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Magnetic properties of the Blume-Emery-Griffiths model in the vicinity
of an antiferromagnetic Potts line
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The Blume-Emery-Griffiths model is studied for the range of parameters in a close neighborhood of the
antiferromagnetic three-state Potts model. The cluster variational method in pair approximation is adopted for
the studies. Particular attention is paid to the properties of ferrimagnetic and staggered quadrupolar phases
which occur on a bipartite lattice. In particular, the isothermal susceptibility is calculated, revealing its splitting
into two branches, each with different temperature behavior. The reentrant ferrimagnetism phenomenon is also
discussed[S0163-182809)04030-9

[. INTRODUCTION than MFA® Moreover, as pointed out in Ref. 20, for a Bethe
lattice the results of CVMPA are exact.
The Blume-Emery-Griffithg BEG) model has been in- In numerical calculations we studied the phase diagrams,

tensively studied because of the very rich phase diagrams ihe magnetization, quadrupolar moment, and isothermal sus-
exhibits. The model Hamiltonian contains, in addition to theceptibility. Particular attention is paid to the susceptibility of
bilinear interaction, both biquadratic exchange and single-ioihe ferrimagnetic phase, which up to now has not been stud-
anisotropy terms. When these terms are competing with thied in literature. The most important results are illustrated in
bilinear exchange interaction one can predict the existence §f€ figures and discussed in detail.

multicritical points, the occurrence of staggered quadrupolar

and ferrimagnetic phases, as well as the reentrant magnetism Il. THEORY

phenomenon.

The model has been extensivlel%/ studied by means of the
mean-field approximationfMFA),”™ by renormalization-
group technique$! effective-field theorny2° cluster varia- H=-J> S§-AX S DY §-hX s, @
tional method (CVM),'*"** and by Monte Carlo W Y ' I
simulation®>*>1® Some exact solutions on Bethe lattice havewhere S;=0,=1. The constant parametedsand A are, re-
also been obtainel:'®?°Recently, the phase diagrams in a spectively, the nearest-neighb@N) bilinear and biqua-
bilayer system were studied, using the cluster variationafiratic exchange interactions, whereasdenotes single-ion
method in a pair approximatiofCVMPA).%2° anisotropy anch stands for an external field.

The interesting property of the BEG model is that for N CYMPA, the Gibbs free energy per 1 spin can be ob-
certain values of parameters, describing the biquadratic exX@ined from the formufd
change and single-ion anisotropy, it can be reduced to the 1
three-state antiferromagnetié\F) Potts modei’.'ﬁ'%z’14 For N~ 25l (= D(NZa+InZp) —2In Z,), 2
the parameters in the vicinity of the AF Potts line, among B

sev_eral phases existing on the phase diagrams, a femmaﬂmereﬂzllkBT, andz is the number of nearest neighbors.
netic phase can be detected. . _ ~ .InEq.(2), Z, andZ, are the partition functions for one-atom
The ferrimagnetic phase is of particular interest since it sters corresponding to treeor b sublattice, respectively,

occurs in2 12,0 VETY narfow range of Hamiltonian \yhereasz, , is the two-atom cluster partition function. These
parameters?'42°|t emerges from either the staggered qua-fynctions are given in the form

drupolar or ferromagnetic phases, being sandwiched between

these two, as an energetically most favorable solution. To Z,=u(efp,+e PN )+1 (a=a,b) 3

obtain this phase, it is necessary to consider the so-called

bipartite lattice, i.e., the lattice which can be subdivided into@nd

two interpenetrating sublatticesandb.™® For the AF Potts 260 a2Bh NN L a— 28RN L 2NN L D

line the four phases: ferromagnetic, paramagnetic, staggered Zab=U“f(e""papp+e “"alp) +ug(palp+ ppla)

quadrupolar, and ferrimagnetic merge in the point of their +uef' oM+ oM +ue AN+ 1M + 1 4

coexistencdi.e., multicritical poinj. (PatPy) (Iat1p)+1, @
The aim of the present paper is the investigation of thevhere

magnetic properties of BEG model in the vinicity of the AF

The Hamiltonian of the system is of the form:

