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Crossover between polariton and phonon local states and effects
of anisotropy on the polariton states
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We consider local polariton states that are composed from optical phonons and photons localized around
atomic impurities. We evaluate a photon contribution into polariton states and investigate the impurity-
strength-driven crossover between polariton and phonon local states. The polariton states exhibit a macroscopic
spatial size and the absence of the localization threshold. These features are attributed to a negative phonon
dispersion, which leads to a nonstandard polariton density of S@@S). We show that the DOS diverges at
the bottom of the polariton gap in an isotropic medium, and it tends to a finite limit in anisotropic polar
crystals. This leads to a thresholdless dependence of the frequency of the local state on the impurity strength
in both cases.S0163-18209)08337-X]

[. INTRODUCTION states with the field corrections taken into account. A field
contribution into these states decreases as the impurity
Theoretical and experimental investigation of photon lo-strength increases and they move away from the bottom of
calization is one of the most active areas in condensed mattéfe gap. In the present paper we investigate such an
physics. The search for this phenomenon was originally'impurity-strength-driven” crossover between polariton and
restricted to strongly scattering disordered médralt was ~ Phonon local states. Their long-wavelength nature allows us

later proposed that the defect-induced local photon states cdfl @nalyze the crossover in the isotropic medium approxima-
exist in photonic crystal&:8 A possibility of photon local- tion. We show that the crossover takes place within a narrow

frequency interval near the bottom of the polariton gap.
fiowever, despite the small size of the crossover region, the
photon-phonon coupling sets a limit on the width of the

. . - . ectral gap, allowing the same type of local states in the
dispersive medium, authors discovered photon-atom boun??\tire gap. We estimate the critical width and show that, in

states that present the coherently coupled atomic excitatioqﬁe case of the isotopic defects in “narrow” gaps, only light
and medium polaritons. When intra-atom transition frequen- '

. o : - i impurities can support local states.
cies fall inside the polariton gap, the radiative relaxation of The singularity of the DOS is provided by the long-

the bound states is suppressed, and the induced field remais, ejength polaritons and is generic for the isotropic model
challzed around the impurity. Using the Bethe-ansatz techyiiy negative phonon dispersion. We show that weak crystal
nigue, the authors constructed a complete set of the scattesnisotropy removes the singularity from the band boundary;
ing and bound states and investigated the polariton-impurithowever, it does not lead to a finite threshold for the local
band in a system with spatially correlated impurities. polariton states. At the same time, the crystal anisotropy
A theory of local polariton states has received developturns the power-law relation between the impurity strength
ment in Ref. 11. There were considered phonon-polaritorand the separation of the local state from the band boundary
states associated with the well-known local phononinto the logarithmic relation.
states>!3 |t was shown that a negative phonon dispersion
has a surprisingly drastic ejfect on new _sFates. Unlike the Il. LOCAL POLARITON STATES
pure phonon states, there is no lower critical value of the
impurity strength that must be exceeded for the local polar- Let us consider a dipole-active medium with an embedded
iton state to arise. It was also shown that near the bottom afmpurity. Dynamical equations of the medium can be intro-
the polariton gap the localization radius is macroscopicallyduced phenomenologically or derived from the microscopic
large, which supports the long-wavelength approximationattice equations in a polar crystal. In the latter case the dis-
used in Ref. 11. In Ref. 14, we analyzed effects of impurity-placements of ions within each elementary cell must be first
induced variations of elastic constants on the local stateexpressed via the dipole moment of a cell, the displacement
Solving microscopic equations of motion in the long- of its center of mass, and other similar variables, then the
wavelength limit, we found several local states of differentlong-wavelength limit must be worked out. In the optical
symmetry. All new states split off the bottom of the polariton excitations sector, this leads to a model of coupled dipole
gap upon infinitesimally small increments of the impurity oscillators(assigned to elementary cellsvhere the coupling
strength. This feature of the polariton states was attributed tdetermines the effective dynamical matrix of the crystal.
the long-wavelength singularity of the density of statesThis matrix is a second rank tensor depending on coordinates
(DOY at the bottom of the gap. of oscillators. In the long-wavelength limit, due to a short-
Local polariton states present the well-known phononrange (between neighboring oscillatoreoupling, the dy-

ization in regular crystals with atomic defects and the con
cept of local polariton states were introduced in Refs. 9 an
10. Considering a dipole-active impurity in a frequency-
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namical matrix transforms into a local differential operator o a
0%(r). A defect modifies the dynamical matrif?(r) -
—Q%(r)+ad(r—rp), where parametet is the “strength” ,
of the defect, and, is its coordinate. The resultant equations (k)
describe coupled electromagnetic and polarization wave
(optical phononsin a medium where dielectric permeability gz 442 sy
has a pointlike singularity: Gk)+d

