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Crossover between polariton and phonon local states and effects
of anisotropy on the polariton states

Victor Podolsky
Department of Physics, Queens College of CUNY, Flushing, New York 11367

~Received 5 May 1998; revised manuscript received 12 January 1999!

We consider local polariton states that are composed from optical phonons and photons localized around
atomic impurities. We evaluate a photon contribution into polariton states and investigate the impurity-
strength-driven crossover between polariton and phonon local states. The polariton states exhibit a macroscopic
spatial size and the absence of the localization threshold. These features are attributed to a negative phonon
dispersion, which leads to a nonstandard polariton density of states~DOS!. We show that the DOS diverges at
the bottom of the polariton gap in an isotropic medium, and it tends to a finite limit in anisotropic polar
crystals. This leads to a thresholdless dependence of the frequency of the local state on the impurity strength
in both cases.@S0163-1829~99!08337-X#
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I. INTRODUCTION

Theoretical and experimental investigation of photon
calization is one of the most active areas in condensed m
physics. The search for this phenomenon was origin
restricted to strongly scattering disordered media.1–5 It was
later proposed that the defect-induced local photon states
exist in photonic crystals.6–8 A possibility of photon local-
ization in regular crystals with atomic defects and the c
cept of local polariton states were introduced in Refs. 9 a
10. Considering a dipole-active impurity in a frequenc
dispersive medium, authors discovered photon-atom bo
states that present the coherently coupled atomic excitat
and medium polaritons. When intra-atom transition frequ
cies fall inside the polariton gap, the radiative relaxation
the bound states is suppressed, and the induced field rem
localized around the impurity. Using the Bethe-ansatz te
nique, the authors constructed a complete set of the sca
ing and bound states and investigated the polariton-impu
band in a system with spatially correlated impurities.

A theory of local polariton states has received devel
ment in Ref. 11. There were considered phonon-polar
states associated with the well-known local phon
states.12,13 It was shown that a negative phonon dispers
has a surprisingly drastic effect on new states. Unlike
pure phonon states, there is no lower critical value of
impurity strength that must be exceeded for the local po
iton state to arise. It was also shown that near the bottom
the polariton gap the localization radius is macroscopica
large, which supports the long-wavelength approximat
used in Ref. 11. In Ref. 14, we analyzed effects of impuri
induced variations of elastic constants on the local sta
Solving microscopic equations of motion in the lon
wavelength limit, we found several local states of differe
symmetry. All new states split off the bottom of the polarito
gap upon infinitesimally small increments of the impur
strength. This feature of the polariton states was attribute
the long-wavelength singularity of the density of sta
~DOS! at the bottom of the gap.

Local polariton states present the well-known phon
PRB 600163-1829/99/60~13!/9416~7!/$15.00
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states with the field corrections taken into account. A fie
contribution into these states decreases as the impu
strength increases and they move away from the bottom
the gap. In the present paper we investigate such
‘‘impurity-strength-driven’’ crossover between polariton an
phonon local states. Their long-wavelength nature allows
to analyze the crossover in the isotropic medium approxim
tion. We show that the crossover takes place within a nar
frequency interval near the bottom of the polariton ga
However, despite the small size of the crossover region,
photon-phonon coupling sets a limit on the width of t
spectral gap, allowing the same type of local states in
entire gap. We estimate the critical width and show that,
the case of the isotopic defects in ‘‘narrow’’ gaps, only lig
impurities can support local states.

The singularity of the DOS is provided by the long
wavelength polaritons and is generic for the isotropic mo
with negative phonon dispersion. We show that weak cry
anisotropy removes the singularity from the band bounda
however, it does not lead to a finite threshold for the lo
polariton states. At the same time, the crystal anisotro
turns the power-law relation between the impurity stren
and the separation of the local state from the band bound
into the logarithmic relation.

