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Soliton lattices in the incommensurate spin-Peierls phase: Local distortions and magnetizations
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It is shown that nonadiabatic fluctuations of the soliton lattice in the spin-Peierls system glgaed@o an
important reduction of the NMR line widths. These fluctuations are the zero-point motion of the massless
phasonic excitations. Furthermore, we show that the discrepancy of x-ray and NMR soliton widths can be
understood as the difference between a distortive and a magnetic width. Their ratio is controlled by the
frustration of the spin system. By this work, theoretical and experimental results can be reconciled in two
important points[S0163-182609)04134-X]

. INTRODUCTION width of the local magnetizatiorfs>?*?*The incommensu-
rate modulation in the | phase is viewed as an equidistant

Already 20 years ago, the physics around the spin-Peierigrray (lattice) of solitons. _
transition fascinated many research@es a review, see Ref. The paper is set up as follows. In Sec. Il we discuss the

1). In particular the incommensurably modulated | phase atf@ct that the NMR line widths are much smaller than the
tracted much interege.g., Refs. 2—18 Yet detailed experi- theoretical ones and give an explanation for it in terms of the

mental investigations of the nature of this phase were no%ero-_pomt motion of the so_Ilton Iattl_ce. Direct npme_:ncal cal-
culations based on density matrix renormalization group

possmlg at that time. The first spin-Peierls tran§|t|on in an(DMRG) are shown in Sec. I1l. They permit us to address the
inorganic compound, CuGeQwas found only six years

g . . d 27~ second main point, namely, the discrepancy between the
ago:” This made a multitude of experimental investigations™ ~; .

. . soliton widths as measured by x ray and by NMR. In Sec. IV
possible(for a review, see Ref. 15

In particular, direct x-ray experiments in the | phase wered detailed comparison to recent experimental d&tawill be

performed by Kiryukhin and Keimer which permitted for the presented, The_ concluding section contains a Qiscussipn of
first time to detect the incommensurability of the distortionthe open questions, namely, the role of interchain couplings,
: 6 . . and a summary of our results.
in k space'® Even more, it was possible to look at the struc-
ture of the sqliton Iattice_ modulation by measuring the inten- Il. AVERAGING DUE TO PHASONS
sity of the third harmonié¢/8

On the other side, Fagot-Revurat al!® were able to In Ref. 19 the experimental NMR results for the distribu-
measure the distribution of local magnetizations in CuGeOtions of the local magnetizations were interpreted by fitting
in a beautiful NMR experiment. In a refined version it wasthem to a Hartree-Fock theory by Fujita and Machida for the
now possible to deduce from such results the shape and tispinless fermion model describing the corresponding Heisen-
amplitude of the magnetic part of a solitét! Three dis- berg chaint? Fujita and Machida did not take into account
crepancies to the conventional theories became appareithat the expectation values that occur in the Hartree-Fock
The first concerns the amplitudes of the local magnetizationself-consistency problem become nonuniform in a nonuni-
that are experimentally found to be much lowtactor 4 to  form phase® This erroneous approximation leads to the ef-
6) than predicted. Second, the x-ray soliton width (13.6fective reduction of the system to agiY model. The corre-
+0.3) is appreciably larger than the NMR soliton width sponding solution misses the important point that the local
ranging from 6—10. Third, the widths are all larger than themagnetizationsn;:=(S/) are so strongly alternating that they
ones theoretically predicted. are even antiparallel on every second site to the applied ex-

In the present work we will solve the first two discrepan-ternal magnetic field. The amplitude of the alternating com-
cies and argue with Zargs al? that the remaining problems ponent is in fact strongly enhanced compared to Xi¢

are connected to the neglect of interchain couplings. model as was predicted in a number of investi-
To fix the diction let us state that we use the term solitongations™*%°-27:23
for the combination of a zero in the modulated distortom Theoretically, there is no doubt that thspin-isotropic