~ d? ad Q? +dz—A||

[wz—ﬂz(k)]sz—EE,(MVP(O), (1)
(0?—c%k?)Ey= —4m[(w?— kPP |+ w?P 1Pc. (2) o ()

Here P, andE, are Fourier components of the polarization Q2
and electric fieldsQ2(k)is the dynamical matrix of the me- / ) o
dium, P andP, are the longitudinal and transverse projec-
tors in k representationa is the lattice parameteV is a Q-A,
volume of a sampleg?=4mq% nad is the coupling param-
eter, andP(0) =X, /P,, where vectork belong to the first k
Brillouin zone. i . o

‘max.

Equation(1) implies that the impurity itself is not dipole
active and it provides only local, extended over a distance of FIG. 1. Phonon and polariton dispersion curves. In this picture,
an order of the lattice parameter, distortion of the crystal{. denote two polariton brancheQ, and(}, are longitudinal and
This is incorporated in equations via the inhomogeneougransverse phonon branche3, is the optical phonon activation
term of the dynamical matrix. Such structureless point likefrequency Q3. =Q5—A;, A, A, denote the widths of the phonon
defects correspond to isotopes and dopants that chemicalbands k, is the crossing-resonance momentum, &gds defined
resemble the host ions. In this case the defect strength can b the equatiom2 (kg) = Q.
expressed as=w 3yl y— w?Sulu, whereu andy are the
reduced mass of the elementary cell and the elastic constan1
of the nearest-neighbors interactiofi and 5y are their

impurity-induced variations, ang'2is the characteristic fre-
guency depending on properties of the defect and the cryst

In the isotropic approximation, the dynamical matrix can
be presented as follows:

ere the integration is extended over the first Brillouin

This equation defines spectra of all extended and local
xcitations. The dispersion relations of the extended states
re determined by the poles of the integrand in @y.In the

isotropic medium, there is a single longitudinal branch
:QH2+ d?, whereas the transverse band contains two polar-

ﬂz:ﬂﬁ(k)ﬁ’\ﬁﬂf(k)lﬁ , 3) iton branchegFig. 1):

whereQf(k) andQf (k) are frequencies of the longitudinal Q. (k)= E[\/(Ql+ck)2+d2t JiO, ez d?. ()
and transverse phonons, respectively. Below we assume 2
negative dispersion in the phonon branches, so they have t

. rﬁqe lower branchQ)_(k) is activationless and nonmono-
following long-wavelength asymptotes:

tonic. Its “short-wavelength” asymptote,
Q2 (k)~02-Vv2K?, (4)

d? )

Q_(k)=Q, (k)| 1- , 8
0300~ 03— 3K - (k)= ( >( >~ ®)
Where the parameter@ andV” set the ranges Of the typ|ca| ShQWS that the |OWer bl’anch I‘eaCheS Its maximum at the
phonon velocities. Due to symmetry reasons, both phonoROINt
branches have the same activation frequefigy For the
“order of a magnitude” estimates we assume ~v;
~10? m/s, andQq~v/a~d.

Solving Egs(1)—(3), one can obtain the spectral equation

1/2

2dQ
0 ~B1/2a—1_ 9)

max™>

Since VKpa—BY200<Qy and ckpu—B Y2Qo>Q,, the
maximum ofQ? (k) is located in the long-wavelength region

3
_ea f dk[(wz_QZ_dZ)l but far away from the crossing-resonance point. Using Egs.
3\27w (7) and(8) one can find
-1
+2 wZ_QZ_ﬂ Qﬁ"lax:Qg_Alwﬂg_Z,BdQO- (10)
L w2—c2k2

The polariton branches are separated by the gap, which
=al(w?), (6)  extends fromQ2, to Q3+d?. However, because the lon-
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gitudinal band ovelaps the top part of the polariton gap, thelll. CROSSOVER BETWEEN POLARITON AND PHONON
true spectral gap is betweém ax and the minimum of the LOCAL STATES