II. LOCAL POLARITON STATES

Let us consider a dipole-active medium with an embedd
impurity. Dynamical equations of the medium can be intr
duced phenomenologically or derived from the microsco
lattice equations in a polar crystal. In the latter case the
placements of ions within each elementary cell must be fi
expressed via the dipole moment of a cell, the displacem
of its center of mass, and other similar variables, then
long-wavelength limit must be worked out. In the optic
excitations sector, this leads to a model of coupled dip
oscillators~assigned to elementary cells!, where the coupling
determines the effective dynamical matrix of the cryst
This matrix is a second rank tensor depending on coordin
of oscillators. In the long-wavelength limit, due to a sho
range ~between neighboring oscillators! coupling, the dy-
9416 ©1999 The American Physical Society
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PRB 60 9417CROSSOVER BETWEEN POLARITON AND PHONON . . .
namical matrix transforms into a local differential opera
V̂2(r ). A defect modifies the dynamical matrixV̂2(r )
→V̂2(r )1ad(r2r0), where parametera is the ‘‘strength’’
of the defect, andr0 is its coordinate. The resultant equatio
describe coupled electromagnetic and polarization wa
~optical phonons! in a medium where dielectric permeabilit
has a pointlike singularity:

@v22V̂2~k!#Pk52
d2

4p
Ek1a

a3

V
P~0!, ~1!

~v22c2k2!Ek524p@~v22c2k2!P̂i1v2P̂'#Pk . ~2!

HerePk andEk are Fourier components of the polarizatio
and electric fields,V̂2(k)is the dynamical matrix of the me

dium, P̂i and P̂' are the longitudinal and transverse proje
tors in k representation,a is the lattice parameter,V is a
volume of a sample,d254pq2/ma3 is the coupling param-
eter, andP(0)5(kPk , where vectorsk belong to the first
Brillouin zone.

Equation~1! implies that the impurity itself is not dipole
active and it provides only local, extended over a distance
an order of the lattice parameter, distortion of the crys
This is incorporated in equations via the inhomogene
term of the dynamical matrix. Such structureless point l
defects correspond to isotopes and dopants that chemi
resemble the host ions. In this case the defect strength ca
expressed asa5v82dg/g2v2dm/m, wherem andg are the
reduced mass of the elementary cell and the elastic con
of the nearest-neighbors interaction,dm and dg are their
impurity-induced variations, andv82 is the characteristic fre
quency depending on properties of the defect and the cry

In the isotropic approximation, the dynamical matrix c
be presented as follows:

V̂25V i
2~k!P̂i1V'

2 ~k!P̂' , ~3!

whereV i
2(k) andV'

2 (k) are frequencies of the longitudina
and transverse phonons, respectively. Below we ass
negative dispersion in the phonon branches, so they have
following long-wavelength asymptotes:

V'
2 ~k!'V0

22v'
2 k2, ~4!

V i
2~k!'V0

22v i
2k2, ~5!

where the parametersv' andv i set the ranges of the typica
phonon velocities. Due to symmetry reasons, both pho
branches have the same activation frequencyV0. For the
‘‘order of a magnitude’’ estimates we assumev';v i
;102 m/s, andV0;v/a;d.

Solving Eqs.~1!–~3!, one can obtain the spectral equati

15
a

3 S a

2p D 3E dkF ~v22V i
22d2!21

12S v22V'
2 2

d2v2

v22c2k2D 21G
5aI ~v2!, ~6!
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where the integration is extended over the first Brillou
zone.

This equation defines spectra of all extended and lo
excitations. The dispersion relations of the extended st
are determined by the poles of the integrand in Eq.~6!. In the
isotropic medium, there is a single longitudinal branchv2

5V i
21d2, whereas the transverse band contains two po

iton branches~Fig. 1!:

V6~k!5
1

2
@A~V'1ck!21d26A~V'2ck!21d2#. ~7!

The lower branchV2(k) is activationless and nonmono
tonic. Its ‘‘short-wavelength’’ asymptote,

V2~k!'V'~k!S 12
d2

2c2k2D , ~8!

shows that the lower branch reaches its maximum at
point

kmax'S 2dV0

v'c D 1/2

;b1/2a21. ~9!

