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Magnetic and quantum disordered phases in triangular-lattice Heisenberg antiferromagnets
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We study, within the Schwinger-boson approach, the ground-state structure of two Heisenberg antiferro-
magnets on the triangular lattice: theJ1-J2 model, which includes a next-nearest-neighbor couplingJ2, and the
spatially-anisotropicJ1-J18 model, in which the nearest-neighbor coupling takes a different valueJ18 along one
of the bond directions. The motivations for the study of these systems range from general theoretical questions
concerning frustrated quantum spin models to the concrete description of the insulating phase of some layered
molecular crystals. For both models, the inclusion of one-loop corrections to saddle-point results leads to the
prediction of nonmagnetic phases for particular values of the parametersJ1 /J2 andJ18/J1 . In the case of the
J1-J2 model we shed light on the existence of such disordered quantum state, a question which is controversial
in the literature. For theJ1-J18 model our results for the ground-state energy, quantum renormalization of the
pitch in the spiral phase, and the location of the nonmagnetic phases, nicely agree with series expansions
predictions.@S0163-1829~99!03437-2#
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I. INTRODUCTION

The triangular-lattice Heisenberg antiferromagn
~TLHA ! has played a fundamental role in the understand
of frustrated quantum spin systems. In particular, the e
tence of a nonmagnetic ground state in theS51/2 system has
been strongly debated in the literature, although there is n
a widespread conviction that it displays the classical 12
spiral order.1,2 In recent years, this particular problem w
linked to more general questions concerning spin-liq
states and their possible connections to high-Tc superconduc-
tivity. In this context, the most studied model has been
square-lattice Heisenberg antiferromagnet with first- a
second-neighbor interactions, the so-calledJ1-J2 model.3

The introduction of frustrating second-neighbor interactio
leads, at intermediate values of the couplings, to the e
tence of a disordered spin-liquid state which intervenes
tween the Ne´el and ‘‘striped’’ ~ferromagnetic in one direc
tion, antiferromagnetic in the other! magnetic orders. This
situation is by now fairly well established by a variety
numerical and analytical methods.3,4 On the other hand, an
extension of the TLHA including second-neighbor intera
tions, theJ1-J2 TLHA, has also been considered.5–11 This
extension is a natural development after the thorough inv
tigation of the model on the square lattice, but the existe
or not of an intermediate spin-liquid phase in this case is
so clear, with most works favoring the nonexistence of su
a state.8–11 This is somehow paradoxical, since the TLH
was considered for many years the best candidate to ha
spin-liquid ground state just on the basis of the frustrat
lattice topology. One would expect that the introduction
additional frustration through theJ2 interaction should con-
tribute to melt the already weak order of the nearest-neigh
model.

The study of theJ1-J2 TLHA was mostly driven by
purely theoretical motivations. On the other hand, recent
perimental results have produced a surge of interest12–14 in
the ground-state properties of the nearest-neighbor TL
PRB 600163-1829/99/60~13!/9489~5!/$15.00
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with spatially anisotropic couplings:J1 along two bond di-
rections andJ18 in the third one. It has been argued12 that this
model should describe the magnetic phases of the quasi-
dimensional organic superconductorsk2(BEDT-TTF)2X.
For these layered molecular crystals the relevant value
J18/J1 are around 0.321.0, with the ratio varying with the
anionX and with uniaxial stress along the layer diagonal.