Potts line, where the phase diagrams become particularly u=efP, 5)
complex. For the studies we choose the CVMPA technique,
as it is a relatively simple method and much more accurate f=efhefd (6)
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and The derivative in Eq(13) is taken for a constant tempera-
Ny ture. The second derivative over the external field gives the
g=efe #, (7)  isothermal susceptibility of the system:
The quantitieg, andl, are defined by the formulas B ((926) _(aM) N (&ma) +((9mb)
P.=exXd B(AK,+IA,)], tS) X lane rovoh) 2V oh [ ah )L
(14
l.=exd B(AK,—JA,)], 9

Hence, the susceptibility per one lattice site can be written in

where A, andK, (e=a,b) are the variational parameters the form
and they represent the dipolar and quadrupolar effective

fields, respectively. For the equilibrium, in the presence of

the external field, these parameters can be found from the
cluster variational equations:

J 1
NXT=§(Xa+ Xb) (15

where, taking into account Eg€ll) and(12), the sublattice

1+u(feﬂhpg+gefﬁh|g) susceptibilityy, («¢=a,b) is expressed as
Pa= Pg - ,
a8 1+u(efpp+e D) Yu=JB[V,Cotu,(B,+1)]. (16)
1+u(feﬁhpg+ge—ﬁh|2) In Eqg. (16) we have introduced the abbreviated notation:
—nN
PP (ePp e APy Vo=My(1-da), (17)
1t u(fe P+ gefpp U,=Qq,—m2, (18)
a2 1+u(e Pp+efipp) and
| g itucfe  a+gefpy 10 oA
b= 4 u(e AN+ efpl) B“:‘]( h )T’ (19
wheren=(z—1)/z. One can see that fdi—0 the above
equations reduce to the form given in Ref. 20. With the help c - K, (20)
of p, andl,, the sublattice magnetizatioms,=(S;), and “ adh T'
quadrupolar momentg,=(S?), (q,=0) can be found. For
the equilibrium they are given by the formulas In turn, the coefficient8, and C, can be obtained by
differentiation of the cluster variational equatioii®). After
u : ; ; .
m. =~ (efp —e AN ) (11) some algebra, one obtains the set of linear equations in the
Z, form
and UaBa— (2= 1)t11Bp+VvaCo— (2= D)t ,Ch=21y
qazzi(eﬁhpa+ e AN, (12) — (2= DtyBatUpBy— (2= 1)tpCa +vpCp =21y,
. , . —(z— + —(z— =
The various phases of the two sublattice model With0 are VaBa~ (2= Doyt WaCa= (2= DtolCp=2t
then defined as follows: (2- 1)ty By VpBp— (2 1)tpCat WyCp=Ztys,
ferromagnetic phaséF): m,=m,#0, q,=0qy; (D)
wherev, andu, are given by Eqs(17) and (18), respec-
paramagnetic phas&): m,=m,=0, q,=0qp; tively, and
staggered quadrupolar phag8Q): m,=m,=0, g, #0p; W,=04(1-0d,) (a=a,b). (22

Other coefficients in Eq21), namelyt,, are the NN corre-
lation functions defined as
Thus, the various phases can be identified by examing the

ferrimagnetic phasél): 0#m,#m,#0, q,#qp-

solutions form, andq,, resulting from Eqs(11) and (12). t11=(SaSp) —MaMy,
On the other hand, the total equilibrium magnetization of

the system can be found from the thermodynamic relation- t12=<SaS§>—maqb.

ship:
t,,=(S2S,) — .M, ,

y (&G) N( N ) (13) 21 < aSb> daMmp
=—|—| == (my+mp).
ohj, 2" t2=(S5Sh) ~ Gallb - (23
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Consequently, these spin-spin correlations can be obtained 2
within CVMPA. For instance, in the limih—0 their final I EAQ
forms can be written as -
. (P)
(SaS)= 7 [U*T(Papp+1315) ~u"g(PalIR+PEIR) ] e
a 1
2 1 2 n.n nn 2 nn nn E
<SaSb>=Z—b[u f(paPp—1alp) +U“g(palp—Ppla) 1, : '
a : L
2 1 2 na.n nn 2 nn nn (SQ) i (F)
<SaSb>:Z_b[u f(papb_lalb)_u g(palb_pbla)L |
a ! ,
1 ! 0.5
(SaSp)= 7 [u*M(PRPE+ 151D +u’g(Pal5+ pEl2)]. | ’
a 1
(24) :
The practical procedure based on the above theoretical Al ‘ T L 0
-3.005 -3 -2.996

method can be outlined as follows:

(1) First we need to solve the cluster variational equations )
(10) representing the necessary equilibrium conditions. Hav- FIG. 1. The phase diagraikgT/J vs A/J for z=4 andD/J
ing p,, andl,,, the magnetizations, and quadrupolar mo- f8. The AF P.ott.s. Ilne(df'ishetd represents the first-order transi-
mentsq,, can be calculated from Eq&L1) and (12). tions. The multicritical point is marked by a dot.

(2) Among various possible solutions af, andq, we
choose that one which corresponds to the lowest Gibbs erlot. It is worth noticing that the | phase is separated from the
ergy (2). This criterion ensures that we are considering theSQ phase by the second-order transition line and it exists in
stable phase onlysee the phase diagrams obtained in Refa very narrow range of thé/J parametef® The | and F

-3.0015 -2.998

20).

(3) Having stable solutions foo, andl,, as well asm,
andq,, we can calculate the coefficients,,u,,w, [Egs.
(17), (18), and (22)] and the correlation functions,, [Eq.

phases are separated by the first-order transitiéfsPotts
line, dashey

In Fig. 2 we present the magnetization vs temperature for
ferromagnetic phase &/J=—2.998. We see that the mag-

(23)]. Hence, all coefficients appearing in the set of linearetization quite unexpectedly changes rapidly for very low
equationg21) are known. These coefficients depend only ontemperatures, whereas for higher temperatures its behavior is
the temperature and the Hamiltonian paramefers, and typical.

D(h—0). In Fig. 3 the isothermal susceptibility is presented for the
(4) The linear set of equation@1) can be solved with same parameters as in Fig. 2. Apart from a typical singularity
respect to the8,, andC,, variables. at the Curie temperature, a remarkable increase of suscepti-
(5) Finally, with the help ofB, and C,, the sublattice Dbility for very low temperatures is observed. This increase is
isothermal susceptibilitiesr, can be calculated from Eq. related to the anomalous behavior of magnetization, as

(16). shown in Fig. 2.
The numerical results based on the method outlined above In Fig. 4 we present the magnetization vs temperature for
will be presented in the next section.

IIl. THE NUMERICAL RESULTS AND DISCUSSION

On the basis of the theory presented in previous section
the numerical calculations have been made. We chose the
most interesting case when the phase diagrams exhibit the
presence of ferrimagnetic phase, and its coexistence with
other phases in the vicinity of the AF Potts poi/J
=—3; D/J=2z, h=0).3512Y%For comparison, the calcula-
tions have been made fa=4 (monoatomic layerand z
=5, corresponding to a double-layer system with simple cu-
bic symmetry.

In Fig. 1 the phase diagrakyT/J vs A/J for D/J=8 and
z=4 is presented. As it has been stated, for the particular 1
value A/J= -3, the BEG model reduces then to the three- 0
state AF Potts model. The regions of coexistence of ferro- 0 0.5 1
magnetic(F), paramagneti¢P), staggered quadrupol&8Q),
and ferrimagneticl) phases are indicated. All these phases FIG. 2. Magnetizationm per one lattice site vs temperature
meet at the multicritical point which is denoted by the boldkgT/J for z=4, D/J=8, andA/J=—2.998.
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FIG. 3. The dimensionless susceptibility per one lattice site, FIG. 5. The sublattice susceptibilitiéa andb curves per one
Xx1I/N vs temperaturdgT/J for the same parameters as in Fig. 2. |attice site vs temperatule,T/J for the same parameters as in Fig.
4. The curvesa and b correspond toa and b lines from Fig. 4,