Since vkmax;b1/2V0!V0 and ckmax;b21/2V0@V0, the
maximum ofV2

2 (k) is located in the long-wavelength regio
but far away from the crossing-resonance point. Using E
~7! and ~8! one can find

Vmax
2 5V0

22D1'V0
222bdV0 . ~10!

The polariton branches are separated by the gap, w
extends fromVmax

2 to V0
21d2. However, because the lon

FIG. 1. Phonon and polariton dispersion curves. In this pictu
V6 denote two polariton branches,V i andV' are longitudinal and
transverse phonon branches,V0 is the optical phonon activation
frequency,Vmax

2 5V0
22D1, D i, D' denote the widths of the phono

bands,k0 is the crossing-resonance momentum, andk08 is defined
by the equationV'

2 (k08)5V1.
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9418 PRB 60VICTOR PODOLSKY
gitudinal band ovelaps the top part of the polariton gap,
true spectral gap is betweenVmax

2 and the minimum of the
longitudinal branchVmin

2 5V0
21d22Di . The spectral gap is

open only if the width of the polariton gapd21D1 exceeds
the width of the longitudinal bandD i . Further, below we
assume this and consider only local states inside the ga

The frequency of the local state can be found from E
~6!. Function I (v2) in this equation presents a sum of th
‘‘longitudinal’’ and ‘‘transverse’’ termsI i(v

2) and I'(v2).
The transverse integral can be rewritten in the form

I'~v2!5
2

3 S a

2p D 3E ~v22c2k2!dk

~v22V1
2 !~v22V2

2 !
. ~11!

Whenv tends toVmax, this integral diverges at the surfac
k25kmax

2 due to the second factor in the denominator of
integrand. The transverse term dominates inI (v2) near the
bottom of the gap, and a region of the Brillouin zone whe
k;kmax gives the major contribution intoI'(v2). As it fol-
lows from Eqs.~4!, ~7!, and ~9!, in this region we can ap
proximate

V2
2 ~k!'Vmax

2 24v'
2 ~k2kmax!

2. ~12!

It allows us to calculateI (v2) and determine the frequenc
of the local state

Av22Vmax
2 '

aa

3pv'

~akmax!
2;aV0

21b. ~13!

In order to evaluate the localization radius of this state
consider the spatial distribution of the electric and polari
tion fields. Solving Eqs.~1! and ~2!, we obtain

E~r !52
aa3

2p2E dk exp~ ikr !F P̂i

v22V i
22d2

1
v2P̂'

~v22V1
2 !~v22V2

2 !
GP~0!. ~14!

Taking into account that the transverse field dominates
E(r ), and the integral definingE'(r ) builds up near the sur
facek25kmax

2 , one can find the far-field asymptotes

E~r !'4p
V0

2

c2kmax
2

P~r !, ~15!

P~r !'$n3@n3P~0!#%
sin~rkmax!exp~2rk!

rkmax
, ~16!

wheren is a unitary radial vector, and

k5S v22Vmax
2

4v'
2 D 1/2

'
aa

6pv'
2 ~akmax!

2;baV0
22a21

~17!

is the inverse localization radius of the considered state.
e

.

e

e

e
-
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III. CROSSOVER BETWEEN POLARITON AND PHONON
LOCAL STATES

The distinct features of the local states near the bottom
the gap can be attributed to the singularity of the density
states in the lower polariton band. SinceV2

2 (k) reaches its
maximum at a surface of a finite area, the DOS diverge
Vmax

r~v2!'
a~akmax!

2

~2p!2v'

~Vmax
2 2v2!21/2. ~18!

This singularity is provided by long-wavelength (k;kmax)
polaritons, which also dominate in the local states near
bottom of the gap. It explains the macroscopic sizes of
coherence lengthl coh5kmax

21 ;ab21/2 and localization radius
l loc5k21;ab21.

Local polariton states provide a possibility of a ‘‘phono
assisted’’ localization of optical photons in regular crysta
However, becausekmax is located far away from the
crossing-resonance point (kmax@k0), the phonon content o
the local states greatly exceeds their photon content. This
be illustrated by direct comparison of the mechanical a
electromagnetic energy of the local state

Wphon5
2pV

d2 (
k

Pk~v21P̂2!Pk , ~19!