We have previously performed a study of both theJ1-J2

and J1-J18 TLHA using the rotational invariant Schwinger
boson approach~SBA! in a mean-field approximation.9 At
that time, our motivations for studying the latter model w
the natural interpolation that it provides between the near
neighbor TLHA (J185J1) and the square-lattice antiferro
magnet (J1850). We obtained a good agreement between
ground-state energy predicted in our approach and exact
merical values on finite lattices. Furthermore, no indicat
of a disordered state was found for the values ofJ2 /J1 and
J18/J1 of interest. In this work we extend the calculations
Ref. 9 to include one-loop corrections to the mean-field p
ture. We have shown4,15 that these corrections bring th
saddle-point results in line with exact diagonalization valu
on finite clusters, which lends support to the SBA predictio
for the thermodynamic limit. In particular, for the squar
lattice J1-J2 model we found that there is a quantum no
magnetic phase for 0.53&J2 /J1&0.64. This result was ob
tained by considering the spin stiffness on large lattices
extrapolating to the thermodynamic limit, a procedure th
avoids the infinite-lattice infrared divergencies associated
Bose condensation. We show here that similar behaviors
predicted for both theJ1-J2 andJ1-J18 TLHA.

II. THE CALCULATIONAL METHOD

We consider a general Hamiltonian of the form

H5
1

2 (
r ,r8

J~r2r 8!SW r•SW r8 , ~1!
9489 ©1999 The American Physical Society
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wherer ,r 8 indicate sites on a triangular lattice. As usual, w
write spin operators in terms of Schwinger bosons16 SW i

5 1
2 ai

†
•sW •ai , whereai

†5(ai↑
† ,ai↓

† ) is a bosonic spinor,sW is
the vector of Pauli matrices, and there is a boson-num
restriction(sais

† ais52S on each site. With this represent

tion the spin-spin interaction can be written asSW i •SW j

5:Bi j
† Bi j :2Ai j

† Ai j , where we defined theSU(2)-invariant
order parametersAi j 5

1
2 (ssaisaj s̄ and Bi j

† 5 1
2 (sais

† aj s

(s̄52s,s561), and the notation :O: indicates the norma
order of operatorO. Thus, we can formulate the partitio
function for the Hamiltonian~1! as a functional integral ove
boson coherent states, which allows its evaluation b
saddle-point expansion. Since the theory presents a l
U(1) symmetry, we use collective coordinate methods —
developed in the context of relativistic lattice gau
theories17— to handle the infinitely many zero modes ass
ciated to the symmetry breaking in the saddle point. Th
modes without restoring forces, which correspond to lo
gauge transformations, are eliminated by the exact inte
tion of the collective coordinates. Such a program can
carried out by enforcing in the functional integral measu
the so-called background gauge condition, or ‘‘natura
gauge,17 by means of the Fadeev-Popoff trick. In this way w
restrict the integrations in the partition function to field flu
tuations that are orthogonal to the collective coordinates
T50, after carrying out the integrations on these genu
fluctuations, we obtain the one-loop correction to the grou
state energyper site,

E152
1

2p
E

2`

`

dv(
k

lnS DFP~k,v!

uvuAdetA'
(2)~k,v!

D . ~2!

Here the Fadeev-Popoff determinantDFP(k,v)5uwW 0
L(k,v)

•wW 0
R(k,v)u, wherewW 0

L(k,v) is the left zero mode of the dy-
namical matrixA (2) in the k-v subspace, andA'

(2) is the
projection of this matrix in the subspace orthogonal to
collective coordinates. The dynamical matrixA (2) is the
Hessian of the effective action as a function of the dec
pling ~Hubbard-Stratonovich! fields ~see Ref. 4 for details!.

In the ordered phases of the model the Bose conden
breaks the globalSU(2) symmetry and its density gives th
local magnetization.16 The associated physical Goldston
modes atk50,6Q ~Q is the magnetic wave vector! lead to
serious infrared divergencies of intermediate quantit
which have to be cured by standard renormalization presc
tions. In order to avoid these problems we have compu
physical quantities~which are free of divergencies! on large
by finite lattices, and finally extrapolated these values to
thermodynamic limit. We considered clusters with the spa
symmetries of the infinite triangular lattice, corresponding
translation vectors T15(n1m)e11me2 , T25ne11(n
1m)e2.18,19Heree15(a,0) ande25@2 1