AlJ=—3.0015, the value which is chosen from the Opposit(:‘,resp.e(.:t.ively. The dashed line represents the mean value of the sus-
side of the Potts line. In this case, due to the existence of th%ept'b”'ty'
| phase, the reentrant phenomenon is seen. Two branches of. ,
magnetization, each corresponding to its sublattice ar@OINt betw'egn the SQ and P phase both curves merge to their
shown. On the other hand, in the SQ phase the magnetiz§ommon finite value.
tions of both sublattices are equal to zero, whereas the qua- Change of the coordination number froze=4 to z=5
drupolar moments,#qg,=0. This splitting of the quadru- Nas a great influence on the phase diagram.#=o5 and
polar moments is also observed in the ferrimagnetic phas&/J=10 the phase diagrarkgT/J vs A/J is presented in
however we do not present it in the figure. F'|g._ 6 arou_nd the Pot_ts lineA(J=—3). In this case two

It is interesting to see the behavior of isothermal suscep€fimagnetic phases instead of one, namely, the low- and
tibility vs temperature for the same parameters as in Fig. 4ligh-temperature phases are seen. The first-order transitions
The results of the calculations are presented in Fig. 5. Tw@re indicated by the dashed line, whereas the continuous
branches of the susceptibility in the | and SQ phases, corrdi€S represents the second-ordeontinuous transitions.
sponding tca andb sublattices, are seen. The mean value ofSUCh phase diagrams have already been documented in the

the susceptibility is indicated by the dashed line. In wwoliterature!>142%n the following figures we chose the values

phase-transition points between the SQ and | phase the§4J=—2.998 andA/J=—3.0005 in order to present the
susceptibilities diverge. FoF— 0 the sublattice susceptibili- Magnetic properties vs dimensionless temperature.
ties reveal quite different behavior: one of them diverges,

whereas the other one tends to zero. At the phase-transition r3 =

0.5 —2 (P) 2.5
0.4 -2

] b
0.3 15

1(sQ SQ P i
02169 (5Q) (P) (50) 3
0.1 [

] j0.5

0- : - —
0 0.5 1 1.5 2 KT 2.5 Al ————— T R T — 0
-3.005 -3 -2.995

. o -3.0005  -2.998
FIG. 4. The sublattice magnetizatiofsandb curves per one

lattice site vs temperaturégT/J for z=4, D/J=8, and A/J FIG. 6. The phase diagraksT/J vs A/J for z=5 andD/J
=—23.0015. The reentrant ferrimagnetism is accompanied by the=10. The AF Potts lingdashed represents the first-order transi-
second-order phase transition. tions. The multicritical point is marked by a dot.
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FIG. 7. Magnetizationm per one lattice site vs temperature ~ FIG. 9. The sublattice magnetizatiotgandb curves per one
kgT/J for z=5, D/J=10, andA/J=—2.998. The curves andb lattice site vs temperatur&gT/J for z=5, D/J=10, and A/J
correspond to the sublattice magnetizations in the ferrimagnetiee —3.0005. The reentrant ferrimagnetism is terminated by the
phase. second-order phase transitions.

In Fig. 7 the magnetization vs temperature farJ strong. In a small external field the system becomes more
=—2.998 is shown. The splitting of the magnetization intoordered, that is, the magnetization of #neublattice slightly
two branches in the ferrimagnetic phase is very evident. Foincreases whereas the magnetization of theublattice di-
low temperatures the magnetization curve changes rapidlfninishes, both curves tending to some intermediate value. It
tending to 1, which is similar to that observed in Fig. 2.  is worth noticing that the mean value of those sublattice

The magnetic susceptibility vs temperature for the sameusceptibilities is positive, as it is presented by the dashed
parameters as in Fig. 7 is presented in Fig. 8. In this caskne in Fig. 8. The remaining parts of the susceptibility
three phase-transition points exist, namely F/I, I/F, and F/Rurves, i.e., those in the F and P phases, are similar to the
phase transitions. The susceptibility in the | phase is of paranalogous behavior from Fig. 3. In particular, b0 the
ticular interest: one of the sublattice susceptibilitiat cor-  susceptibility increases, which is again connected with the
responding to higher magnetizatidmecomes negative. Both anomalous behavior of the magnetization.
curves diverge at the phase-transition points when these In Fig. 9 we present the magnetization vs temperature for
points are approached from the | phase, whereas outside t#¢J= —3.0005. The reentrant magnetism phenomenon for
| region the susceptibility tends to a finite value. The negathe | phase is seen. Both sublattice magnetizations exhibit
tive value of one sublattice susceptibility can be explained orcontinuous SQ/I phase transitions and the picture is qualita-
the basis of the magnetization curve from Fig. 7. As we havdively similar to that of Fig. 4.
seen, the splitting of sublattice magnetization there was quite For completeness, Fig. 10 presents the susceptibility vs