Wphot5
V

8p (
k

Ek
21Hk

2 . ~20!

Straightforward but lengthy calculations based on equati
and approximations discussed in the previous section lea
the estimate,

Wphot

Wphon
'S d

ckmax
D 2

;b. ~21!

It is also worth mentioning that, in accordance with the
lationship between the field amplitudes,uHku5uk3Ekuc/v
'uEkukmax/k0, the magnetic part dominates in electroma
netic energy of the local state.

The position of the local level inside the spectral gap d
pends on a value of the defect strengtha, which we consider
below as an adjustable parameter. As Eq.~13! shows, local
polariton states appear first at the bottom of the gap foa
510 and move inside the gap upon increasing the de
strength. This weakens the photon content of the local st
and transforms them into the ordinary phonon states. In o
to investigate this crossover, we need to evaluateI (v2) in
the entire spectral gap. Away from the bottom of the g
both terms of Eq.~6!, I i(v

2) and I'(v2), become compa-
rable, and calculations here require knowledge of the pho
dispersion laws in the entire Brillouin zone. Such inform
tion is not consistent with the approximations employed
our model, since in the short-wavelength region a crys
anisotropy cannot be neglected, and ion displaceme
within elementary cells must be considered in all deta
However, we proceed with calculations assuming that
crossover takes place near the bottom of the gap. Noting
the details of the phonon dispersion can be incorporated
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PRB 60 9419CROSSOVER BETWEEN POLARITON AND PHONON . . .
the DOS in the phonon bands, we rely on a simple appro
mation accounting for Kohn’s singularities at the ba
boundaries only

rphon~«!5
8

pDphon
2

A~«2vmin
2 !~vmax

2 2«!, ~22!

whereDphon is the width of the phonon band, andvmin
2 and

vmax
2 are the band boundaries.
In order to calculateI i(v

2) in Eq. ~6!, we transform it
into the integral over the longitudinal band

I i~v2!5
1

3 S a

2p D 3E dk

v22V i
22d2

5
1

3EVmin
2

Vmin
2

1D ir i~«!d«

v22«
,

~23!

whereVmin
2 5V0

21d22Di .Using Eq.~22! for r i(«) one can
obtain

I i~v2!52
4

3D i
2 ~AVmin

2 1D i2v22AVmin
2 2v2!2.

~24!

The transverse integral has a similar form forv@Vmax,
far away from the bottom of the gap~Appendix!:

I'~v2!'
8

3D'
2 ~Av21D'2V0

22Av22V0
2!2. ~25!

In the opposite limit, forv*Vmax, the transverse integra
has the following singularities:

I'~v2!'
8D1

3D'
3/2~v22Vmax

2 !21/22
16D1

1/2

3pD'
3/2

lnS v22Vmax
2

D'
D .

~26!

Equations~22!–~24! allow us to consider the local level
anywhere in the gap. Since the corresponding local st
present the superpositions of all normal modes of a p
crystal, we can qualitatively describe composition of t
states comparing contributions intoI (v2) from different
parts of the Brillouin zone and different bands.

As we showed above, functionI (v2) has a singularity at
the bottom of the gap caused by the long-wavelengthk
;kmax) polaritons. They also give the major contributio
into I (v2) inside the interval,Vmax,v!V0. However, even
for v5V0, their contribution is substantially weakened

I'~V0
2!5

8

3D'

@11O~b1/2!#, ~27!

where the leading term is provided by the short-wavelen
polaritons that are indistinguishable from transverse-opt
phonons.

Outside the intervalVmax<v<Vmax1D1 /Vmax, function
I (v2) has a ‘‘phonon’’ structure. All terms related to th
polariton singularity are weakened by power factors o
small parameterD1 /D';b. At the upper boundary of the
gap we obtain
i-

es
re

h
al

a

I ~Vmin
2 !5

8

3D i
2 F SAx1y2Ay

x D 2

2
1

2G1O~b1/2!, ~28!

wherex5D' /D i andy5d2/D i21.
The value ofI (Vmin

2 ) determines the upper limit of the
defect strength, which still allows the local state. Analy
shows thatI (Vmin

2 ) is positive if the width of the spectral ga
d22D i is below a certain limit,

d22D i<~D i/8!~22D' /D i!
2. ~29!