2 a,(A3/2)a# are the
basic triangular lattice vectors. To fit to the cluster shapes
expected~spiral! magnetic orders, and also to allow the ca
culation of the stiffness, we impose arbitrary boundary c
ditions SW r1Ti

5Rn̂(F i)SW r ( i 51,2), whereRn̂(F i) is the

matrix that rotates an angleF i around some axisn̂ @notice
that we are using boldface~arrows! for vectors in real~spin!
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space#. It is convenient to perform local rotationsSW r

→Rn̂(u r)SW r of angle u r5DQ•r , so that with the choice
DQ•T i5F i the boundary conditions become the stand
periodic onesSW r1Ti

5SW r . Then, we define the (T50) stiff-

ness tensorr n̂ by

r n̂
i j

5
]2EGS~Q1DQ…

]u i]u j
U

DQ50

, ~3!

where EGS is the ground-state energyper spin and u i
5DQ–ei ( i 51,2) are the twist angles along the basis ve
torsei . In the next two sections we will apply this formalism
to the models under consideration.

III. THE J1-J2 TLHA

The J1-J2 TLHA is given by Eq. ~1! with J(r2r 8)
5J1(J2) for r and r 8 nearest~next-nearest! neighbor sites,
and 0 otherwise. For classical spin vectors, whena[J2 /J1
,1/8 the lowest-energy configuration in this model is t
commensurate spiral with magnetic wave vectorQ
5(4p/3a,0); for 1/8,a,1 there is a degeneracy betwee
the two-sublattice and four-sublattice Ne´el orders. Quantum
fluctuations lift this degeneracy and select, through an ‘‘
der from disorder ’’ phenomenon, the two-sublattice colli
ear ground-state with magnetic wave vectorQ5(p/a,
2p/A3a). This scenario was first proposed using spin-wa
theory8 and later confirmed by a study of th
thermodynamic-limit collapse to the ground state of low
ing levels.11 The correction~2! to the saddle-point valueE0
leads to the ground-state energyEGS5E01E1 shown in Fig.
1. This figure contains the result for the infinite lattice a
also for a finite cluster of 12 sites, which allows a compa
son with exact results obtained by numeric
diagonalization.6 We see that the addition of the Gaussi
correctionE1 improves the saddle-point valueE0, particu-
larly for the 120° spiral phase. Moreover, the departure
the fluctuation-corrected results from the exact values in

FIG. 1. Ground-state energyper site EGS of theJ1-J2 TLHA as
a function of the frustration parametera5J2 /J1. Dashed and full
lines give the mean-field and fluctuation-corrected results, res
tively. The lower curves correspond to the energy of a 12-site c
ter ~the values are shifted by20.05 for clarity!; the upper curves
give the thermodynamic-limit results. Dots are exact numerical v
ues from Ref. 6.
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range 0.1&a&0.2 hints to the possible existence of a diso
dered phase in this region. In the thermodynamic limit,
saddle-point order the theory predicts a first order transi
between the two magnetic ground states at some interm
ate frustration a.0.16, with no intervening disordere
phase.9 After the inclusion of the Gaussian fluctuations the
is a window 0.12&a&0.19 where the stiffness vanishes~see
below! and the magnetic order is melted by the combin
action of quantum fluctuations and frustration. This res
should be compared with the linear spin wave results of R
7, which predict a quantum nonmagnetic phase in the ra
(0.1,0.14). Notice, however, that within spin-wave theo
this window closes when corrections to the leading-or
calculations are included.8 We stress that the same happe
in this approach for theJ1-J2 model on the square lattice
where, however, other methods confirm the existence o
nonclassical phase.

