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Magnetic properties of the Blume-Emery-Griffiths model in the vicinity
of an antiferromagnetic Potts line

T. Balcerzak and M. Gzik-Szumiata
Department of Solid State Physics, University of Ło´dź, ul. Pomorska 149/153, PL 90-236 Ło´dź, Poland

~Received 11 January 1999!

The Blume-Emery-Griffiths model is studied for the range of parameters in a close neighborhood of the
antiferromagnetic three-state Potts model. The cluster variational method in pair approximation is adopted for
the studies. Particular attention is paid to the properties of ferrimagnetic and staggered quadrupolar phases
which occur on a bipartite lattice. In particular, the isothermal susceptibility is calculated, revealing its splitting
into two branches, each with different temperature behavior. The reentrant ferrimagnetism phenomenon is also
discussed.@S0163-1829~99!04030-8#
s
he
io
th
e
la
ti

th

ve
a
n

or
e
th

ng
a

n
a
e
T
ll
to

er
e

th
F

la
u

ra

e

ms,
sus-
of
tud-
in

b-

s.

,
e

I. INTRODUCTION

The Blume-Emery-Griffiths~BEG! model1 has been in-
tensively studied because of the very rich phase diagram
exhibits. The model Hamiltonian contains, in addition to t
bilinear interaction, both biquadratic exchange and single-
anisotropy terms. When these terms are competing with
bilinear exchange interaction one can predict the existenc
multicritical points, the occurrence of staggered quadrupo
and ferrimagnetic phases, as well as the reentrant magne
phenomenon.

The model has been extensively studied by means of
mean-field approximation~MFA!,1–5 by renormalization-
group techniques,6,7 effective-field theory,8–10 cluster varia-
tional method ~CVM!,11–14 and by Monte Carlo
simulation.2,15,16Some exact solutions on Bethe lattice ha
also been obtained.17,18,20Recently, the phase diagrams in
bilayer system were studied, using the cluster variatio
method in a pair approximation~CVMPA!.19,20

The interesting property of the BEG model is that f
certain values of parameters, describing the biquadratic
change and single-ion anisotropy, it can be reduced to
three-state antiferromagnetic~AF! Potts model.3,6,12,14 For
the parameters in the vicinity of the AF Potts line, amo
several phases existing on the phase diagrams, a ferrim
netic phase can be detected.

The ferrimagnetic phase is of particular interest since
occurs in a very narrow range of Hamiltonia
parameters.12,14,20It emerges from either the staggered qu
drupolar or ferromagnetic phases, being sandwiched betw
these two, as an energetically most favorable solution.
obtain this phase, it is necessary to consider the so-ca
bipartite lattice, i.e., the lattice which can be subdivided in
two interpenetrating sublatticesa andb.18 For the AF Potts
line the four phases: ferromagnetic, paramagnetic, stagg
quadrupolar, and ferrimagnetic merge in the point of th
coexistence~i.e., multicritical point!.

The aim of the present paper is the investigation of
magnetic properties of BEG model in the vinicity of the A
Potts line, where the phase diagrams become particu
complex. For the studies we choose the CVMPA techniq
as it is a relatively simple method and much more accu
PRB 600163-1829/99/60~13!/9450~6!/$15.00
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than MFA.19 Moreover, as pointed out in Ref. 20, for a Beth
lattice the results of CVMPA are exact.

In numerical calculations we studied the phase diagra
the magnetization, quadrupolar moment, and isothermal
ceptibility. Particular attention is paid to the susceptibility
the ferrimagnetic phase, which up to now has not been s
ied in literature. The most important results are illustrated
the figures and discussed in detail.

II. THEORY

The Hamiltonian of the system is of the form:

H52J(̂
i j &

SiSj2A(̂
i j &

Si
2Sj

22D(
i

Si
22h(

i
Si , ~1!

whereSi50,61. The constant parametersJ and A are, re-
spectively, the nearest-neighbor~NN! bilinear and biqua-
dratic exchange interactions, whereasD denotes single-ion
anisotropy andh stands for an external field.