2 2
longitudinal branchff,,= Qo+d —4). The spectral gap i e gistinct features of the local states near the bottom of
open only if the width of the polariton gag*+ A, exceeds o gap can be attributed to the singularity of the density of
the width of the longitudinal band . Further, below we  giat05'in the lower polariton band. Siné (k) reaches its

assume this and consider only local states inside the gap. maximum at a surface of a finite area, the DOS diverges at
The frequency of the local state can be found from Eq. '

(6). Functionl(w?) in this equation presents a sum of the ™
“longitudinal” and “transverse” termsl H(wz) andl | (w?). (aKya)?
The transverse integral can be rewritten in the form pw?)~ &( Q% o w?) 12 (18)
(2m)?v,
| (0?)== a 3J (w?=c?k?)dk _ (11) This .singularit_y is provideq by ang-wavelengtlk%kmax)
312 (wZ_Qﬁ)(wZ_QZ_) polaritons, which also dominate in the local states near the
bottom of the gap. It explains the macroscopic sizes of the
When o tends toQ) ., this integral diverges at the surface coherence length, =k .~a8 > and localization radius
k?=k2 . due to the second factor in the denominator of thel|,.=x ~ag~*.
integrand. The transverse term dominate$(i@?) near the Local polariton states provide a possibility of a “phonon
bottom of the gap, and a region of the Brillouin zone whereassisted” localization of optical photons in regular crystals.
k~ Kmax gives the major contribution intb, (»?). As it fol- However, becausek,. is located far away from the
lows from Eqgs.(4), (7), and(9), in this region we can ap- crossing-resonance poink{.,eko), the phonon content of
proximate the local states greatly exceeds their photon content. This can
be illustrated by direct comparison of the mechanical and
Q2 (k)~02_—4v? (K—Kma - (12)  electromagnetic energy of the local state
It allows us to calculaté(w?) and determine the frequency 2wV
of the local state Wohon™= =~ ; Pl @2+ PPy, (19
=02~ Ak ~a0s s (13
max 3y, O Tma 0 Wono=g 2 EZ+HZ. (20

In order to evaluate the localization radius of this state westraightforward but lengthy calculations based on equations
consider the spatial distribution of the electric and polarizaand approximations discussed in the previous section lead to

tion fields. Solving Eqs(1) and(2), we obtain the estimate,
|5” phot
E(r)———J dkequkr) W thon (Ck B (21)

It is also worth mentioning that, in accordance with the re-
lationship between the field amplitudd$],|=|k X Ey|c/w
~|Ey|Kmax/Ko, the magnetic part dominates in electromag-
netic energy of the local state.

Taking into account that the transverse field dominates in The position of the local level inside the spectral gap de-
E(r), and the integral defining, (r) builds up near the sur- Pends on a value of the defect strengthwhich we consider

. w?P,
(02— 02)(0?—02)

P(0). (14

facek?=k?,,, one can find the far-field asymptotes below as an adjustable parameter. As B®) shows, local
polariton states appear first at the bottom of the gapafor
QZ =+0 and move inside the gap upon increasing the defect
E(r)~4m———7P(r), (15)  strength. This weakens the photon content of the local states

and transforms them into the ordinary phonon states. In order

max
to investigate this crossover, we need to evalugte?) in

i _ the entire spectral gap. Away from the bottom of the gap,
SIN(rK max) €XP(— 1 &) 2 2
P(r)~{nX[nxXP(0)]} , (16 both terms of Eq(6), |(»“) andl, (w*), become compa-
rk I
max rable, and calculations here require knowledge of the phonon

dispersion laws in the entire Brillouin zone. Such informa-

wheren i nitary radial v r, an o . ; - .
S a unitary radial vector, and tion is not consistent with the approximations employed in

5 \ 12 our model, since in the short-wavelength region a crystal
o= = Ofnax _ (ak )2~ BaQ:? anisotropy cannot be neglected, and ion displacements
av? 6mve 0 within elementary cells must be considered in all details.

