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Soliton lattices in the incommensurate spin-Peierls phase: Local distortions and magnetizations
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It is shown that nonadiabatic fluctuations of the soliton lattice in the spin-Peierls system CuGeO3 lead to an
important reduction of the NMR line widths. These fluctuations are the zero-point motion of the massless
phasonic excitations. Furthermore, we show that the discrepancy of x-ray and NMR soliton widths can be
understood as the difference between a distortive and a magnetic width. Their ratio is controlled by the
frustration of the spin system. By this work, theoretical and experimental results can be reconciled in two
important points.@S0163-1829~99!04134-X#
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I. INTRODUCTION

Already 20 years ago, the physics around the spin-Pe
transition fascinated many researchers~for a review, see Ref
1!. In particular the incommensurably modulated I phase
tracted much interest~e.g., Refs. 2–13!. Yet detailed experi-
mental investigations of the nature of this phase were
possible at that time. The first spin-Peierls transition in
inorganic compound, CuGeO3, was found only six years
ago.14 This made a multitude of experimental investigatio
possible~for a review, see Ref. 15!.

In particular, direct x-ray experiments in the I phase we
performed by Kiryukhin and Keimer which permitted for th
first time to detect the incommensurability of the distorti
in k space.16 Even more, it was possible to look at the stru
ture of the soliton lattice modulation by measuring the inte
sity of the third harmonic.17,18

On the other side, Fagot-Revuratet al.19 were able to
measure the distribution of local magnetizations in CuGe3
in a beautiful NMR experiment. In a refined version it w
now possible to deduce from such results the shape and
amplitude of the magnetic part of a soliton.20,21 Three dis-
crepancies to the conventional theories became appa
The first concerns the amplitudes of the local magnetizati
that are experimentally found to be much lower~factor 4 to
6! than predicted. Second, the x-ray soliton width (13
60.3) is appreciably larger than the NMR soliton wid
ranging from 6–10. Third, the widths are all larger than t
ones theoretically predicted.

In the present work we will solve the first two discrepa
cies and argue with Zanget al.22 that the remaining problem
are connected to the neglect of interchain couplings.

To fix the diction let us state that we use the term soli
for the combination of a zero in the modulated distortionand
the concomitant localized, bound spinon.4,5,23 The distortive
soliton width is the width of the kinklike zero of the modu
lated distortions. The magnetic soliton width is the spa
PRB 600163-1829/99/60~13!/9468~9!/$15.00
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width of the local magnetizations.4,5,24,23The incommensu-
rate modulation in the I phase is viewed as an equidis
array ~lattice! of solitons.

The paper is set up as follows. In Sec. II we discuss
fact that the NMR line widths are much smaller than t
theoretical ones and give an explanation for it in terms of
zero-point motion of the soliton lattice. Direct numerical ca
culations based on density matrix renormalization gro
~DMRG! are shown in Sec. III. They permit us to address
second main point, namely, the discrepancy between
soliton widths as measured by x ray and by NMR. In Sec.
a detailed comparison to recent experimental data20,21will be
presented. The concluding section contains a discussio
the open questions, namely, the role of interchain couplin
and a summary of our results.

II. AVERAGING DUE TO PHASONS

In Ref. 19 the experimental NMR results for the distrib
tions of the local magnetizations were interpreted by fitti
them to a Hartree-Fock theory by Fujita and Machida for
spinless fermion model describing the corresponding Heis
berg chain.12 Fujita and Machida did not take into accou
that the expectation values that occur in the Hartree-F
self-consistency problem become nonuniform in a nonu
form phase.25 This erroneous approximation leads to the
fective reduction of the system to anXY model. The corre-
sponding solution misses the important point that the lo
magnetizationsmiª^Si

z& are so strongly alternating that the
are even antiparallel on every second site to the applied
ternal magnetic field. The amplitude of the alternating co
ponent is in fact strongly enhanced compared to theXY
model as was predicted in a number of inves
gations.13,25–27,23

Theoretically, there is no doubt that thespin-isotropic
model has to be used to describe cuprate systems. Ex
mentally, however, the amplitude of anXY model fits much
better than the enhanced amplitude of the isotropicXYZ
9468 ©1999 The American Physical Society
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model. The discrepancy can be explained by the fluctuat
of soliton lattice that are induced by the presence of
so-called phasons.25