In CVMPA, the Gibbs free energy per 1 spin can be o
tained from the formula20

G

N
5

1

2b
@~z21!~ ln Za1 ln Zb!2z ln Zab#, ~2!

whereb51/kBT, andz is the number of nearest neighbor
In Eq. ~2!, Za andZb are the partition functions for one-atom
clusters corresponding to thea or b sublattice, respectively
whereasZab is the two-atom cluster partition function. Thes
functions are given in the form

Za5u~ebhpa1e2bhl a!11 ~a5a,b! ~3!

and

Zab5u2f ~e2bhpa
npb

n1e22bhl a
nl b

n!1u2g~pa
nl b

n1pb
nl a

n!

1uebh~pa
n1pb

n!1ue2bh~ l a
n1 l b

n!11, ~4!

where

u5ebD, ~5!

f 5ebAebJ, ~6!
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and

g5ebAe2bJ. ~7!

The quantitiespa and l a are defined by the formulas

pa5exp@b~AKa1JLa!#, ~8!

l a5exp@b~AKa2JLa!#, ~9!

whereLa and Ka (a5a,b) are the variational paramete
and they represent the dipolar and quadrupolar effec
fields, respectively. For the equilibrium, in the presence
the external field, these parameters can be found from
cluster variational equations:

pa5pa
n

11u~ f ebhpb
n1ge2bhl b

n!

11u~ebhpb
n1e2bhl b

n!
,

pb5pb
n

11u~ f ebhpa
n1ge2bhl a

n!

11u~ebhpa
n1e2bhl a

n!
,

l a5 l a
n

11u~ f e2bhl b
n1gebhpb

n!

11u~e2bhl b
n1ebhpb

n!
,

l b5 l b
n

11u~ f e2bhl a
n1gebhpa

n!

11u~e2bhl a
n1ebhpa

n!
, ~10!

where n5(z21)/z. One can see that forh→0 the above
equations reduce to the form given in Ref. 20. With the h
of pa and l a , the sublattice magnetizationsma[^Si&a and
quadrupolar momentsqa[^Si

2&a (qa>0) can be found. For
the equilibrium they are given by the formulas

ma5
u

Za
~ebhpa2e2bhl a! ~11!

and

qa5
u

Za
~ebhpa1e2bhl a!. ~12!

The various phases of the two sublattice model withJ.0 are
then defined as follows:

ferromagnetic phase~F!: ma5mbÞ0, qa5qb ;

paramagnetic phase~P!: ma5mb50, qa5qb ;

staggered quadrupolar phase~SQ!: ma5mb50, qaÞqb ;

ferrimagnetic phase~I!: 0ÞmaÞmbÞ0, qaÞqb .

Thus, the various phases can be identified by examing
solutions forma andqa , resulting from Eqs.~11! and ~12!.

On the other hand, the total equilibrium magnetization
the system can be found from the thermodynamic relati
ship:

M[2S ]G

]h D
T

5
N

2
~ma1mb!. ~13!
e
f

he

p

he

f
-

The derivative in Eq.~13! is taken for a constant tempera
ture. The second derivative over the external field gives
isothermal susceptibility of the system:

xT[2S ]2G

]h2 D
T

5S ]M

]h D
T

5
N

2 F S ]ma

]h D
T

1S ]mb

]h D
T
G .

~14!

Hence, the susceptibility per one lattice site can be written
the form

J

N
xT5

1

2
~xa1xb!, ~15!

where, taking into account Eqs.~11! and~12!, the sublattice
susceptibilityxa (a5a,b) is expressed as

xa5Jb@vaCa1ua~Ba11!#. ~16!

In Eq. ~16! we have introduced the abbreviated notation:

va5ma~12qa!, ~17!

ua5qa2ma
2, ~18!

and

Ba5JS ]La

]h D
T

, ~19!

Ca5AS ]Ka

]h D
T

. ~20!

In turn, the coefficientsBa and Ca can be obtained by
differentiation of the cluster variational equations~10!. After
some algebra, one obtains the set of linear equations in
form

uaBa2~z21!t11Bb1vaCa2~z21!t12Cb5zt11

2~z21!t11Ba1ubBb2~z21!t21Ca1vbCb5zt11,

vaBa2~z21!t21Bb1waCa2~z21!t22Cb5zt21

2~z21!t12Ba1vbBb2~z21!t22Ca1wbCb5zt12,
~21!

whereva and ua are given by Eqs.~17! and ~18!, respec-
tively, and

wa5qa~12qa! ~a5a,b!. ~22!