the concomitant localized, bound spinbh?® The distortive  model has to be used to describe cuprate systems. Experi-
soliton width is the width of the kinklike zero of the modu- mentally, however, the amplitude of a6y model fits much
lated distortions. The magnetic soliton width is the spatialbetter than the enhanced amplitude of the isotropiZ
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model. The discrepancy can be explained by the fluctuations The second mechanism is pinning to defects that break
of soliton lattice that are induced by the presence of thdhe translational invariance. Such an effect is certainly
so-called phasorfs. present but it is negligibly small in the pure samples. To
The importance of zero-point motion of tieeystal lattice  obtain an estimate we argue that the defect concentration
in Peierls systems was already noted by McKenzie andorresponds to a typical distance between two defects of
Wilkins.?8 In the present work we will focus on the zero- =c/x, wherec is the lattice constant in chain direction. This
point motion of the phasons. The phasons are very similar ttneans that phasons with a wave vector below: 27/
phonons. If the deviation from commensurability of the wave=2=x/c do not exist. This can be viewed as the effect of a
vector characterizing the modulatioth=|q— 7| is small gapA,, induced by defect pinning. From E() we obtain
(low soliton concentrationand the soliton width¢ is large, the estimate
then a continuum approach can be u$ed|n this approach
the discreteness of the underlying lattice does not appear. 2C,2mX

Thus the continuum Hamiltonian is invariant under continu- Apin= 7 c @
ous translations along the chains. The incommensurate

modulation breaks this continuous symmetry giving rise to &0z

Goldstone bosons, the so-called phasdnEhey refer to os- :AmpZTT\/E TX (€
cillations of the solitons about the equilibrium positions in

their lattice just as phonons refer to oscillations of the atoms =500 K x, (4)

about the equilibrium positions in the crystal lattice. There is

one important difference between phonons and phasonwhere we usedci=uoés,, Ayp,=7fi\ug/p=24 K, &,
There exist in general three phonon brancttem transver- =0.69 nm?° and c=0.294 nm' An upper bound for the
sal, one longitudinalcorresponding to the three spatial di- defect concentratiorx in the pure samples investigated is
mensions into which an atom can be moved. But there i€0 3. So the defect pinning gap,, is lower than 0.5 K. We
only one phason branch since the modulation can only beonclude that defect pinning will become important only be-
moved along the chains. Note that this doesconcern the low T~0.5 K and does not need to be considered here.

fact that the phasons have a nondegenerate dispesgion The soliton comprises a zero of the modulated distortions

that depends on a three-dimensional veétokike phonons and_ a spinon bound to t.h's. zeﬁ)Jf there IS a zero-point
motion of the phasons this implies a certain motion of both

the dispersion is linear ik for small values ok, i.e., the lattice distortions and the magnetic structure. It is plau-
. 5 5 5 sible to assume that a certaanveragingoccurs that reduces
@ _(kax+cyky+2|02|kz)/p @) the amplitude of the alternating magnetizations. This idea

in the notation of Ref. 29. Hence, the phasons give rise to ¥/2S first introduced in Ref. 25 to explain the difference be-
T3 contribution in the specific he&twhich is indeed experi- Ween observed and computed magnetization pattéfote
mentally observed’ _that_Klryukhln et al® discussed a certain phasonic averag-
Before we proceed further we discuss briefly the effect ofind linked todefects Our approach does not rely on deferts.
pinning. First we would like to emphasize that there are two €€ We present the detailed calculation and further esti-
possible sources of pinning. The first one is pinning to theNates. o
discrete lattice structure. The second is pinning to defects. L€t us assume that the local magnetizationscan be
The first mechanism enters since the continuous translglescribed by two smoothly varying functioagr) andu(r)
tional invariance along the chains is given only in the con-that provide the alternating and the nonalternating compo-

tinuum treatment that represents a certain approximation. Seent. respectively,
the phasons are onlguastGoldstone bosons of guast
contﬁmoussymmetry Sk“)reaking. Yet treating the ingommen— m;=a(r;)cogari) +u(ri), ®)
surate modulations as continuously translational invariantwhere we set the lattice constant to unity andlenotes the
i.e., shifting them without energy cost, is an excellent apcomponent along the chains. The continuum approach
proximation if the solitonic widthé is not too small. In the resultd??2 are in fact of the form(5). Equation(5) is the
course of our previous calculatidfiave noted that the en- adiabatic result describing the completely static situation
ergy difference between a modulation with the zena site  without phasons. Let us introduce now the phase variable
and a modulation with the zerioetweentwo sites is of the @ (r,) where we use the hat to indicate that it is an operator
orderJ exp(-C¢), whereC is some constant of the order of as js the position of a harmonic oscillator. Thus E). be-
the inverse lattice constaat * in chain direction. Hence, for comes
&~10c this energy difference becomes negligibly small.