The importance of zero-point motion of thecrystal lattice
in Peierls systems was already noted by McKenzie
Wilkins.28 In the present work we will focus on the zero
point motion of the phasons. The phasons are very simila
phonons. If the deviation from commensurability of the wa
vector characterizing the modulationdªuq2pu is small
~low soliton concentration! and the soliton widthj is large,
then a continuum approach can be used.2–13 In this approach
the discreteness of the underlying lattice does not app
Thus the continuum Hamiltonian is invariant under contin
ous translations along the chains. The incommensu
modulation breaks this continuous symmetry giving rise
Goldstone bosons, the so-called phasons.29 They refer to os-
cillations of the solitons about the equilibrium positions
their lattice just as phonons refer to oscillations of the ato
about the equilibrium positions in the crystal lattice. There
one important difference between phonons and phas
There exist in general three phonon branches~two transver-
sal, one longitudinal! corresponding to the three spatial d
mensions into which an atom can be moved. But there
only one phason branch since the modulation can only
moved along the chains. Note that this doesnot concern the
fact that the phasons have a nondegenerate dispersionv(kW )
that depends on a three-dimensional vectorkW . Like phonons
the dispersion is linear inkW for small values ofkW , i.e.,

v25~cxkx
21cyky

212uczukz
2!/r ~1!

in the notation of Ref. 29. Hence, the phasons give rise
T3 contribution in the specific heat,29 which is indeed experi-
mentally observed.30

Before we proceed further we discuss briefly the effec
pinning. First we would like to emphasize that there are t
possible sources of pinning. The first one is pinning to
discrete lattice structure. The second is pinning to defec

The first mechanism enters since the continuous tran
tional invariance along the chains is given only in the co
tinuum treatment that represents a certain approximation
the phasons are onlyquasi-Goldstone bosons of aquasi-
continuoussymmetry breaking. Yet treating the incomme
surate modulations as continuously translational invaria
i.e., shifting them without energy cost, is an excellent a
proximation if the solitonic widthj is not too small. In the
course of our previous calculations24 we noted that the en
ergy difference between a modulation with the zeroon a site
and a modulation with the zerobetweentwo sites is of the
orderJ exp(2Cj), whereC is some constant of the order o
the inverse lattice constantc21 in chain direction. Hence, fo
j'10c this energy difference becomes negligibly small.

From the experimental point of view we come to the sa
conclusion. If there were a pinning of the modulation to t
lattice structure the modulation would be commensurate w
a periodLc whereL is an integer. This would imply that a
most L discrete local magnetization valuesmi occur. The
experimental resolution, however, is sufficiently high to e
clude this scenario sincenot a number of isolated peaks bu
a continuous distribution is observed in the NM
response.20,21
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The second mechanism is pinning to defects that br
the translational invariance. Such an effect is certai
present but it is negligibly small in the pure samples.
obtain an estimate we argue that the defect concentratiox
corresponds to a typical distance between two defectsl
5c/x, wherec is the lattice constant in chain direction. Th
means that phasons with a wave vector belowkz'2p/ l
52px/c do not exist. This can be viewed as the effect o
gapDpin induced by defect pinning. From Eq.~1! we obtain
the estimate

Dpin5A2cz

r

2px

c
~2!

5D trip2pA2
j0z

c
x ~3!

5500 K x, ~4!

where we usedcz
25u0j0z

2 , D trip5\Au0 /r524 K, j0z

50.69 nm,29 and c50.294 nm.31 An upper bound for the
defect concentrationx in the pure samples investigated
1023. So the defect pinning gapDpin is lower than 0.5 K. We
conclude that defect pinning will become important only b
low T'0.5 K and does not need to be considered here.

The soliton comprises a zero of the modulated distortio
and a spinon bound to this zero.23 If there is a zero-point
motion of the phasons this implies a certain motion of bo
the lattice distortions and the magnetic structure. It is pl
sible to assume that a certainaveragingoccurs that reduces
the amplitude of the alternating magnetizations. This id
was first introduced in Ref. 25 to explain the difference b
tween observed and computed magnetization pattern.~Note
that Kiryukhin et al.18 discussed a certain phasonic avera
ing linked todefects. Our approach does not rely on defect!
Here we present the detailed calculation and further e
mates.