Other coefficients in Eq.~21!, namelytxy are the NN corre-
lation functions defined as

t115^SaSb&2mamb ,

t125^SaSb
2&2maqb ,

t215^Sa
2Sb&2qamb ,

t225^Sa
2Sb

2&2qaqb . ~23!
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Consequently, these spin-spin correlations can be obta
within CVMPA. For instance, in the limith→0 their final
forms can be written as

^SaSb&5
1

Zab
@u2f ~pa

npb
n1 l a

nl b
n!2u2g~pa

nl b
n1pb

nl a
n!#,

^SaSb
2&5

1

Zab
@u2f ~pa

npb
n2 l a

nl b
n!1u2g~pa

nl b
n2pb

nl a
n!#,

^Sa
2Sb&5

1

Zab
@u2f ~pa

npb
n2 l a

nl b
n!2u2g~pa

nl b
n2pb

nl a
n!#,

^Sa
2Sb

2&5
1

Zab
@u2f ~pa

npb
n1 l a

nl b
n!1u2g~pa

nl b
n1pb

nl a
n!#.

~24!

The practical procedure based on the above theore
method can be outlined as follows:

~1! First we need to solve the cluster variational equatio
~10! representing the necessary equilibrium conditions. H
ing pa and l a , the magnetizationsma and quadrupolar mo
mentsqa can be calculated from Eqs.~11! and ~12!.

~2! Among various possible solutions ofma and qa we
choose that one which corresponds to the lowest Gibbs
ergy ~2!. This criterion ensures that we are considering
stable phase only~see the phase diagrams obtained in R
20!.

~3! Having stable solutions forpa and l a , as well asma
and qa , we can calculate the coefficientsva ,ua ,wa @Eqs.
~17!, ~18!, and ~22!# and the correlation functionstxy @Eq.
~23!#. Hence, all coefficients appearing in the set of line
equations~21! are known. These coefficients depend only
the temperature and the Hamiltonian parametersJ, A, and
D(h→0).

~4! The linear set of equations~21! can be solved with
respect to theBa andCa variables.

~5! Finally, with the help ofBa and Ca , the sublattice
isothermal susceptibilitiesxa can be calculated from Eq
~16!.

The numerical results based on the method outlined ab
will be presented in the next section.

III. THE NUMERICAL RESULTS AND DISCUSSION

On the basis of the theory presented in previous sec
the numerical calculations have been made. We chose
most interesting case when the phase diagrams exhibit
presence of ferrimagnetic phase, and its coexistence
other phases in the vicinity of the AF Potts point~A/J
523; D/J52z, h50!.3,6,12,14For comparison, the calcula
tions have been made forz54 ~monoatomic layer! and z
55, corresponding to a double-layer system with simple
bic symmetry.

In Fig. 1 the phase diagramkBT/J vs A/J for D/J58 and
z54 is presented. As it has been stated, for the partic
value A/J523, the BEG model reduces then to the thre
state AF Potts model. The regions of coexistence of fe
magnetic~F!, paramagnetic~P!, staggered quadrupolar~SQ!,
and ferrimagnetic~I! phases are indicated. All these phas
meet at the multicritical point which is denoted by the bo
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dot. It is worth noticing that the I phase is separated from
SQ phase by the second-order transition line and it exist
a very narrow range of theA/J parameter.18 The I and F
phases are separated by the first-order transitions~AF Potts
line, dashed!.

In Fig. 2 we present the magnetization vs temperature
ferromagnetic phase atA/J522.998. We see that the mag
netization quite unexpectedly changes rapidly for very l
temperatures, whereas for higher temperatures its behavi
typical.

In Fig. 3 the isothermal susceptibility is presented for t
same parameters as in Fig. 2. Apart from a typical singula
at the Curie temperature, a remarkable increase of susc
bility for very low temperatures is observed. This increase
related to the anomalous behavior of magnetization,
shown in Fig. 2.