From the experimental point of view we come to the same mi=a(r;)cod =, + O (r))]+u(r). (6)
conclusion. If there were a pinning of the modulation to the L
lattice structure the modulation would be commensurate withn principle, the shift®(r;) has to be inserted in the func-
a periodLc whereL is an integer. This would imply that at tionsa(r;) andu(r;) as well. But these functions are slowly
most L discrete local magnetization values occur. The varying so that the influence of the shift on them is negli-
experimental resolution, however, is sufficiently high to ex-gible. Assuming furthermore that the NMR experiments
clude this scenario sinagot a number of isolated peaks but measure on a relatively long-time scale we conclude that the
a continuous distribution is observed in the NMR local magnetizatiorm{”® seen in experiment is simply the
responsé®2 expectation value
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m&>P=(m;). 7 mPP=y"a(rj)cod 7ry)+u(r) (129
In the harmonic approximation the phase fluctuations are in-  =(1+y")m/2+(1—y')(m,_;+m;,,)/4 (12b
teractionless bosons and the operafo(s,) are linear com-
binations of the bosonic creation and annihilation operators.  =(1—2y)mj+y(m_;+m;, ), (129

Then it is straightforward to compute the expectation valu

of the cosine Svith v=(1—+")/4. Equation(12¢ is at the basis of the

averaging of adjacent sites that we used previotrsiorster

et al. even average completely over two adjacent sites
(cog mr{+O(r))]y=cog mr){cog O(r)1) (8a) —(mi+m;, )22

o Now we turn to the calculation ofy’. Expressing the
=cogmri)exd —(®2(r;))/2]. (8  expectation value in the exponent in momentum space yields
Since the dominant fluctuations are those at long waveq 1 .
lengths the dependence((ﬁ)z(r,)) on the site index should E < N 2 (07K (k) (139
not be important. Hence we introduce k
1 L B h 1 2
7’==exp( N 2. (0%(r))| <1, 9 "~ 2MN % w(K) 1+ exp(fiw/kgT)—1)"
(13b

whereN denotes the number of sites in one chain. The re- —— A~
duction factory’ is similar to a Debye-Waller factor, which Where we used® (k)= V#i/[2Mw(K)](ac+a,) with the
accounts for the nonvanishing atomic motion due tomassM. The first term in the bracket in E¢13a stands for

phonons. It reduces the amplitude of the alternating compdthe zero-point motion since it survives even for-0. The
nent only. From Eqs(6)—(9) we find second term in the bracket is the bosonic occupation number

at finite temperature. Rearranging the exponentials yields

exp_ .,/ ) ) )
m; v'a(ry)cogmr;)+u(r;), (10  —exp(~DI2), (149

where the essential amendment compared to(&jqis the )
reduction of the alternating component by. It is plausible hv 1 r(ﬁw(k)) d3k
to (_axplaln thg dlscrepancy between exper.|mentall and adia- w(k) 2kaT | (2m)%"
batic theoretical amplitude by the zero-point motion of the

phasons that leads to a finite value(éf?(r;)) and hence to Wherev stands for the volume per spin site.

y'<1. We will present further support for this idea in Sec. For a comparison with experimental data we can focus on

V. the low-temperature behavior of Ed.4). A close inspection
Before turning to estimates foy’ we point out how one of Eq. (14) reveals thaD=D;+D,+O(T?®), whereD, is

can take the reductioy’ into account if the result of the constant and, is of orderT2. With the help of the input

adiabatic calculation isot given in the form(5) but as a set from Ref. 29,D, and D, are determined in the appendix.

of discrete value$m;}. This is the case for any direct adia- One obtains

batic numerical treatmer(see, e.g., Sec. lithat does not

(14b)

use the continuum approach. Then one has to deduce in a :(3/77)2/3 Atip (154
first step estimates for the slowly varying fgnctim(s_i) and 1 242 upgev??
u(r;) from them; . A natural way to do this is by taking local
averages (kgT)? T2
D= ——=——=| | . (15h)
a(ry)=my/2—(m;_1+m;1)/4, (119 6\/2503u0Atrip T*
u(ry) =mi/2+ (m;_,+m;, 1)/4. (11  WhereAy;, is the singlet-triplet gap ang, andu, a charac-