Let us assume that the local magnetizationsmi can be
described by two smoothly varying functionsa(r ) andu(r )
that provide the alternating and the nonalternating com
nent, respectively,

mi5a~r i !cos~pr i !1u~r i !, ~5!

where we set the lattice constant to unity andr i denotes the
component along the chains. The continuum appro
results12,22 are in fact of the form~5!. Equation~5! is the
adiabatic result describing the completely static situat
without phasons. Let us introduce now the phase varia
Q̂(rW i) where we use the hat to indicate that it is an opera
as is the position of a harmonic oscillator. Thus Eq.~5! be-
comes

m̂i5a~r i !cos@pr i1Q̂~rW i !#1u~r i !. ~6!

In principle, the shiftQ̂(rW i) has to be inserted in the func
tionsa(r i) andu(r i) as well. But these functions are slowl
varying so that the influence of the shift on them is neg
gible. Assuming furthermore that the NMR experimen
measure on a relatively long-time scale we conclude that
local magnetizationmi

exp seen in experiment is simply th
expectation value
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mi
exp5^m̂i&. ~7!

In the harmonic approximation the phase fluctuations are
teractionless bosons and the operatorsQ̂(rW i) are linear com-
binations of the bosonic creation and annihilation operat
Then it is straightforward to compute the expectation va
of the cosine

^cos@pr i1Q̂~rW i !#&5cos~pr i !^cos@Q̂~rW i !#& ~8a!

5cos~pr i !exp@2^Q̂2~rW i !&/2#. ~8b!

Since the dominant fluctuations are those at long wa
lengths the dependence of^Q̂2(rW i)& on the site indexi should
not be important. Hence we introduce

g8ªexpS 2
1

2N (
i

^Q̂2~rW i !& D ,1, ~9!

whereN denotes the number of sites in one chain. The
duction factorg8 is similar to a Debye-Waller factor, which
accounts for the nonvanishing atomic motion due
phonons. It reduces the amplitude of the alternating com
nent only. From Eqs.~6!–~9! we find

mi
exp5g8a~r i !cos~pr i !1u~r i !, ~10!

where the essential amendment compared to Eq.~5! is the
reduction of the alternating component byg8. It is plausible
to explain the discrepancy between experimental and a
batic theoretical amplitude by the zero-point motion of t
phasons that leads to a finite value of^Q̂2(rW i)& and hence to
g8,1. We will present further support for this idea in Se
IV.

Before turning to estimates forg8 we point out how one
can take the reductiong8 into account if the result of the
adiabatic calculation isnot given in the form~5! but as a set
of discrete values$mi%. This is the case for any direct adia
batic numerical treatment~see, e.g., Sec. III! that does not
use the continuum approach. Then one has to deduce
first step estimates for the slowly varying functionsa(r i) and
u(r i) from themi . A natural way to do this is by taking loca
averages

a~r i !5mi /22~mi 211mi 11!/4, ~11a!

u~r i !5mi /21~mi 211mi 11!/4. ~11b!

Rewritten in k space the averages~11! correspond to the
multiplication of m(k) with the weight factorswa/u(k)ª@1
7cos(k)#/2. The weight factorwa(k)@wu(k)# is zero~unity!
for k50 and unity ~zero! for k5p. The normalization
wa(k)1wu(k)51 holds. So these weight functions sp
m(k) properly in the uniform and the staggered part rep
sented by sharp peaks aroundk50 andk5p, respectively.
Of course, other choices of weights are equally conceiva
But the final result will not depend much on this choice
long as the uniform and staggered component are well s
rated.

After multiplication of g8 to a(r i) as in Eq. ~10! one
obtains
-

s.
e

-

-

o-

ia-

.
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mi
exp5g8a~r i !cos~pr i !1u~r i ! ~12a!

5~11g8!mi /21~12g8!~mi 211mi 11!/4 ~12b!

5~122g!mi1g~mi 211mi 11!, ~12c!

with g5(12g8)/4. Equation~12c! is at the basis of the
averaging of adjacent sites that we used previously.25 Förster
et al. even average completely over two adjacent sitesmi
→(mi1mi 11)/2.27

Now we turn to the calculation ofg8. Expressing the
expectation value in the exponent in momentum space yi

1

N (
j

^Q̂2~rW j !&5
1

N (
kW

^Q̂†~kW !Q̂~kW !& ~13a!