In Fig. 4 we present the magnetization vs temperature

FIG. 1. The phase diagramkBT/J vs A/J for z54 and D/J
58. The AF Potts line~dashed! represents the first-order trans
tions. The multicritical point is marked by a dot.

FIG. 2. Magnetizationm per one lattice site vs temperatur
kBT/J for z54, D/J58, andA/J522.998.
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A/J523.0015, the value which is chosen from the oppos
side of the Potts line. In this case, due to the existence of
I phase, the reentrant phenomenon is seen. Two branch
magnetization, each corresponding to its sublattice
shown. On the other hand, in the SQ phase the magne
tions of both sublattices are equal to zero, whereas the
drupolar momentsqaÞqb>0. This splitting of the quadru-
polar moments is also observed in the ferrimagnetic ph
however we do not present it in the figure.

It is interesting to see the behavior of isothermal susc
tibility vs temperature for the same parameters as in Fig
The results of the calculations are presented in Fig. 5. T
branches of the susceptibility in the I and SQ phases, co
sponding toa andb sublattices, are seen. The mean value
the susceptibility is indicated by the dashed line. In tw
phase-transition points between the SQ and I phase t
susceptibilities diverge. ForT→0 the sublattice susceptibili
ties reveal quite different behavior: one of them diverg
whereas the other one tends to zero. At the phase-trans

FIG. 3. The dimensionless susceptibility per one lattice s
xTJ/N vs temperaturekBT/J for the same parameters as in Fig.

FIG. 4. The sublattice magnetizations~a andb curves! per one
lattice site vs temperaturekBT/J for z54, D/J58, and A/J
523.0015. The reentrant ferrimagnetism is accompanied by
second-order phase transition.
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point between the SQ and P phase both curves merge to
common finite value.

Change of the coordination number fromz54 to z55
has a great influence on the phase diagram. Forz55 and
D/J510 the phase diagramkBT/J vs A/J is presented in
Fig. 6 around the Potts line (A/J523). In this case two
ferrimagnetic phases instead of one, namely, the low-
high-temperature phases are seen. The first-order transi
are indicated by the dashed line, whereas the continu
lines represents the second-order~continuous! transitions.
Such phase diagrams have already been documented i
literature.12,14,20In the following figures we chose the value
A/J522.998 andA/J523.0005 in order to present th
magnetic properties vs dimensionless temperature.

,

e

FIG. 5. The sublattice susceptibilities~a andb curves! per one
lattice site vs temperaturekBT/J for the same parameters as in Fi
4. The curvesa and b correspond toa and b lines from Fig. 4,
respectively. The dashed line represents the mean value of the
ceptibility.

FIG. 6. The phase diagramkBT/J vs A/J for z55 and D/J
510. The AF Potts line~dashed! represents the first-order trans
tions. The multicritical point is marked by a dot.
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In Fig. 7 the magnetization vs temperature forA/J
522.998 is shown. The splitting of the magnetization in
two branches in the ferrimagnetic phase is very evident.
low temperatures the magnetization curve changes rap
tending to 1, which is similar to that observed in Fig. 2.

The magnetic susceptibility vs temperature for the sa
parameters as in Fig. 7 is presented in Fig. 8. In this c
three phase-transition points exist, namely F/I, I/F, and
phase transitions. The susceptibility in the I phase is of p
ticular interest: one of the sublattice susceptibilities~that cor-
responding to higher magnetization! becomes negative. Bot
curves diverge at the phase-transition points when th
points are approached from the I phase, whereas outsid
I region the susceptibility tends to a finite value. The ne
tive value of one sublattice susceptibility can be explained
the basis of the magnetization curve from Fig. 7. As we h
seen, the splitting of sublattice magnetization there was q

FIG. 7. Magnetizationm per one lattice site vs temperatu
kBT/J for z55, D/J510, andA/J522.998. The curvesa and b
correspond to the sublattice magnetizations in the ferrimagn
phase.