(17) However, we proceed with calculations assuming that the
crossover takes place near the bottom of the gap. Noting that
is the inverse localization radius of the considered state. the details of the phonon dispersion can be incorporated into
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the DOS in the phonon bands, we rely on a simple approxi-
mation accounting for Kohn’s singularities at the band

boundaries only

AN

m phon

Pphor(s): mln)( max— €. (22)
whereAphOn is the width of the phonon band, amﬁm and
w? .4 are the band boundaries.
In order to calculatd ”(wz) in Eqg. (6), we transform it
into the integral over the longitudinal band

1) a 3 0? +AHP\|(8)d8
H(w) (277) Jw _QH d? 3f min w’—¢

(23

where Q2. Qg+d2—A”.Using Eq.(22) for pj(e) one can

min
obtain

4
l(?)=— 3Tﬁ( VOt A= 0’ = VO~ 0?2,
(24)

The transverse integral has a similar form ¥ Q 4,
far away from the bottom of the gag\ppendix:

8
I, (02~ E(J&M;Qg— Vo?—Q23)2% (25

1

In the opposite limit, forw= ()4, the transverse integral
has the following singularities:

sy o0k
37TAE/2 n A .

(26)

(ZQX)I/Z

2
lL(w )N A3/2

CROSSOVER BETWEEN POLARITON AND PHONON ...

9419

(O3 m)— 3AZ
I

wherex=A, /A andy d? 1A—1.
The value ofl (QZ;) determines the upper limit of the
defect strength which still allows the local state. Analysis

shows that (Q2,,) is positive if the width of the spectral gap
d?— A is below a certain limit,

+0(BY3), (29

W[);

X

d?—Ay<(A)/8)(2— A, /A2 (29

Recalling thatl (Q2,,,)=+%, we can conclude that only in
“narrow” gaps are all local states associated with impurities
of the same type. In the case of isotopes, the local states are
supported by light impurities only. However, thﬁ—A” is
greater than the critical value given by EH9), the states
near the bottom and the top of the gap are associated with
different types of defects. For isotopes, these would be light
and heavy impurities, respectively. The frequency regions of
the corresponding states are limited inside the gap. The up-
per frequency for “light” states and the lower frequency for
“heavy” ones can be found from equations?l (w?)=1
andl (»?) =0, respectively.

IV. EFFECT OF THE CRYSTAL ANISOTROPY
ON THE LOCAL STATES

The considered above impurity-induced local states arise
at the bottom of the polariton gap for infinitesimally small
values of the impurity strength. This is in contrast with three-
dimensional phonon systems where a lower threshold for
local states &, always exists. A general theorem regard-
ing the finite threshold for local states in band gaps was
given in Ref. 15. However, the proof of the theorem implies
that the DOS vanishes at the band boundaries.

In our model, the absence of the threshold is caused by
the singularity of the DO$(w?) < (Q2.,—»?) Y2 which is
provided by long-wavelength polaritons and is generic for

Equations(22)—(24) allow us to consider the local levels any dipole-active phonon mode with negative dispersion and

anywhere in the gap. Since the corresponding local statdsotropic spectrum. Such long-wavelength modes can exist in
present the superpositions of all normal modes of a pureubic crystals; however, even weak crystal anisotropy re-
crystal, we can qualitatively describe composition of themoves the singularity from the bottom of the gap. In a cubic
states comparing contributions inidw?) from different  crystal, the anisotropic terms appear beyond the quadratic
parts of the Brillouin zone and different bands. approximation of the phonon dispersion

As we showed above, functidifw?) has a singularity at
the bottom of the gap caused by the long-wavelendth (
~Kmaw polaritons. They also give the major contribution
into | (w?) inside the interval() < »<Qo However, even
for o=, their contribution is substantially weakened

02 (k) = Q- viK*+ xQ5(ak)*F (k). (30)
where x is the small parameter, arfd(k) is some aniso-
tropic function. The anisotropic term, as one can derive from
Eq. (8), makes the positionkg,,,) and the value of the maxi-
mum in the lower polariton branch)?,_,) dependent on the
crystallographic direction. In the case of a weak anisotropy,
the first effect can be neglected, afd (k) can be approxi-
where the leading term is provided by the short-wavelengtimated near the surfad€= k2. as follows:
polaritons that are indistinguishable from transverse-optical
phonons.

Outside the interval) ;< 0<QatA1/Qmax, function

1,(Q5) [1+ oBY)], (27)

02 (k) =02 [ 1+ xF(K)(aKnad*1— 4v2(k— Kpma 2.