Recalling thatI (Vmax
2 )51`, we can conclude that only in

‘‘narrow’’ gaps are all local states associated with impuriti
of the same type. In the case of isotopes, the local states
supported by light impurities only. However, whend22D i is
greater than the critical value given by Eq.~29!, the states
near the bottom and the top of the gap are associated
different types of defects. For isotopes, these would be li
and heavy impurities, respectively. The frequency regions
the corresponding states are limited inside the gap. The
per frequency for ‘‘light’’ states and the lower frequency f
‘‘heavy’’ ones can be found from equations,v2I (v2)51
and I (v2)50, respectively.

IV. EFFECT OF THE CRYSTAL ANISOTROPY
ON THE LOCAL STATES

The considered above impurity-induced local states a
at the bottom of the polariton gap for infinitesimally sma
values of the impurity strength. This is in contrast with thre
dimensional phonon systems where a lower threshold
local states (amin) always exists. A general theorem regar
ing the finite threshold for local states in band gaps w
given in Ref. 15. However, the proof of the theorem impli
that the DOS vanishes at the band boundaries.

In our model, the absence of the threshold is caused
the singularity of the DOSr(v2)}(Vmax

2 2v2)21/2, which is
provided by long-wavelength polaritons and is generic
any dipole-active phonon mode with negative dispersion
isotropic spectrum. Such long-wavelength modes can exis
cubic crystals; however, even weak crystal anisotropy
moves the singularity from the bottom of the gap. In a cu
crystal, the anisotropic terms appear beyond the quadr
approximation of the phonon dispersion

V'
2 ~k!5V0

22v'
2 k21xV0

2~ak!4F~ k̂!, ~30!

where x is the small parameter, andF( k̂) is some aniso-
tropic function. The anisotropic term, as one can derive fr
Eq. ~8!, makes the position (kmax) and the value of the maxi
mum in the lower polariton branch (Vmax

2 ) dependent on the
crystallographic direction. In the case of a weak anisotro
the first effect can be neglected, andV2

2 (k) can be approxi-
mated near the surfacek25kmax

2 as follows:

V2
2 ~k!'Vmax

2 @11xF~ k̂!~akmax!
4#24v2~k2kmax!

2.
~31!

A small magnitude of the anisotropic term,

uxF~ k̂!~akmax!
4u;xb2, ~32!
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9420 PRB 60VICTOR PODOLSKY
allows us to evaluate the asymptote of the DOS near
band boundary

r~v2!} R
V2(k)5v

dsu¹kV2
2 ~k!u21}~Vmax

2 2v21A!21/2,

~33!

whereA;xVmax
2 (akmax)

4^F&, and ^F&;1 is the angular av-
erage of the anisotropic function.

The crystal anisotropy removes the singularity of the D
from the bottom of the gap because it destroys the dege
ated global maximum of the polariton spectrum. There
many other physical factors that help to wash this singula
out, such as a lattice inharmoniously, electron-phonon in
action, thermal fluctuations, and so on. However, it see
unlikely that these factors can lower the DOS at the bott
of the gap from infinity to zero. On the other hand, it tur
out that as long as the DOS has a nonzero finite value a
bottom of the gap, the local polariton states near the bot
have zero threshold and macroscopic localization radius

Indeed, the equation defining the frequency of the lo
polariton state has a form

1'aE
V0

2
2D'

Vmax
2 f ~«,v!r~«!d«

v22«
5aI ~v2!, ~34!

wherer(«) is the DOS, and the factorf («,v) has absorbed
the integration overk directions and is regular and nonze
at the band boundaries. The singularity of the DOS, if th
is any, helps us make a fast evaluation of the leading t
„@(v2Vmax)#

21/2 singularity… of I (v2) near Vmax
2 . How-

ever, it is clear that unless the DOS tends tozeroat the band
boundary,I (v2) always has a~loglike! singularity. For in-
stance, accounting for weak anisotropy only, one can ob

1'2a
a~akmax!