FIG. 8. The dimensionless magnetic susceptibility per one
tice sitexTJ/N vs temperaturekBT/J for the same parameters as
Fig. 7. The curvesa andb denote the sublattice susceptibilities a
correspond to curvesa and b from Fig. 7, respectively. By the
dashed line the mean value of the susceptibility is shown.
or
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P
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-
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strong. In a small external field the system becomes m
ordered, that is, the magnetization of thea sublattice slightly
increases whereas the magnetization of theb sublattice di-
minishes, both curves tending to some intermediate valu
is worth noticing that the mean value of those sublatt
susceptibilities is positive, as it is presented by the das
line in Fig. 8. The remaining parts of the susceptibili
curves, i.e., those in the F and P phases, are similar to
analogous behavior from Fig. 3. In particular, forT→0 the
susceptibility increases, which is again connected with
anomalous behavior of the magnetization.

In Fig. 9 we present the magnetization vs temperature
A/J523.0005. The reentrant magnetism phenomenon
the I phase is seen. Both sublattice magnetizations exh
continuous SQ/I phase transitions and the picture is qua
tively similar to that of Fig. 4.

For completeness, Fig. 10 presents the susceptibility

ic

t-

FIG. 9. The sublattice magnetizations~a andb curves! per one
lattice site vs temperaturekBT/J for z55, D/J510, and A/J
523.0005. The reentrant ferrimagnetism is terminated by
second-order phase transitions.

FIG. 10. The sublattice susceptibility~a andb curves! per one
lattice site vs temperaturekBT/J for the same parameters as in Fi
9. The curvesa and b correspond toa and b from Fig. 9, respec-
tively. The dashed line represents the mean value of the susc
bility.
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temperature for the same parameters as in Fig. 9. In this
the picture is qualitatively similar to that presented in Fig.
The continuous phase transitions between the SQ an
phases, as seen in the phase diagram~Fig. 6!, are again con-
firmed by the singularities of the sublattice susceptibiliti
The mean value of the susceptibility in the SQ and I pha
is indicated by the dashed lines. Let us note that the sus
tibility in the P phase is relatively small and rapidly dimin
ishes with the increase of the temperature.

IV. FINAL REMARKS

In the paper we studied the magnetic properties of
BEG model in a vinicity of the AF Potts line. The compar
son of z54 ~planar system! with z55 ~bilayer! has been
made. In particular, the phase diagrams occurred differe
for these two cases, since forz55 two ferrimagnetic regions
are predicted, instead of one I region existing forz54.

The topology of these two diagrams has been confirm
by the magnetization and quadrupolar moment calculatio
However, only the magnetization~being a measurable quan
tity! has been presented in the figures.

In the frame of the uniform method, based on the Gib
energy calculations, the static isothermal susceptibility
been obtained. As far as we know, the calculations of s
ceptibility for the ferrimagnetic phase are primary with
CVMPA. The following interesting phenomena should
pointed out: First, two branches of the susceptibility ha
been obtained in the I and SQ phases. With regard to the
phase, similar splitting has been reported in the frame
MFA,5 although the phase diagrams there were quite dif
se
.
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ent. The calculations performed here for the low-temperat
SQ phase show also completely different behavior for th
two sublattice susceptibilities, which has not yet been
ported. Second, the negative branch of one sublattice sus
tibility for z55 ~Fig. 8! is worth noticing. As we pointed
out, this phenomenon occurs only from one side of the P
line, where the I phase is surrounded by the F phase. F
the other side, where the I phase is surrounded by the
phase both sublattice susceptibilities are positive. Hence
would like to conclude that the influence of the surroundi
phase on the ferrimagnetic region can be crucial. This f
can be explained from the energetic point of view, sin
these two neighboring phases are characterized by the c
parable free energies.

Finally, we are convinced that CVMPA proved to be
useful technique for investigations of such detailed a
subtle effects. It has been shown that the predictions
CVMPA for the BEG model are much more accurate th
MFA.19 Moreover, as pointed out in Ref. 20 the method
equivalent to the exact Bethe lattice theory. For regular
tices, however, some improvement can be introduced
means of more advanced cluster variational methods, for
stance in eight-point ‘‘cube’’ approximation.12 Therefore, it
would be useful to employ MC simulations to verify some
characteristic predictions reported in the present paper.
perform such simulations the range of parameter val
around the Potts line can be established on the basis of
results. It would be also interesting to obtain the magne
contribution to the specific heat in the frame of the sa
method. This is planned for a future work.
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