5
\

2MN (
kW

1

v~kW !
S 11

2

exp~\v/kBT!21D ,

~13b!

where we usedQ̂(kW )5A\/@2Mv(kW )#(âkW1âkW
†) with the

massM. The first term in the bracket in Eq.~13a! stands for
the zero-point motion since it survives even forT→0. The
second term in the bracket is the bosonic occupation num
at finite temperature. Rearranging the exponentials yield

g85exp~2D/2!, ~14a!

D5
\v
2ME 1

v~kW !
cothS \v~kW !

2kBT
D d3k

~2p!3
, ~14b!

wherev stands for the volume per spin site.
For a comparison with experimental data we can focus

the low-temperature behavior of Eq.~14!. A close inspection
of Eq. ~14! reveals thatD5D11D21O(T3), whereD1 is
constant andD2 is of orderT2. With the help of the input
from Ref. 29,D1 and D2 are determined in the appendix
One obtains

D15
~3/p!2/3

2A2

D trip

u0j̄0v2/3
, ~15a!

D25
~kBT!2

6A2j̄0
3u0D trip

5S T

T*
D 2

, ~15b!

whereD trip is the singlet-triplet gap andj̄0 andu0 a charac-
teristic length and characteristic energy per volume, resp
tively, defined and given in Ref. 29. The value ofD1 for
CuGeO3 is 3.71 and the characteristic temperatureT* is
16.9 K.

The value ofD1 leads to a reduction of the alternatin
componentg850.16 and the parameterg takes the value
0.21. This is in very good agreement with the values 0
and 0.20, which we found previously by fitting theory
experiment.25

Further support is gained from the estimate forT* . In Fig.
1 the temperature dependence of the widthsW of the NMR
lines are shown, which are dominated by the alternat
component. Hence they are expected to be proportiona
g85exp@2(T/T* )2/2# to which they are compared.
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The small number of data points at lowT does not allow
for a complete quantitative test of the theoretical predicti
But the order of magnitude of the reduction of the line wid
at low temperatures is the correct one.

If there were an adiabatic treatment of the incommen
rate phase at finite temperatures this would yield a linewi
that saturatesexponentiallyat low temperatures due to th
gap in the spin system.32,24 Figure 1 indicates clearly tha
there isno exponential saturation of the linewidth forT→0,
but a behaviorW2W(T50)}2T2. This is a direct evidence
for the presence of low-lying, gapless fluctuations. The q
dratic behavior inT of the decrease corroborates the res
~15b! and hence the existence of a three-dimensional non
generate dispersion.

At temperatures closer to the transition the linewidth
reduced much more strongly. This is due to the fluctuati
in the spin system itself that arenot within the scope of the
present treatment.

In spite of the crudeness of the present estimates
agreement gives evidence that the basic idea, phasonic
tuations leading to an average of the local magnetization
correct.

III. NUMERICAL RESULTS

Here we present some numerical results obtained
DMRG. The calculation treats the phonons adiabatically, i
the local distortionsd i are real numbers that are found b
minimizing the ground-state energy of the followin
Hamiltonian:26,24

H5(
i

FJ@~11d i !SiSi 111aSiSi 12#1
K

2
d i

22hSi
zG .

~16!

The d i are determined self-consistently.26,24 Numerically,
this is achieved by iteration. Since it is found that an array
equidistant solitons represents the energetically most fa
able configuration25,24 we use as an initial distortiond i
}cos(qri) with q5p12pm, m being the average magnet
zation or d i}sgn@cos(qri)#. After about 10 iterations, one

FIG. 1. Solid line: theory from Eq.~15b!; symbols: experimenta
data~the error is less than a fifth of the symbol size!.
.
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reaches a stable distortion pattern. This pattern shows
discernible differences depending on which start configu
tion has been used.

Here a comment on the adiabatic approximation is in
der, in particular after the results of the previous section. D
to the lack of efficient methods to treat the full proble
including the phonon dynamics we stick to the adiabatic
merical investigation in combination with the aforeme
tioned renormalizing factors. Of course, a technique wo
be desirable that does not consist of two combined
proaches~adiabatic calculation and averaging due to ze
point motion! but treats magnetic and elastic degrees of fr
dom on equal footing. At the present stage there is no me
to assess quantitatively how much the numerical results
affected by the adiabatic approximation. Mappings of t
spin-phonon problem to effective spin models33,34 indicate
that the use of spin models is justified beyond the applica
ity of adiabatic calculations. The observables, however, h
to be transformed as well.