2

3p2v'A1/2
lnS v22Vmax

2

A D . ~35!

This equation is valid near the band boundary (v22Vmax
2

!A), and it explicitly shows thata tends to zero when the
local state approaches the bottom of the gap.

V. SUMMARY AND CONCLUSIONS

We considered local polariton states associated w
pointlike defects in an isotropic dipole-active medium. T
frequency interval available for these states~Fig. 1! is ex-
tended from the top of the lower polariton bandVmax

2 to the
bottom of the longitudinal phonon band. The local sta
arise at the bottom of the polariton gap for an infinitesima
small value of the impurity strengtha. Our analysis shows
that nearVmax

2 they are composed from the long-waveleng
polaritons. The typical momentum of these polaritons,kmax,
defines the coherence length of the local states,l coh
;ab21/2. The separation of these states from the bottom
the gap, v2Vmax, defines their localization radius,l loc

;ab21a21V0
2. Despite the atomic size of a defect, bo

characteristic lengths are macroscopic.
Local polariton states present the well-known phon

states with the field corrections taken into accou
‘‘Weight’’ of these corrections decreases asa increases and
e
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the state moves away from the bottom of the gap. A lon
wavelength nature of the phenomenon allows us to ana
the ‘‘impurity-strength-driven’’ crossover between polarito
and phonon local states. We found that the crossover ta
place within the frequency interval of the order ofD1

1/2

;b1/2V0. However, despite a small size of the crossov
region, the photon-phonon coupling sets a limit on the wid
of the spectral gap allowing the same type of local state
the entire gap@Eq. ~29!#. We estimated the critical width o
the spectral gap and showed that, in the case of the isot
defects, only light impurities support local states in ‘‘na
row’’ gaps.

In the isotropic model, the distinct features of the loc
polariton states can be attributed to the singularity of
DOS, r(v2)}(Vmax

2 2v2)21/2. This singularity is caused by
the long-wavelength polaritons and is generic for any dipo
active phonon mode with negative dispersion and isotro
spectrum. We show that a weak crystal anisotropy remo
the singularity from the band boundary@Eq. ~33!#, however,
it does not lead to a finite threshold for the local polarit
states. We argue that the properties of the polariton st
~caused by negative dispersion of the long-wavelength o
cal phonons! are insensitive to other physical factors contri
uting to the finite DOS at the band boundary. At the sa
time, elimination of the DOS singularity replaces the pow
law relation@Eq. ~13!# between the impurity strength and th
separation of the local state from the band boundarya}(v
2Vmax)

1/2 with the logarithmic relationa}21/ln(v2Vmax).
Since our results are obtained in the long-wavelength
proximation, the state must lie close enough toVmax in order
to ensure a macroscopic localization radius. On the ot
hand, if v is too close toVmax, quantum fluctuations can
destroy the state. However, an analysis of these effects
ceeds the limits of this paper and will be done elsewhere

In the presence of a macroscopic concentration of im
rities, the local states can provide the transmission inside
spectral gap. Sincel loc greatly exceedsl coh, the transmission
regime critically depends on the impurity concentrationn.
When n21/3! l loc , an exponentially small tunneling prob
ability corresponds to a localized regime. Forl loc;n21/3, the
resonant tunneling of excitations from one impurity to a
other gives rise to a diffuse propagation of the radiatio
When n21/3 approachesl coh, the impurity band begins to
form, and the transmission regime regains properties of
coherent propagation. Due to a macroscopic value ofl coh,
this should occur at a very low concentration of impuriti
na3*b3/2.