teristic length and characteristic energy per volume, respec-

Rewritten ink space the averagddl) correspond to the tively, defined and given in Ref. 29. The value bf, for
multiplication of m(k) with the weight factoraw,,,(k):=[1 CuGeQ is 3.71 and the characteristic temperatdre is
Fcosk)]/2. The weight factom,(k)[wy(k)] is zero(unity) 16.9 K.
for k=0 and unity (zerg for k=. The normalization The value ofD; leads to a reduction of the alternating
w,(K) +wy(k)=1 holds. So these weight functions split componenty’=0.16 and the parametey takes the value
m(k) properly in the uniform and the staggered part repre-0.21. This is in very good agreement with the values 0.19
sented by sharp peaks arouke 0 andk= 7, respectively. and 0.20, which we found previously by fitting theory to
Of course, other choices of weights are equally conceivableexperiment®
But the final result will not depend much on this choice as Further support is gained from the estimateTdr. In Fig.
long as the uniform and staggered component are well sepd-the temperature dependence of the widthsf the NMR
rated. lines are shown, which are dominated by the alternating

After multiplication of ¢’ to a(r;) as in Eq.(10) one  component. Hence they are expected to be proportional to
obtains y' =exd —(T/T*)%2] to which they are compared.
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FIG. 1. Sollq line: theory frgm Eq15b); symbols_. experimental 0 20 20 B0 30 100
data(the error is less than a fifth of the symbol size i
The small number of data points at Ioivdoes not allow FIG. 2. Upper panel, local distortions. Symbols stand for the

self-consistent DMRG result & =18 J anda=0.35; solid line

for a complete quantitative test of the theoretical predlctlon.stems from Eq.(17b) with 5—0.014ks0.959, andé,—10.5.

But the order of magnitude of the reduction of the line width o o
at low temperatures is the correct one. Lower panel, local magnetizations; the solid line stems from Eq.
If there were an adiabatic treatment of the incommensugﬂa) with W=0.21,R=5.0kn=0.992, andn=7.9.
rate phase at finite temperatures this would yield a linewidthreaches a stable distortion pattern. This pattern shows no
that saturategxponentiallyat low temperatures due to the discernible differences depending on which start configura-
gap in the spin systerf:?* Figure 1 indicates clearly that tion has been used.
there isno exponential saturation of the linewidth f&r—0, Here a comment on the adiabatic approximation is in or-
but a behavioW—W(T=0)x —T2. This is a direct evidence der, in particular after the results of the previous section. Due
for the presence of low-lying, gapless fluctuations. The quato the lack of efficient methods to treat the full problem
dratic behavior inT of the decrease corroborates the resultincluding the phonon dynamics we stick to the adiabatic nu-
(15b) and hence the existence of a three-dimensional nonddl€rical investigation in combination with the aforemen-
generate dispersion. tioned r_enormallzmg factors. Of course, a technque would
At temperatures closer to the transition the linewidth isP€ desirable that does not consist of two combined ap-

reduced much more strongly. This is due to the fluctuationg"©@chestadiabatic calculation and averaging due to zero-
in the spin system itself that araot within the scope of the point motior) but treats magnetic and elastic degr_ees of free-
present treatment dom on equal footing. At the present stage there is no means

| ite of th q fth t estimat thto assess quantitatively how much the numerical results are
n spite of the crudeness of the present estimates o qte by the adiabatic approximation. Mappings of the
agreement gives evidence that the basic idea, phasonic flu

ons leat tthe local > 'Cpin-phonon problem to effective spin modéf indicate
::L(')"ﬁ':gts eading to an average of the local magnetizations, i, 4 the yse of spin models is justified beyond the applicabil-

ity of adiabatic calculations. The observables, however, have
to be transformed as well.
I. NUMERICAL RESULTS Let us return to our present approach. For the calculation

. . of the lowest state witls=1 for a given modulation we use
Here we present some numerical results obtained the finite-size algorithnm®3® In each iteration we keem

DMRG. The calculation treats the phonons adiabatically, 1.8 64 states. Periodic boundary conditions are applied. Keep-

th? .lO(.:a.LI distortionss; are real numbers that are found_by ing m= 128 states leads to a change of the calculated energy

m;%rngé'r:}gnzghﬁ ground-state energy of the following of the order of 10°. For large chain lengths and large dimer-
' izations, the energy change due to a change of the distance