As stated above, the existence or not of magnetic lo
range order in the thermodynamic limit was investigated
considering the spin-stiffness tensor~3!.20 For spins lying on
the xy plane, it is necessary to consider both the para
stiffnessr i[r ẑ under a twist aroundẑ and the perpendicula
stiffnessr'[r̄xy for twists around an arbitrary versorn̂ on
this plane. However, on clusters with periodic boundary c
ditions our approach is rotational invariant and we only ha
access tor̄5 1

3 (r i12r'). On the other hand, we found tha
the large-S Schwinger-boson prediction for this quantity
exactly 4/3 smaller than the corresponding classical res
As discussed in Ref. 15, to solve these problems we con
ered clusters that fit the magnetic orders in thexy plane with
appropriate twisted boundary conditions.18,19 In this case,
since the rotational invariance is explicitly broken by t
boundary conditions, one is able to compute the para
stiffnessr i and, moreover, the large-S predictions have the
correct behavior~no ad hoc factors are required to correc
this quantity!.15 Finally, using the values forr̄ obtained from
clusters with periodic boundary conditions it is possible
determiner'[ 3

2 r̄2 1
2 r i . The corresponding results are pr

sented in Fig. 2, both at saddle-point and one-loop orders
comparison. Notice that in the 120° spiral phaser i softens
first thanr' , while the behavior is the opposite for the coli
ear state. Since the indirect calculation ofr' requires the use
of ad hocfactors to renormalizer̄, the determination of the
upper limit for the disordered phase might be unreliab
However, based on our previous experience with the S
we believe the existence of an intermediate nonmagn
phase can be trusted.

IV. THE J1-J18 TLHA

For theJ1-J18 TLHA, in Eq. ~1! we takeJ(r2r 8)5J1 for
r2r 85ei ( i 51,2) andJ(r2r 8)5J18 for r2r 85e3[e11e2.
As mentioned above, this model is interesting in view of
connections to the spin degrees of freedom in the insula
phase of some layered organic superconductors.12 Very re-
cent works have investigated its ground-state phase diag
and other properties, using spin-wave theory13 and series
expansions.14 For classical vectors, withh[J18/J1,1/2 the
lowest-energy configuration is the two-sublattice Ne´el order
discussed in the previous section, with the~frustrated! ferro-
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magnetic arrangement of the spins along the weakly coup
e3 direction. Forh.1/2 the preferred spin configuration be
comes an incommensurate spiral, with the angleQclass be-
tween neighboring spins along thee1 ,e2 directions given by
Qclass5arccos(21/2h).

The inclusion of the quantum nature of spins by means
the SBA produces the results for the ground-state ene
shown in Fig. 3. In this figure we give the mean-field valu
and the fluctuation-corrected results, and compare them
the series expansion predictions from Ref. 14. We see
the fluctuations produce regions in which the saddle-po
solutions become unstable. On the other hand, for those
ues of h where the magnetic phases considered are st
there is a very good agreement between both methods.
also of interest to compare the quantum renormalization
the spiral pitch; in Fig. 4 we plot the classical result forQ
given above, and the corresponding angle that minimize
quantum ground-state energy. Again, in the region where
magnetic phases are stable the results nicely agree with t

FIG. 2. ~a! Parallel stiffnessr i and~b! perpendicular stiffnesr'

for the J1-J2 TLHA as a function of the frustration parametera.
Dashed and full lines give the saddle-point and fluctuatio
corrected results, respectively. The thin vertical lines separate
regions with magnetic order from the middle parameter ran
where there is a quantum disordered phase.

FIG. 3. Ground-state energyper site EGS of theJ1-J18 TLHA as
a function ofh5J18/J1. Dashed and full lines give the mean-fie
~MF! and fluctuation-corrected~FL! results, respectively. Dots ar
series expansion predictions from Ref. 14.
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coming from series expansions. Furthermore, we h
checked at mean-field order that the angle that minimizes
total energy corresponds also to the minimum of the qu
particle dispersion relation, a fact that was used in Ref. 1
determineQ.