I (»?) has a “phonon” structure. All terms related to the 3
polariton singularity are weakened by power factors of aA small magnitude of the anisotropic term,

small parameted /A, ~ 3. At the upper boundary of the

gap we obtain | XF(K)(@kma) |~ x B2, (32
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allows us to evaluate the asymptote of the DOS near théhe state moves away from the bottom of the gap. A long-

band boundary wavelength nature of the phenomenon allows us to analyze
the “impurity-strength-driven” crossover between polariton
p(w?)o jg do| V2 (k)| 1= (Q2— w?+A) "2 and pho_no_n local states. We_ found that the crossove/rztakes
K=o place within the frequency interval of the order Aff
(33  ~pY%0,. However, despite a small size of the crossover

where A~ y02,_(akua)F), and(F)~1 is the angular av- region, the photon-phonqn coupling sets a limit on the Width
erage of the anisotropic function. of the s_pectral gap allowing the_ same type Qf_ Iocal_states in
The crystal anisotropy removes the singularity of the DOSIhe entire gagEq. (29)]. We estimated the critical width of
from the bottom of the gap because it destroys the degenetd€ spectral gap and showed that, in the case of the isotopic
ated global maximum of the polariton spectrum. There arélefects, only light impurities support local states in “nar-
many other physical factors that help to wash this singularityOw" gaps.
out, such as a lattice inharmoniously, electron-phonon inter- In the isotropic model, the distinct features of the local
action, thermal fluctuations, and so on. However, it seemgpolariton states can be attributed to the singularity of the
unlikely that these factors can lower the DOS at the bottonDOS, p(w?)x(Q2,,—»?) 2 This singularity is caused by
of the gap from infinity to zero. On the other hand, it turnsthe long-wavelength polaritons and is generic for any dipole-
out that as long as the DOS has a nonzero finite value at thgctive phonon mode with negative dispersion and isotropic
bottom of the gap, the local polariton states near the bottorgpectrum. We show that a weak crystal anisotropy removes
have zero threshold and macroscopic localization radius. the singularity from the band bounddg. (33)], however,
Indeed, the equation defining the frequency of the locajt does not lead to a finite threshold for the local polariton
polariton state has a form states. We argue that the properties of the polariton states
(caused by negative dispersion of the long-wavelength opti-
Jszfnax f(e,w)p(e)de cal phonongare insensitive to other physical factors contrib-
02-a, wi—g uting to the finite DOS at the band boundary. At the same
time, elimination of the DOS singularity replaces the power-
wherep(¢) is the DOS, and the factdi(e,w) has absorbed law relation[Eq. (13)] between the impurity strength and the
the integration ovek directions and is regular and nonzero separation of the local state from the band bounderf
at the band boundaries. The singularity of the DOS, if there— (). )'/? with the logarithmic relationro — 1/In(w—Qpma)-
is any, helps us make a fast evaluation of the leading terngince our results are obtained in the long-wavelength ap-
([((0—Qma)] Y2 singularity of 1(w?) near Q2. How-  proximation, the state must lie close enouglf}g.,in order
ever, it is clear that unless the DOS tendgzéooat the band to ensure a macroscopic localization radius. On the other
boundary,| (w?) always has dloglike) singularity. For in-  hand, if w is too close toQ) ax, quantum fluctuations can
stance, accounting for weak anisotropy only, one can obtaidestroy the state. However, an analysis of these effects ex-
ceeds the limits of this paper and will be done elsewhere.
a(akma? wz—szax In the presence of a macroscopic concentration of impu-
1~= 372y AL2 A (39 rities, the local states can provide the transmission inside the
+ spectral gap. Sinck,. greatly exceedk,,, the transmission
This equation is valid near the band boundapf{- Qﬁ]ax regime critically depends on the impurity concentratimn
<A), and it explicitly shows thatr tends to zero when the When n™3<l,., an exponentially small tunneling prob-

l~a =al(w?), (34)

local state approaches the bottom of the gap. ability corresponds to a localized regime. Fgg~n~'3, the
resonant tunneling of excitations from one impurity to an-
V. SUMMARY AND CONCLUSIONS other gives rise to a diffuse propagation of the radiation.