Let us return to our present approach. For the calcula
of the lowest state withS51 for a given modulation we use
the finite-size algorithm.35,36 In each iteration we keepm
564 states. Periodic boundary conditions are applied. Ke
ing m5128 states leads to a change of the calculated en
of the order of 1025. For large chain lengths and large dime
izations, the energy change due to a change of the dista
by a few sites between two neighboring solitons is ve
small. This is due to the exponential localization of the so
tons. So care has to be taken to avoid spurious shifts
hinder the following fit analysis.

In Fig. 2 the local distortions and the local magnetizatio
are shown as they are found after the procedure descr
above. The solid lines are fits of the following form:

mi5
W

2 H 1

R
dnS r i

kmjm
,kmD1~21! icnS r i

kmjm
,kmD J ,

~17a!

FIG. 2. Upper panel, local distortions. Symbols stand for
self-consistent DMRG result atK518 J anda50.35; solid line
stems from Eq.~17b! with d50.014,kd50.959, andjd510.5.
Lower panel, local magnetizations; the solid line stems from
~17a! with W50.21,R55.0,km50.992, andjm57.9.
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d i5dsnS r i

kdjd
,kdD , ~17b!

where the parametersW, R, d, km, andkd are taken to be the
fit parameters. The periodicityL of the solitons is fixed by
the average magnetizationm51/L, which results in the rela-
tion defining the soliton widthsjm andjd as a function ofL
andkm/d,

4mkm/dK~km/d!jm/d51. ~18!

Another relation can be deduced from the average of the
function that isp/@2K(k)#,37 which in the continuum limit
is related to the average magnetization. One obtains

m5
pW

4RK~km!
, ~19!

a relation which was well fulfilled~within 1–4%! by our fit
parameters.

The motivation for the Eqs.~17! is twofold. First, such fits
are used to describe the experimental data.19–21 Second, the
continuum approaches provide results of the ab
kind.2,3,7,6,12,22The continuum results predict that the ma
netic and the distortive parameters are identical

km5kd⇔jm5jd . ~20!

The DMRG results can be fitted very well by Eq.~17!. In
this respect, the continuum approach works fine. But in ot
respects it fails.

Taking, for instance, the results for the amplitudes of
nonalternating and the alternating component4,5,22we get for
W andR

W5A2D trip

pvS
, ~21a!

R5kA2pvS

D trip
. ~21b!

Inserting some reasonable numbers for CuGeO3 D trip
524K, k'1, vS5(p/2)J(121.12a) ~Ref. 38! with a
50.35, J5160 K yields W50.32 and R56.3. So the
agreement with the numerical results presented in Fig.
not good, but the right order of magnitude is reproduc
Another indication that Eqs.~21! have to be extended is th
fact that in a one-dimensional approach fora.ac50.2412 a
gap opens andvS is no longer well defined.

Similar to the amplitudes, the unique soliton width
given in the framework of the present continuum theories

j5vS/D trip , ~22!

which takes the value 6.4 for the above numbers. Again,
is too low compared to our numerical results.

The most important discrepancy is thedifferencebetween
the magnetic soliton widthjm57.9 and the distortive soliton
width jd510.5. Note the ratiojd /jm51.33. This is very
interesting because such a ratio can explain the different
perimental findings for the soliton width. By x-ra
measurement,17 jd was determined to be 13.660.3, whereas
by NMR jm was found to vary between about 10 and 6 w
the higher number close to the transition. In fair accorda
n

e

r

e

is
.

y

is

x-

e

with our calculation, the x-ray measurement~susceptible to
the distortion! yields a value about 1.4 larger than the val
obtained by NMR~Ref. 21!, ~susceptible to the local magne
tizations!. We will elucidate this issue further at the end
the following section.

IV. COMPARISON TO EXPERIMENTAL DATA

In this section we attempt a quantitative comparison to
experimental results obtained recently in high quality.21 We
will do this on the basis of the Hamiltonian~16!, i.e., a
magnetic one-dimensional Hamiltonian with adiabatic ph
non treatment. We usea50.35 andK518 J. The value of
the frustration results from fits of the temperature dep
dence of the susceptibility.39,40 The value ofK is then nec-
essary to account for the amount of dimerizationd'0.014,
which yields the correct size of the singlet-triplet gap
CuGeO3 of D trip /J524 K/160 K50.15. This value ofK
provides also a reasonable estimate for the critical magn
field at T50.41 One must be aware, however, that the inc
sion of higher dimensional magnetic couplings implies
considerably larger dimerization to keep the same gap.42 A
hint that the actualK value could be smaller is provided b
the adiabatic analysis of the spin-Peierls temperatureTSP.
There a value ofK'11 had to be used to reproduceTSP
'14.4.32 We will discuss the effects of the neglect of th
higher dimensional couplings in the concluding section.