To establish the regions without magnetic order we st
ied again the spin-stiffness behavior. As for classical vect
the stiffness tensor~3! is diagonal in the~perpendicular! di-
rections e3 and e22e1; the corresponding stiffness alon
these directions are plotted in Fig. 5. We found a qual
tively different behavior between the saddle-point and o
loop results; most notably, in the Ne´el phase the Gaussia
fluctuations soften first the classically stronger stiffness
thee3 direction. At mean-field order our calculations indica
a continuous transition between the two magnetic phase
h.0.621, and the absence of a magnetic saddle-point s
tion beyondh.2.20. The corrected results show the melti
of the Néel phase ath.0.61, still above the classical poin
hclass51/2, and predict a disordered quantum phase in
range 0.61&h&0.96. Furthermore, the incommensura
phase becomes stable only in a reduced parameter re
0.96&h&1.10. In this case the instability appears as a ne
tive eigenvalue of the projected dynamical matrixA'

(2) in
Eq. ~2!. These results are in fair agreement with the ser
expansion predictions from Ref. 14, which indicate that
Néel order disappears ath;0.6520.7, the disorder region
extends from this value up toh;0.9, and there is an incom
mensurate phase forh*0.9 with no clear ending point.

V. CONCLUSIONS

In conclusion, we have considered, within the SBA, t
Gaussian-fluctuation corrections to the spin stiffness of
J1-J2 andJ1-J18 TLHA. For the J1-J2 model we found that
the order-parameter fluctuations weaken the stiffness, w
is reduced by increasing the frustration until it vanishes le
ing a small window 0.12&a&0.19 where the system has n
long-range magnetic order. As in previous studies, we fo

FIG. 4. Relative angleQ between nearest-neighbor spins as
function of h. The thick full line corresponds to the lowest-ener
configuration of classical spins, the dashed line is the mean-
prediction in the quantum case, and the thin full line is the se
expansion result from Ref. 14. Open dots are the fluctuat
corrected results in the incommensurate phase~shown in more de-
tail in the inset!.
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that the consideration of clusters which require twist
boundary conditions to fit the magnetic orders avoids the
of ad hocfactors to correct the Schwinger-boson predictio
This fact points to a subtle interplay between rotational
variance and the relaxation of local constraints in this
proach.

In the case of theJ1-J18 TLHA our results indicate a rich
phase diagram, with at least two magnetic~Néel and incom-
mensurate spiral! phases and two disordered quantum sta
in the parameter region of interest. One of the most nota
aspects of our calculations is the quantum renormalizatio
the magnetic wave vector in the spiral phase, which agr
remarkably with the series expansion prediction. We a
found that the Ne´el order extends beyond its classical stab
ity point up to a valueh.0.61, where it seems to melt con
tinuously into a purely quantum phase. On the contrary,
spiral order is favored in a reduced parameter range, with
results indicating first order transitions from this phase to
nonmagnetic states. These first order transitions appea
our calculations as local instabilities against the ord
parameter fluctuations.

Finally, there still remains the difficult task of characte
izing the disordered quantum phases of the models un
consideration. Some attempts in this direction have alre
been done, for both theJ1-J2 ~Ref. 5! and J1-J18 ~Ref. 14!
TLHA, but there is not clear understanding of these pha
yet. They are usually considered to be of the resona
valence-bond type, and are in general described starting f
a regular strong-bond~dimer! covering of the lattice.14 These
investigations can be performed within the formalism dev
oped here, since the SBA does not rely on having magn
order in the system as in, for instance, spin-wave theo
However, these studies would require the extension of
present calculations to larger magnetic unit cells and
computation of physical quantities able to characterize
new phases, a question that is far from trivial.
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FIG. 5. Spin stiffnessr i for theJ1-J18 model as a function ofh.
Dashed and full lines correspond to saddle-point and fluctuat
corrected results, respectively. The thin vertical lines separate
regions with antiferromagnetic~AF! and incommensurate~INC!
spiral orders from the parameter ranges corresponding to disord
quantum phases.
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