K by a few sites between two neighboring solitons is very

H= N1+ 6 + +—2—hel. small. This is due to the exponential localization of the soli-
2i [ )5S 1t @SS 2 S tons. So care has to be taken to avoid spurious shifts that

(16) hinder the following fit analysis.
In Fig. 2 the local distortions and the local magnetizations

The & are determined self-consistentf”* Numerically,  are shown as they are found after the procedure described

equidistant solitons represents the energetically most favor-

able configuratiofr®* we use as an initial distortiors; _w Ed IR PPN i
«ccos@r;) with q=m+27m, m being the average magneti- mi=>1RI" Kmém' ™ (=1)'en Kmém' ™|’
zation or §;ecsgrj cosr;)]. After about 10 iterations, one (a7
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ri ' ' '_.___.__-;
6;=0s @ukd , (17b 020 } o---0--600- - -9 |
where the parameteW, R, 6, k,,, andk, are taken to be the
fit parameters. The periodicity of the solitons is fixed by =
the average magnetization= 1/L, which results in the rela- 0.10 1
tion defining the soliton widthg,, and &4 as a function oL 0 g-Og- B WON 1O —WD——BO - —-OR B
and km/d,
0.00 ' t ' t
Am Koy K (Kiyg) Emia= 1 (18 LU Rh A A A SEED NN
. 450 | .
Another relation can be deduced from the average of the dn
function that is7/[ 2K (k)],%” which in the continuum limit 3.50 | .
is related to the average magnetization. One obtains s
250 | .
A 19 1,50
M= IRK(k)’ (19) : TR L LU S N
a relation which was well fulfilledwithin 1-49% by our fit 08000 0005 o000 0015 0020
parameters. m

The motivation for the Eq€17) is twofold. First, such fits
are used to describe the experimental d&ta! Second, the
continuum approaches provide results of the abov
kind 237®1222The continuum results predict that the mag-
netic and the distortive parameters are identical

FIG. 3. Amplitudes as defined in Ed173. Filled circles,
éDMRG calculation fora=0.35 andK=18 (corresponding tos
=0.014); open circles, byy’'=0.25 renormalized DMRG data.
Filled squares, experimental NMR data after Ref. 21.

K=Ky Em=&q. (200 With our calculation, the x-ray measuremeatisceptible to
] the distortion yields a value about 1.4 larger than the value
The DMRG results can be fitted very well by EQ.7). In optained by NMR(Ref. 21), (susceptible to the local magne-
this respect, the continuum approach works fine. But in othefizationg. We will elucidate this issue further at the end of

respects it fails. _ the following section.
Taking, for instance, the results for the amplitudes of the

nonalternating and the alternating compofiéitwe get for

W andR IV. COMPARISON TO EXPERIMENTAL DATA
A In this section we attempt a quantitative comparison to the
W= A / tfip’ (213 e>_<perimer_1tal results obt_ained recently _in h_igh quzfﬁty\/e
Vs will do this on the basis of the Hamiltonia(l6), i.e., a

magnetic one-dimensional Hamiltonian with adiabatic pho-
R—K [27Vs non treatment. We use=0.35 andK =18 J. The value of
a Atrlp .