L J/N L /N
] T
40 1,400*:
e @ F) (P) 1,200
20 a 1,000
| S i sQ) (P)
0 800
J b ]
600
20 400
40 200?\\ )
e | T ™ 0_ ‘h-\—_—‘ T
0 05 1 15 2 25 3 0 05 25 3
kT kT

FIG. 8. The dimensionless magnetic susceptibility per one lat- FIG. 10. The sublattice susceptibilitga andb curves per one
tice sitex1J/N vs temperatur&gT/J for the same parameters as in lattice site vs temperatuttgsT/J for the same parameters as in Fig.
Fig. 7. The curves andb denote the sublattice susceptibilities and 9. The curvesa andb correspond ta andb from Fig. 9, respec-
correspond to curvea and b from Fig. 7, respectively. By the tively. The dashed line represents the mean value of the suscepti-
dashed line the mean value of the susceptibility is shown. bility.
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temperature for the same parameters as in Fig. 9. In this casat. The calculations performed here for the low-temperature
the picture is qualitatively similar to that presented in Fig. 5.SQ phase show also completely different behavior for these
The continuous phase transitions between the SQ and tio sublattice susceptibilities, which has not yet been re-
phases, as seen in the phase diagf&ig. 6), are again con- ported. Second, the negative branch of one sublattice suscep-
firmed by the singularities of the sublattice susceptibilities ipility for z=5 (Fig. 8 is worth noticing. As we pointed
The mean value of the susceptibility in the SQ and | phasegyt, this phenomenon occurs only from one side of the Potts
is indicated by the dashed lines. Let us note that the suscepne where the | phase is surrounded by the F phase. From
Fibility ir! the P.phase is relatively small and rapidly dimin- {ha other side, where the | phase is surrounded by the SQ
ishes with the increase of the temperature. phase both sublattice susceptibilities are positive. Hence, we
would like to conclude that the influence of the surrounding
phase on the ferrimagnetic region can be crucial. This fact

In the paper we studied the magnetic properties of th&an be explained from the energetic point of view, since
BEG model in a vinicity of the AF Potts line. The compari- these two neighboring phases are characterized by the com-
son of z=4 (planar systemwith z=5 (bilayep has been parable free energies.
made. In particular, the phase diagrams occurred differently Finally, we are convinced that CVMPA proved to be a
for these two cases, since b5 two ferrimagnetic regions useful technique for investigations of such detailed and
are predicted, instead of one | region existing Zer4. subtle effects. It has been shown that the predictions of

The topology of these two diagrams has been confirme@€VMPA for the BEG model are much more accurate than
by the magnetization and quadrupolar moment calculationdVIFA.® Moreover, as pointed out in Ref. 20 the method is
However, only the magnetizatigibeing a measurable quan- equivalent to the exact Bethe lattice theory. For regular lat-
tity) has been presented in the figures. tices, however, some improvement can be introduced by

In the frame of the uniform method, based on the Gibbsneans of more advanced cluster variational methods, for in-
energy calculations, the static isothermal susceptibility hastance in eight-point “cube” approximatiof. Therefore, it
been obtained. As far as we know, the calculations of suswould be useful to employ MC simulations to verify some of
ceptibility for the ferrimagnetic phase are primary within characteristic predictions reported in the present paper. To
CVMPA. The following interesting phenomena should beperform such simulations the range of parameter values
pointed out: First, two branches of the susceptibility havearound the Potts line can be established on the basis of our
been obtained in the | and SQ phases. With regard to the S@sults. It would be also interesting to obtain the magnetic
phase, similar splitting has been reported in the frame otontribution to the specific heat in the frame of the same
MFA,® although the phase diagrams there were quite differmethod. This is planned for a future work.
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