Local polariton states provide a ‘‘phonon-assisted loc
ization’’ of electromagnetic waves. However, our estima
show a strong suppression of the photon content of th
states,Wphot/Wphon;b. This is caused by the fact thatkmax is
much greater than the crossing-resonance momentumk0. To
eliminate this disproportion, one needs to lower the gro
velocity of electromagnetic waves in the active mediu
This can be achieved in an active medium inside a nar
waveguide. For instance, the dispersion law of the mo
propagating in the parallel-plate waveguide,v/c

5A(pn/ l )21k2, provides the reduction of their group ve
locity in the long-wavelength region. Preliminary estimat
show that forl;106a the phonon and photon velocities b
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come comparable in the crossing-resonance region. The
tailed analysis of a possibility of photon localization in th
dipole-active films will be presented elsewhere.
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APPENDIX

In order to evaluate the transverse integral in Eq.~6!, we
presentI'(v2) as a sum of two terms by separating t
Brillouin zone into two parts:

I'~v2!5
2

3 S a

2p D 3E dkS v22V'
2 2

d2v2

v22c2k2D 21

5I'8 ~v2!1I'9 ~v2!. ~A1!

The first term,I'8 (v2), involves integration overk,k08 in-
cluding the crossing-resonance region, andI'9 (v2) presents
the integral over the remaining part of the Brillouin zonek
.k08 . The separating momentumk08 is convenient to fix by
the conditionV'

2 (k08)5Vmax
2 ~Fig. 1!.

Sincek08 is located far away from the crossing-resonan
point, the productck in I'9 (v2) greatly exceeds the typica
phonon frequencies and there we can setck5`

I'9 ~v2!5
2

3 S a

2p D 3E
k.k18

dk

v22V'
2

5
2

3EV0
2
2D'

Vmax
2 r'~«!d«

v22«
.

~A2!

Using Eq.~22! for r'(«), we can calculate the last integra

I'9 ~v2!5
16

3pD'

@~2d21!arcsinAd12Ad1~12d1!

1Adu12duF~v2!#, ~A3!

where

F~v2!

55 1 ln
Ad~12d1!1Ad1~12d!

Ad~12d1!2Ad1~12d!
for Vmax

2 <v2<V0
2

22arctanAd1~d21!

d~12d1!
for v2>V0

2 ,

~A4!
e-

as

e

and we denote d15(D'2D1)/D' , and d5(D'1v2

2V0
2)/D' .

The second term in Eq.~A1! includes integration over the
crossing-resonance region where the polariton effects ca
be neglected. Recalling thatI'8 (v2) presents the integra
over the long-wavelength modes and using Eqs.~4! and~20!,
we can rewriteI'8 (v2) in the form

I'8 ~v2!5
2

3EVmax
2

V0
2 ~V0

22«!r'~«!d«

~«2v2!~«2V0
2!1~vdv/c!2

5
16D1

3pD'
2 E0

1 x3/2~b2x!1/2dx

~x2a1!~x2a2!
. ~A5!

Here b5D' /D1 is a large parameter, and two poles of t
integrand are given by the equation

a65
1

2D1
@V0

22v26~v22v2
2 !1/2~v22v1

2 !1/2#, ~A6!

wherev6
2 5V0

26D1, so thatv2
2 coincides with the bottom

of the gapVmax
2 .

In the interval v2
2 <v2<v1

2 , where a6 are complex-
valued, we obtain

I'8 ~v2!5
16D1

1/2

3pD'
3/2F21

n223h2

2h S arctan
12n

h
1arctan

11n

h D
1

3n22h2

4n
ln

~12n!21h2

~11n!21h2G , ~A7!

where the parametersn andh are defined by the equations

n22h25
V0

22v2

2D1
, ~A8!

2nh5
~v1

2 2v2!1/2~v22v2
2 !1/2

2D1
. ~A9!

For v2>V0
21D1, wherea6 are negative, Eq.~A5! leads to
I'8 ~v2!5
32D1

1/2

3pD'
3/2S 12

ua1u3/2arctanua1u21/22ua2u3/2arctanua2u21/2

ua1u2ua2u D . ~A10!

Further straightforward analysis of the asymptotes ofI'8 (v2) leads to Eqs.~23!–~25!.
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