(21D the frustration results from fits of the temperature depen-
_ dence of the susceptibilit}:*° The value ofK is then nec-
Inserting some reasonable numbers for CuGeSp  ggsary to account for the amount of dimerizatids 0.014,
=24K, k=1, ve=(m/2)J(1-1.120) (Ref. 38 with «  yphich yields the correct size of the singlet-triplet gap in
=0.35, J=160 K vyields W=0.32 andR=6.3. So the " c,Geq of Ay,/J=24 K/160 K=0.15. This value ofK
agreement with the numerical results presented in Fig. 2 i54\ides also a reasonable estimate for the critical magnetic
not good, but the right order of magnitude is reproducedsia|q at T=0 4! One must be aware, however, that the inclu-
Another ?ndication .that Eqs{21) have to be extended is the o, of higher dimensional magnetic couplings implies a
fact that in a one-dimensional approach éor a.=0.2412a  gnsjderably larger dimerization to keep the same “Gap.
gap opens ands is no longer well defined. __ hint that the actuaK value could be smaller is provided by
_ Slmllar to the amplitudes, the unlque_sohton Wld_th 'S the adiabatic analysis of the spin-Peierls temperaluge
given in the framework of the present continuum theories bYrpare a value ol ~11 had to be used to reprodu@@p
_ , ~14.4% We will discuss the effects of the neglect of the
E=vslAyip, (22 hi . ) . . . .
igher dimensional couplings in the concluding section.
which takes the value 6.4 for the above numbers. Again, this In Fig. 3 the amplitudes computed numericalffiiled
is too low compared to our numerical results. circles as defined in Eq(173 are contrasted to the experi-
The most important discrepancy is ttigferencebetween mental ones(filled squares; after Ref. 21 To obtain the
the magnetic soliton widtl§,,=7.9 and the distortive soliton computed values the self-consistently determined patterns
width ¢,=10.5. Note the ratioéy/¢,=1.33. This is very are least-squares fitted with the functions given in @d3.
interesting because such a ratio can explain the different exfhe least squares fits are very good4 10 3—10%), but
perimental findings for the soliton width. By x-ray not excellent. There are tiny deviations at the magnetic tails
measuremenlt, £, was determined to be 13+0.3, whereas of the solitons, see Fig. 2. The fits for the lattice distortions
by NMR &, was found to vary between about 10 and 6 withon the basis of Eq.17b) are better by two orders of magni-
the higher number close to the transition. In fair accordancéude. No deviations are discernible.
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m FIG. 5. Dependence of the ratig/&,, on the frustratiore. The
_ _ S ) valuesk are chosen such that tl§g ranges between 5 and 10, i.e.,
FIG. 4. Soliton widths £, distortive; §,, magnetic, see Eq17).  not too small but always way below the sample lengti. ef108.

Circles, DMRG results; open squares, experimental NMR data aftefhe  values &K) are (0,3),(0.4),(0.2,6.9,(0.241,8),

Ref. 21; filled square, value proposed in Ref. 17. Upper panel, filleq.35,19,(0.5,37). Solid line, regression with intercept 1.06 and
symbols are based on the distortions; open symbols are based on t§gpe 0.77.

local magnetizationsn; . Lower panel, ratios.

o ] ) parameter for the ratio of; and&,,. The dependence seems

For WandR, the striking difference between experiment {5 pe roughly linear. It should be noted that even at zero
and theory can be remedied by using a factory6f0.25.  frystration the two soliton widths are not identical. The ex-
The theoretical results renormalized in this way are shown agerimental finding of relatively large values &f/&,, is a
open circles in Fig. 3. The simultaneous reductiohénd  strong indication for an important frustration in agreement
of R leaves the homogeneous pa(t;) of the local magne- \yith the y(T) fits.3>“° A quantitative analysis appears pres-
tizationsm; unchanged but reduces the alternating pérf).  ently premature since the effects of higher dimensional cou-
This is exactly what we proposed in Sec. Il to be the effect Ofplings are not known yet.
phasonic zero-point motion. The agreement between renor- The deviation in the amplitudes as given in E(®1), as
malized theory and experiment is good and provides furthegq|| as the nonequality of the soliton widths suggests an
support for the phasonic averaging. _ extension of the existing continuum theories. The fact that

In Fig. 4 the results for the distortive and the magneticihe nonequality is strongly enhanced by the frustration points
soliton widths are plotted. It is obvious that they gt the  (learly into the direction that the backscattering cosine terms
same as was assumed hitherto. Their ratio is to very googh the sine-Gordon modeté? is the origin of this effect.
approximation constant for small average magnetization buinalyzing the self-consistent harmonic treatment of Nakano
grows for largerm. This aspect is in qualitative agreement gng Fukuyam®® revealsone aspect where a difference be-
with the experimental situation where there is also a strikingyyeen the magnetic and the distortive soliton can appear.
difference between the x-ray resultlistortions and the  Thjs is the so faneglectedspatial dependence of the renor-
NMR result (local magnetizations The fact that the agree- malizing factors exp(—((:)2>/2) and exp(—2<é)2>) respec-

ment is quantitatively not better can be attributed to several ; )
circumstances. The analysis of the x-ray dawas done on tively. (Note that this operatd® is notrelated to phasons of