When n~ % approachesd,,, the impurity band begins to

We considered local polariton states associated witiorm, and the transmission regime regains properties of the
pointlike defects in an isotropic dipole-active medium. Thecoherent propagation. Due to a macroscopic valué.gf
frequency interval available for these staté$g. 1) is ex-  this should occur at a very low concentration of impurities
tended from the top of the lower polariton bafid,, to the  na’=pg%2
bottom of the longitudinal phonon band. The local states Local polariton states provide a “phonon-assisted local-
arise at the bottom of the polariton gap for an infinitesimallyization™ of electromagnetic waves. However, our estimates
small value of the impurity strength. Our analysis shows show a strong suppression of the photon content of these
that neaQ) 2, they are composed from the long-wavelengthstatesWyno/ Wpnor~ 8. This is caused by the fact thighayis
polaritons. The typical momentum of these polaritdgs,,, ~ Much greater than the crossing-resonance momekgumo
defines the coherence length of the local statgg, €liminate this disproportion, one needs to lower the group
~aB Y2 The separation of these states from the bottom o¥elocity of electromagnetic waves in the active medium.
the gap, w— Q. defines their localization radiud,,, ~ This can be achieved in an active medium inside a narrow
~aB ta"102. Despite the atomic size of a defect, both Waveguide. For instance, the dispersion law of the modes
characteristic lengths are macroscopic. propagating in the parallel-plate  waveguidew/c

Local polariton states present the well-known phonon=/(7n/1)2+k?, provides the reduction of their group ve-
states with the field corrections taken into accountlocity in the long-wavelength region. Preliminary estimates
“Weight” of these corrections decreases @sncreases and show that forl ~10°a the phonon and photon velocities be-
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come comparable in the crossing-resonance region. The dand we denote 5;=(A, —A)/A,, and 6=(A, +w?
tailed analysis of a possibility of photon localization in thin —Q3)/A .

dipole-active films will be presented elsewhere. The second term in E¢A1) includes integration over the
crossing-resonance region where the polariton effects cannot
ACKNOWLEDGMENTS be neglected. Recalling that (w?) presents the integral

. . over the long-wavelength modes and using Edsand(20),
| wish to thank L. I. Deych and A. A. Lisyansky for useful we can rewritd | (?) in the form

discussions and comments on the manuscript. This work was
supported by a CUNY collaborative grant.

2_
APPENDIX Ii(wz):zj“g (Qg5—e)p,(g)de

3J02_(e—w?)(e— Q%)+ (wdv/c)?
In order to evaluate the transverse integral in &), we mal A o) * )

presentl, (w?) as a sum of two terms by separating the 16A; (1 x¥%(b—x)Y2dx
Brillouin zone into two parts: = J' .
o (X—a;)(x—a-)

= (A5)
37TAE

-1

L, 2[a)? L, 4P
| (o )252 fdk a)—QL—W
w2—

=1 (o) +1" (w?). (A1)

Hereb=A, /A, is a large parameter, and two poles of the
integrand are given by the equation

The first term,l| (w?), involves integration ovek<kj in- )

— _ .2 2 2\1/ 2 2\1/
cluding the crossing-resonance region, afifw?) presents ar_ZAl[QO w’*(0’=0?)w’- )], (A6)
the integral over the remaining part of the Brillouin zdke
>k{. The separating momentuh‘(g is convenient to fix by

the conditionQ? (k}) = Q2. (Fig. 1). where w2 = Q§+ A4, so thatw? coincides with the bottom
Sincek| is located far away from the crossing- -resonancedf the gapQ7.,. . 2
point, the productk in 1”7 (w?) greatly exceeds the typical I the interval o? <w?<w? , wherea. are complex-
phonon frequencies and there we candet » valued, we obtain
3
|I(w2)zz i f dk ZZEJ'QI'Znax pl(S)dSI U (02— 16Ai/2 2 V2 =377 1-v 1+v
3127/ Jieww2-02 3Joz-a, wz_S(AZ) Hw?)= 3% + 27 arctan ; +arctan—77
Using Eq.(22) for p, (¢), we can calculate the last integral +3V2— . (1—-v)%+ 7 A7)
16 dv (14 v)%+ 9P
I (0?)= 3.5 L(20- 1)arcsinyé;— V8, (1— 6,)
1
A=A (?)] (A3) where the parametensand » are defined by the equations
where
_ Qg—w
F(wZ) ve-—m :TAl, (AB)
O(1—061)+Vo1(1—6
+|n\/ ( 1) \/ 1( ) for szax$w2$ng
_ VO(1—61)—61(1—6) (03— )Y 02— w?)Y?

- 16— 1) , 2vn= 24, ' (A9)
_ 0 for w?=0%,
2arctal 51— o) ® 0

(A4) For w2>Q§+ A4, wherea.. are negative, EqA5) leads to

1 (0?)=

3247172 ( la, |*?arctana, |~ ?—|a_|*?arctana_| "2 (AL0)

37A%? la.|—la-|

Further straightforward analysis of the asymptotes|di»?) leads to Eqs(23)—(25).
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