;. Dashed and full lines give the mean-field
lowest-energy configuration is the two-sublatticeeNerder  (MF) and fluctuation-correcteFL) results, respectively. Dots are
discussed in the previous section, with firistrated ferro-  series expansion predictions from Ref. 14.

IV. THE J,-J; TLHA

energy per site
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FIQ. 4. Relative _angIeQ petween nearest-neighbor spins as a FIG. 5. Spin stiffnesg) for the J,-J; model as a function o).
function of 7. The thick full line corresponds to the lowest-energy pasheq and full lines correspond to saddle-point and fluctuation-

configuration of classical spins, the dashed line is the mean-fieldy e teq results, respectively. The thin vertical lines separate the

prediction in the quantum case, and the thin full line is the Serie?egions with antiferromagnetiéAF) and incommensuratéNC)
expansion result from Ref. 14. Open dots are the fluctuation

) ) - spiral orders from the parameter ranges corresponding to disordered
cqrr_ected _results in the incommensurate phasewn in more de- quantum phases.
tail in the insel.

that the consideration of clusters which require twisted
coming from series expansions. Furthermore, we havéoundary conditions to fit the magnetic orders avoids the use
checked at mean-field order that the angle that minimizes thef ad hocfactors to correct the Schwinger-boson predictions.
total energy corresponds also to the minimum of the quasiThis fact points to a subtle interplay between rotational in-
particle dispersion relation, a fact that was used in Ref. 14 tyariance and the relaxation of local constraints in this ap-
determineQ. proach. ) o _
To establish the regions without magnetic order we stud- N the case of thé;-J; TLHA our results indicate a rich
ied again the spin-stiffness behavior. As for classical vectord?hase diagram, with at least two magnefizel and incom-
the stiffness tenso) is diagonal in theperpendicular di- mensurate spw}alphas_es anpl two disordered quantum states
rections e; and e,—e;: the corresponding stiffness along in the parameter region of interest. One of the most nqtable
these directions are plotted in Fig. 5. We found a 0|ualita-f;"hspec;tS of ?ur calculat|otns 1S ttue quantlun;]renormha_\hﬁatlon of
: : . : e magnetic wave vector in the spiral phase, which agrees
fg’oerl)yrggﬁ?{se_n:nt;i?i‘g?;b?;t‘g‘r’]e?ﬁet,g?eﬁgietﬂg'rg;unsdsiggeremarkably with the series expansion prediction. We also
. ’ ! ’ : ) . found that the Nel order extends beyond its classical stabil-
fluctuations soften first the classically stronger stiffness i

o . i - oint up to a valuep=0.61, where it seems to melt con-
thee; direction. At mean-field order our calculations indicate v p P =7

. . . tinuously into a purely quantum phase. On the contrary, the
a continuous transition between the two magnetic phases @hira| order is favored in a reduced parameter range, with our

7=0.621, and the absence of a magnetic saddle-point solyagyits indicating first order transitions from this phase to the
tion beyondzn=2.20. The corrected results show the meltingnonmagnetic states. These first order transitions appear in

of the Neel phase aty=0.61, still above the classical point our calculations as local instabilites against the order-
Neass 1/2, and predict a disordered quantum phase in th@arameter fluctuations.

range 0.6& »=<0.96. Furthermore, the incommensurate Finally, there still remains the difficult task of character-
phase becomes stable only in a reduced parameter regidazing the disordered quantum phases of the models under
0.96< »=1.10. In this case the instability appears as a negasonsideration. Some attempts in this direction have already
tive eigenvalue of the projected dynamical mat#{? in ~ been done, for both thé;-J, (Ref. 5 andJ;-J; (Ref. 14

Eq. (2). These results are in fair agreement with the seriesTLHA, but there is not clear understanding of these phases
expansion predictions from Ref. 14, which indicate that theyet. They are usually considered to be of the resonant-
Néel order disappears aj~0.65-0.7, the disorder region valence-bond type, anq are in general describgd starting from
extends from this value up tg~0.9, and there is an incom- & regular strong-bongtlimen covering of the latticé” These

oped here, since the SBA does not rely on having magnetic
order in the system as in, for instance, spin-wave theory.
V. CONCLUSIONS

However, these studies would require the extension of the
In conclusion, we have considered, within the SBA, thePresent calculations to larger magnetic unit cells and the
Gaussian-fluctuation corrections to the spin stiffness of th€omputation of physical quantities able to characterize the
J;-J, andJ;-J} TLHA. For the J;-J, model we found that "N€W phases, a question that is far from trivial.
the order-parameter fluctuations weaken the stiffness, which ACKNOWLEDGMENT
is reduced by increasing the frustration until it vanishes leav-

ing a small window 0.1Z a=<0.19 where the system has no  We are grateful to Adolfo E. Trumper for useful discus-
long-range magnetic order. As in previous studies, we foundions and for calling our attention to Ref. 12.
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