the assumption ofonstantsoliton widths, which is not jus- Qistortive orig_in. But it stands for Gaussian magnetic_ fluctua-
tified. Furthermore, our theoretical analysis is still based on 40NS and their formal treatment bears many analogies to the
one-dimensional model only. It is also obvious that the quali'éatment of phasonsFurther work along these lines is in
tative evolution of the magnetic soliton width is not yet un- PrO9ress.
derstood. Experimentally, it decreases with increasing mag-
netization whereas it increases in our computation.
Based on the lower panel of Fig. 4 we conclude that the
ratio £4/¢,, becomes constant if the solitons are sufficiently In this work we calculated the effect of phasonic zero-
separated. Hence the ratio does not depenghonK as long  point motion on the local magnetizationg . This nonadia-
as 1 is large enough compared &. Recall that solitons batic effect can be viewed as virtual oscillations about the
are exponentially localized objects. The amplitudes and spastatic situation. It leads to a reduction of the alternating com-
tial shapes do not depend on the overall energy sktaither.  ponent of them;. The reduction factor’ as in Eq.(9) is
Thus the only parameter left is the frustratian So we are  similar to a Debye-Waller factor that is induced by phononic
led to an analysis of the ratig,/&,, as function ofa. The  motion.
results are depicted in Fig. 5. By the inclusion of the nonadiabatic phason motion we
It is evident that the frustration is the important control could explain the so far not understood difference between

V. DISCUSSION
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experimental NMR line shapts?'and previous theoretical comitant change of the observables, however, has not yet
predictions>?~2"23Hence the reduction of the NMR line- been investigated.

width compared to the adiabatically predicted one is strong Summarizing, two main points are shown in the present
evidence for the importance of nonadiabaticity in CuGeO work. The first is the importance of the phasonic fluctuations
Nonadiabaticity is also considered to be important forproviding a natural explanation for the large amplitude dif-
temperature-dependent couplings and induced frustré&tfon ferences between theory and experiment. The second is the
Refs. 33,43 and 34 difference between distortive ) and magnetic{,,,) soliton

The second main point of our work is the difference be-width leading to a ratioty/ ¢, between 1.05 and 1.45 de-
tween the distortive and the magnetic soliton width. To ourpending on frustration. Further work to include interchain
knowledge, such a difference has so far not been reported icoupling is called for.
the literature. But it helps to understand the differing x-ray
and NMR results. The ratigy/&,,, is controlled by the frus-
tration «. It is fairly close but not equal to unity at zero
frustration and grows roughly linear to almost 1.5 at the ACKNOWLEDGMENTS
Majumdar-Ghosh poin&r= 1/2. Thus, further evidence for a
sizable frustration in CuGeQs provided.

Aiming for quantitative agreement with experiment some . )
guestions remain. Choosing a small dimerizatithe corre- Muller-Hartmann. Part of this workG.S.U.,F.S. was sup-
sponding largé, respectively, which reproduces the correct ported by the SFB 341 of the DFG.
gap value and critical magnetic field in a one-dimensional
model, leads to amplitude#/ and R that have to be renor-
malized by abouy’ =0.25 and not byy’ =0.16 as estimated
in Sec. Il. Thus these amplitudes seem to be too small. The

magnetic soliton widttt,,, is too low by about 20%. Based on Eq(14b) and Ref. 29 we present here estimates
Choosing, however, a larger dimerizatidthe corre-  for the two leading contribution®, and D,. Focusing on
sponding smalk, respectively, which reproduces the gap the ow-lying excitations we adogil) even though we do
value resulting from averaging the dispersio(k) perpen-  not know whether at larger values bithe dispersion is still
dicular to the chains alonlg, ,"“ leads to larger amplitudé¥  §escribed by(1).
andR. These larger amplitudes can be nicely reconciled with  The mass density is proportional toM/v. If each spin
the experimental findings by a value very closeyte=0.16.  sjte moved in the same way on shifting the modulatidn
This is essentially what was done in the previous wrk. =vp would be reasonable. Since, however, the modulation
The argument in favor of the larger gap is that the neglect ofjpesnot have the same amplitude fail sites an effective
the interchain coupling would lead to this larger &But  requction has to be taken into account. For sinusoidal modu-
the corresponding soliton widths would be even lol&®e  |ation this factor is 1/2, i.e.M =vp/2, due to the average
Eq. (22)], and hence, in worse agreement with experiment, a1y of sif. For all other modulations the reduction factor
We. conclude from this that. it is not just a question of fine i pe petween 1/2 and 1: we choose 1/2 since the higher
tuning the constants to achieve agreement. The parelf  harmonic content of the modulation is very siall.