In Fig. 3 the amplitudes computed numerically~filled
circles! as defined in Eq.~17a! are contrasted to the exper
mental ones~filled squares; after Ref. 21!. To obtain the
computed values the self-consistently determined patte
are least-squares fitted with the functions given in Eq.~17a!.
The least squares fits are very good (x2'102321024), but
not excellent. There are tiny deviations at the magnetic t
of the solitons, see Fig. 2. The fits for the lattice distortio
on the basis of Eq.~17b! are better by two orders of magn
tude. No deviations are discernible.

FIG. 3. Amplitudes as defined in Eq.~17a!. Filled circles,
DMRG calculation fora50.35 andK518 ~corresponding tod
50.014); open circles, byg850.25 renormalized DMRG data
Filled squares, experimental NMR data after Ref. 21.
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For W andR, the striking difference between experime
and theory can be remedied by using a factor ofg850.25.
The theoretical results renormalized in this way are shown
open circles in Fig. 3. The simultaneous reduction ofW and
of R leaves the homogeneous partu(r i) of the local magne-
tizationsmi unchanged but reduces the alternating parta(r i).
This is exactly what we proposed in Sec. II to be the effec
phasonic zero-point motion. The agreement between re
malized theory and experiment is good and provides furt
support for the phasonic averaging.

In Fig. 4 the results for the distortive and the magne
soliton widths are plotted. It is obvious that they arenot the
same as was assumed hitherto. Their ratio is to very g
approximation constant for small average magnetization
grows for largerm. This aspect is in qualitative agreeme
with the experimental situation where there is also a strik
difference between the x-ray result~distortions! and the
NMR result ~local magnetizations!. The fact that the agree
ment is quantitatively not better can be attributed to sev
circumstances. The analysis of the x-ray data17 was done on
the assumption ofconstantsoliton widths, which is not jus-
tified. Furthermore, our theoretical analysis is still based o
one-dimensional model only. It is also obvious that the qu
tative evolution of the magnetic soliton width is not yet u
derstood. Experimentally, it decreases with increasing m
netization whereas it increases in our computation.

Based on the lower panel of Fig. 4 we conclude that
ratio jd /jm becomes constant if the solitons are sufficien
separated. Hence the ratio does not depend onm or K as long
as 1/m is large enough compared tojd . Recall that solitons
are exponentially localized objects. The amplitudes and s
tial shapes do not depend on the overall energy scaleJ either.
Thus the only parameter left is the frustrationa. So we are
led to an analysis of the ratiojd /jm as function ofa. The
results are depicted in Fig. 5.

It is evident that the frustration is the important contr

FIG. 4. Soliton widths,jd distortive;jm magnetic, see Eq.~17!.
Circles, DMRG results; open squares, experimental NMR data a
Ref. 21; filled square, value proposed in Ref. 17. Upper panel, fi
symbols are based on the distortions; open symbols are based o
local magnetizationsmi . Lower panel, ratios.
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parameter for the ratio ofjd andjm. The dependence seem
to be roughly linear. It should be noted that even at z
frustration the two soliton widths are not identical. The e
perimental finding of relatively large values ofjd /jm is a
strong indication for an important frustration in agreeme
with the x(T) fits.39,40 A quantitative analysis appears pre
ently premature since the effects of higher dimensional c
plings are not known yet.

The deviation in the amplitudes as given in Eqs.~21!, as
well as the nonequality of the soliton widths suggests
extension of the existing continuum theories. The fact t
the nonequality is strongly enhanced by the frustration po
clearly into the direction that the backscattering cosine te
in the sine-Gordon models5,22 is the origin of this effect.
Analyzing the self-consistent harmonic treatment of Naka
and Fukuyama4,5 revealsone aspect where a difference be
tween the magnetic and the distortive soliton can app
This is the so farneglectedspatial dependence of the reno
malizing factors exp(2^Q̂2&/2) and exp(22^Q̂2&), respec-
tively. ~Note that this operatorQ̂ is not related to phasons o
distortive origin. But it stands for Gaussian magnetic fluctu
tions and their formal treatment bears many analogies to
treatment of phasons.! Further work along these lines is i
progress.