model isnot sufficient. :
With k,—k/plc,, k,—k,Vp/c,, and k,—k,\/p/|2¢C
The magnetic interchain couplings have to be taken into XTTEXNVPI R By By VPIRy 2~ ka\p/|2¢,]

— 2 e 1/3 H
account as has become already apparent from the two wa)?ss well asc;=roToo and £o=(£oxéoy£o,) ™ We obtain
to choose the relevant gap. The magnetic interchain coupling
has the two following effects. First, it reduces the observed

. . . . . . A 3/2 d3k 1
gap value for a given dimerizatidi.Thus a larger dimeriza D= 5 P f ot ikl (2ksT)] (Ala)

We gratefully acknowledge useful discussions with C.
Berthier and D. Frster and the support of this work by E.

APPENDIX

tion (smallerK) should be used. This is consistent with a ‘/ZCnyCz (2m)3 Kk
number of recent investigatiod$#° The larger gap will lead
to larger amplitudes. Second, Zaegal?? argued that the
interchain couplingenhancesthe soliton widths, which is 312 3
: ) . h p d°k 1 hk
exactly what is needed to reconcile theory and experiment. = f veoth o—=|.  (Alb)
This enhancement is qualitatively easy to understand since pV2\ Er,T, (2m)° k 2kgT

an interchain coupling will favor the appearance of staggered
magnetization. Regions of staggered magnetization are tho$®r the value oig=r T, and other values see Ref. 29. We
where the solitons are, see Fig. 2. So these regions are egplit D in the zero-temperature contributidd,; and the
tended, which implies an enhancement of the soliton widthtemperature-dependent redd, by using coth{/2)=1
Hence, we come to the conclusion that a larger dimerization+ 2/ exp)—1].
(smallerK) plus an appropriate treatment of the interchain We estimateD,, the zero-temperature reduction due to
couplings should yield results in quantitative agreement wittthe zero-point motion of the phasons. It is difficult to com-
experiment. pute D, reliably since, in principle, information odll the

As an outlook we state that it would be desirable to havgohasons is required, not only the lowest-lying ones. But an
an approach that takes the effects of the phonon dynamiasstimate that determines the order of magnitude is possible
into account right from the beginning. Unitary transforma-by using an upper cutofk,, as in the Debye model of
tions are in principle suitable methods to do®36*The con-  phonons'. We start with
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prodk 1 X10 %M, b=8.40x10 m, and c=2.94x10 m3%
1=—f RwrN (A2a)  The division by 2 is necessary since there are two Cu ions in
PJ (27)° w(Kk) each unit cell.
Next we computéd, where we are only interested in the

. ﬁ\/; kmaxkdk A2b leading temperature dependence. Thus the result depends
- 20 ¢ 3 (A2b) only on the lowest-lying excitations and the assumption of a

2\27%(€9\ug)®J o0 my on / cltati .

dispersion as EqJ) is well justified. We find
hilp 2

= = K2 o (A2¢) 5 2 e fk -1

4273 (Eg\ug)® ™ Dy=—— TL J exp(—) —1} kdk

V2m%p &oUo 0 keT

The value fork,,4 after rescaling is obtained from the num- (Ada)
ber of possible phasonic excitations

3/2
d3k _ (keD)* L) N K)— 11" kdk
1va' (277)3 (A3a) \/Eﬂ_th E(%uo fO [eX[X ) 1]
(Adb)
3/2
P \% Kmax

_| k2dk Vp(keT)? _ (kgT)?

2

&u ) 22 'Jo = = (Adc)

o%o ™ (A3b) Gﬁﬁgguglz 6\/2§0U0Amp

6\/5 2\ 1/3 2

Equations(A2c) and (A3c) and the singlet-triplet gap i, o
=hug/p (Ref. 29 together lead finally to Eq(15a. It ~ With the numbers\;,=24 K, uy,=650 mJ/cm, and &,
should be noted that the volume per spin site can be foune-0.31 nm the characteristic temperaturé can be esti-
from the lattice constants byw=abcd?2 with a=4.79 mated to be 16.9 K.
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