V. DISCUSSION

In this work we calculated the effect of phasonic zer
point motion on the local magnetizationsmi . This nonadia-
batic effect can be viewed as virtual oscillations about
static situation. It leads to a reduction of the alternating co
ponent of themi . The reduction factorg8 as in Eq.~9! is
similar to a Debye-Waller factor that is induced by phonon
motion.

By the inclusion of the nonadiabatic phason motion
could explain the so far not understood difference betw

er
d
the

FIG. 5. Dependence of the ratiojd /jm on the frustrationa. The
valuesK are chosen such that thejd ranges between 5 and 10, i.e
not too small but always way below the sample length ofL5108.
The values (a,K) are (0,3),(0.1,4),(0.2,6.2),(0.241,8),
(0.35,18),(0.5,37). Solid line, regression with intercept 1.06 a
slope 0.77.
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9474 PRB 60UHRIG, SCHÖNFELD, BOUCHER, AND HORVATIĆ
experimental NMR line shapes19–21 and previous theoretica
predictions.13,25–27,23Hence the reduction of the NMR line
width compared to the adiabatically predicted one is stro
evidence for the importance of nonadiabaticity in CuGeO3.
Nonadiabaticity is also considered to be important
temperature-dependent couplings and induced frustration~cf.
Refs. 33,43 and 34!.

The second main point of our work is the difference b
tween the distortive and the magnetic soliton width. To o
knowledge, such a difference has so far not been reporte
the literature. But it helps to understand the differing x-r
and NMR results. The ratiojd /jm is controlled by the frus-
tration a. It is fairly close but not equal to unity at zer
frustration and grows roughly linear to almost 1.5 at t
Majumdar-Ghosh pointa51/2. Thus, further evidence for
sizable frustration in CuGeO3 is provided.

Aiming for quantitative agreement with experiment som
questions remain. Choosing a small dimerization~the corre-
sponding largeK, respectively!, which reproduces the correc
gap value and critical magnetic field in a one-dimensio
model, leads to amplitudesW and R that have to be renor
malized by aboutg850.25 and not byg850.16 as estimated
in Sec. II. Thus these amplitudes seem to be too small.
magnetic soliton widthjm, is too low by about 20%.

Choosing, however, a larger dimerization~the corre-
sponding smallK, respectively!, which reproduces the ga
value resulting from averaging the dispersionv(kW ) perpen-
dicular to the chains alongkb ,42 leads to larger amplitudesW
andR. These larger amplitudes can be nicely reconciled w
the experimental findings by a value very close tog850.16.
This is essentially what was done in the previous work25

The argument in favor of the larger gap is that the neglec
the interchain coupling would lead to this larger gap.42 But
the corresponding soliton widths would be even lower@see
Eq. ~22!#, and hence, in worse agreement with experime
We conclude from this that it is not just a question of fi
tuning the constants to achieve agreement. The purelyd51
model isnot sufficient.

The magnetic interchain couplings have to be taken i
account as has become already apparent from the two w
to choose the relevant gap. The magnetic interchain coup
has the two following effects. First, it reduces the observ
gap value for a given dimerization.25 Thus a larger dimeriza
tion ~smaller K) should be used. This is consistent with
number of recent investigations.44,45The larger gap will lead
to larger amplitudes. Second, Zanget al.22 argued that the
interchain couplingenhancesthe soliton widths, which is
exactly what is needed to reconcile theory and experim
This enhancement is qualitatively easy to understand s
an interchain coupling will favor the appearance of stagge
magnetization. Regions of staggered magnetization are t
where the solitons are, see Fig. 2. So these regions are
tended, which implies an enhancement of the soliton wid
Hence, we come to the conclusion that a larger dimeriza
~smallerK) plus an appropriate treatment of the intercha
couplings should yield results in quantitative agreement w
experiment.

As an outlook we state that it would be desirable to ha
an approach that takes the effects of the phonon dynam
into account right from the beginning. Unitary transform
tions are in principle suitable methods to do so.33,34The con-
g
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comitant change of the observables, however, has not
been investigated.

Summarizing, two main points are shown in the pres
work. The first is the importance of the phasonic fluctuatio
providing a natural explanation for the large amplitude d
ferences between theory and experiment. The second is
difference between distortive (jd) and magnetic (jm) soliton
width leading to a ratiojd /jm between 1.05 and 1.45 de
pending on frustration. Further work to include intercha
coupling is called for.
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APPENDIX

Based on Eq.~14b! and Ref. 29 we present here estimat
for the two leading contributionsD1 and D2. Focusing on
the low-lying excitations we adopt~1! even though we do
not know whether at larger values ofkW the dispersion is still
described by~1!.

The mass densityr is proportional toM /v. If each spin
site moved in the same way on shifting the modulationM
5vr would be reasonable. Since, however, the modulat
doesnot have the same amplitude forall sites an effective
reduction has to be taken into account. For sinusoidal mo
lation this factor is 1/2, i.e.,M5vr/2, due to the average
value of sin2. For all other modulations the reduction fact
will be between 1/2 and 1; we choose 1/2 since the hig
harmonic content of the modulation is very small.17

With kx→kxAr/cx, ky→kyAr/cy, and kz→kzAr/u2czu
as well asci5r 0T0j0i

2 and j̄05(j0xj0yj0z)
1/3 we obtain

D5
\

r

r3/2

A2cxcycz
E d3k

~2p!3

1

k
coth@\k/~2kBT!# ~A1a!

5
\

rA2
S r

j̄0
2r 0T0

D 3/2E d3k

~2p!3

1

k
cothS \k

2kBTD . ~A1b!

For the value ofu05r 0T0 and other values see Ref. 29. W
split D in the zero-temperature contributionD1 and the
temperature-dependent restD2 by using coth(x/2)51
12/@exp(x)21#.

We estimateD1, the zero-temperature reduction due
the zero-point motion of the phasons. It is difficult to com
pute D1 reliably since, in principle, information ofall the
phasons is required, not only the lowest-lying ones. But
estimate that determines the order of magnitude is poss
by using an upper cutoffkmax as in the Debye model o
phonons.46. We start with
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D15
\

rE d3k

~2p!3

1

v~kW !
~A2a!

5
\Ar

2A2p2~ j̄0Au0!3E0

kmax
kdk ~A2b!

5
\Ar

4A2p2~ j̄0Au0!3
kmax

2 . ~A2c!

The value forkmax after rescaling is obtained from the num
ber of possible phasonic excitations

15vE d3k

~2p!3
~A3a!

5S r

j̄0
2u0

D 3/2
v

2A2p2E0

kmax
k2dk

~A3b!

⇒kmax5Au0

r
j̄0S 6A2p2

v D 1/3

. ~A3c!

Equations~A2c! and ~A3c! and the singlet-triplet gapD trip

5\Au0 /r ~Ref. 29! together lead finally to Eq.~15a!. It
should be noted that the volume per spin site can be fo
from the lattice constants byv5abc/2 with a54.79
.

-

ett

.

l,
d

310210m, b58.40310210m, and c52.94310210m.31.
The division by 2 is necessary since there are two Cu ion
each unit cell.

Next we computeD2 where we are only interested in th
leading temperature dependence. Thus the result dep
only on the lowest-lying excitations and the assumption o
dispersion as Eq.~1! is well justified. We find

D25
\

A2p2r
S r

j̄0
2u0

D 3/2E
0

`FexpS \k

kBTD21G21

kdk

~A4a!

5
~kBT!2

A2p2\r
S r

j̄0
2u0

D 3/2E
0

`

@exp~k!21#21kdk

~A4b!

5
Ar~kBT!2

6A2\j̄0
3u0

3/2
5

~kBT!2

6A2j̄0
3u0D trip

~A4c!

5S T

T*
D 2

. ~A4d!

With the numbersD trip524 K, u05650 mJ/cm3, and j̄0
50.31 nm the characteristic temperatureT* can be esti-
mated to be 16.9 K.
.
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44B. Büchner, H. Fehske, A.P. Kampf, and G. Wellein, Physica

261, 956 ~1999!.
45R. Werner, C. Gros, and M. Braden, Phys. Rev. B59, 14 356

~1999!.
46N.W and N.D. Mermin,Solid State Physics~Saunders College

Philadelphia, 1976!.


