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Whatever the preferred representation of the frequency dependence of electrical relaxation experimental
data, complex conductivity™* (w), complex permittivitye* (w), or complex electric modulus!* (), there
is no escape from the fact that we are dealing with measurements which are macroscopic in nature. The
guestion of how to relate the macroscopic measurement, which contains the high-frequency dielectric constant
€., to the microscopic movement of the ions remains to be answered. Comparing the results of a stochastic
transport theory and of the electric modulus formalism, we find that the electric modulus faithfully reproduces
the shape of the dispersion of the microscopic ionic movement. However, the electric modulus relaxation time
is different from the microscopic relaxation time by a known and calculable factor that is proportional to the
product of the high-frequency dielectric constant and temperature. Consequently, the entire electric modulus
relaxation time spectrum is shifted uniformly away from the microscopic ion relaxation time spectrum by the
same frequency-independent factor, and these two relaxation time spectra have effectively the same depen-
dence on temperature, isotope mass, etc. In contrast to electrical conductivity relaxation, nuclear spin relax-
ation is a microscopic probe of ionic movement, and from its result we can directly infer the microscopic
dynamics of the ions. A combined study of ionic motion using electrical relaxation and nuclear spin relaxation
in a crystalline ionic conductor by Leoet al. provides the experimental data to enable us to verify the
theoretical relation between the macroscopic electric modulus spectrum and the microscopic ionic hopping
relaxation spectrun{S0163-182@09)09537-5

I. INTRODUCTION value, which is called the high-frequency dielectric constant
e, . Althoughe,, is unrelated to the microscopic ion dynam-
The most commonly used experimental technique to charics, it comes with the electrical measurement anyway. For
acterize the dynamics of diffusing ions in glasses, melts, andny microscopic theory of ion dynamics, which does not
crystals is electrical relaxation measuremént8.The usual containe.,, the challenge that it faces in comparing with
method of studying electrical relaxation in these materials iexperimental data is how to take care of this unwanted quan-
to prepare a disk-shaped specimen with thin-film metal electity. In other words, it is incumbent on the proponent of any
trodes deposited on its two parallel faces. An ac bridge omicroscopic theory to incorporate, into the theory before it
similar arrangement is used to measure conduct@esd can be compared with the electrical measurement. Thus there
capacitanceC of the specimen as a function of frequerfcy is no escape from dealing with, for anyone who wants to
All the experimental information regarding electrical relax- deduce microscopic dynamics from macroscopic electrical
ation at a given temperature is containedifw) andC(w) relaxation data.
wherew (=27f) is the angular frequency. The real part of The so-called electric modulu€EM) formalism (Refs.
the complex conductivityr’ and the real part of the complex 1-4, 6-10, 13, 15-18, 20, 22, and 27581 the analysis of
permittivity e’ are obtain by the expressions =G(L/A) electrical relaxation starts with the argument that for mobile
and e’ =(Cleg)(L/A), whereL is the thicknessA is the ions the appropriate quantity to consider is the decay of the
area of the disk-shaped sample, ands the permittivity of  electric fieldE(t) under the constraint of a constant displace-
a vacuum. The measurements give us immediately the comment vectorD (t):
plex permittivity e* (w) =&’ (w) —i&"(w) and complex con-

ductivity o* (w)=0"'(w)+ic"(w)=iweee*(w), and the E()=E0)®(1), )
complex electric m:)duluM*(w) is related to the more fa- \nereE(0) is the initial electric field imposed andi(t) is
miliar &* (w) and o™ (w) by the electric field relaxation functiof0<®(t)<1]. In anal-
% - ogy to mechanical relaxation, in the frequency domain the
M*(w)=1/e"(w) @ electric field relaxation is related to the electric modulus as
and
M*()=M’+iM"
o*(w)=iweg/M* (w). (2 .
Thus e* (), o*(w) and M*(w) are just alternative and =M., 1—JO dtexp —iwt)(—d®/dt)|, (4)

interchangeable representations of the same data.
In all materials, electrical measurement«f(w) at suf-  where M,=lim,_ ., M'=1/lim,_ . &'=1/e, is a measure
ficiently high frequencies always gives a constant finiteof the “strength” of the electric field relaxation. In the EM
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formalism, the macroscopic conductivity* (w) is obtained . %
from Eq. (2) as iweo/M.[1— [;dtexp(iwt)(—dd/dt)]. ReD* (w)= fo coswt(v(T)v(0))dt, (6)
Therefore, in the EM formalisna., is incorporated into the
formalism from the start. As discussed in the last paragraptgnd to the mean-squared displacement of the cacifie¢t)
this step is necessary in order to make contact with electricat r(0)]%), by
relaxation measurement. 1
Workers in the field have used eithef (w), ¢*(w), or D* ()= ij —iot 2

: =—= e r(t)—r(0)]°)dt. 7
M* (w) to represent the data. At the present time there are (@) 6 0 {[r®-r(Or) @)
differences in opinions as to which representation is appro-_, . .
priate to interpret the microscopic movements of the ionsTh|s_form_f0r D*(w) naturally obeys the Kramers-Kronig
While these differences will be settled in the future, at this"€/ationship
time whichever representation is preferred let there be no 1 = ReD*(w)
mistake in recognizing that one is considering siaenedata —ImD*(w)= — d

) ; ; (w)=—p

and the data are obtained framacroscopicelectrical relax- ™
ation measurements. In order to deduce microscopic inforq,4 complex conductivity is given by the relations
mation of the movements of the ions, a theory of carrier
transport and the incorporation @f, is needed to bridge o* (w)=Ngu* (»)=(Ng?kT)D*(w), 9)
macroscopic electrical relaxation data and the microscopic ] ) o )
motion of mobile ions. One objective of this work is to show WhereN is the density of the mobile ions. In this work we
that there is a relation between the macroscopic data repré—ha" not take into account the possible correlation between
sented by the normalized electric moduMg (w)/M.. and successive hops of a mobile ion or cross correlation, which
the theoretical expression of the microscopic complex conWould have introduced into the right-hand side of E).the
ductivity o* (w) derived from the stochastic transport theory COTTelation factor or Haven ratify; . _
by Scher and La®! The results of the present paper show Whatever the mechanism of ionic transport, a calculation
that the shapeof the M* (w)/M.. spectrum is the mirror of o_*(w) needs_to det_erm!ng the probablhty _of finding a
image of the microscopic ion hopping relaxation spectrumCarrier at any point at timeif it was at the origin at=0.
However, the time scales of the two spectra are not the samg'® model used by SL to calculate such a probability func-
and shifted by a factor which is proportional to the productt'on is a generalization of thg cgg)\tlnuous—tlme random \_/valk
of &., and temperature. Thus the extent of the connection ofCTRW) of Montroll and Weiss*® These authors have in-

the macroscopic electric modulus to the microscopic movelroduced a way of incorporating a continuous-time variable
ments of the ions has now been ascertained and the EMNMO the basic theory of lattice random walks. In the model
formalism is still the choice to analyze the electrical relax-the basic quantity is the probability(s,t) At that the time
ation of mobile ions. between hops is in the interval,{+ At) and the displace-

In contrast to electrical relaxation, nuclear spin relaxationMent iss. Then(t), defined by
(NSR) is a microscopic technique. Measurement of NSR .
caused by the motions of ions provides direct information on H(t)=1— f Y(7)dr, (10)
the microscopic movements of the ions. Recently, rLeo 0
et al®® have used both electrical relaxation and NSR to study, -
the movement of ions in the crystalline fast ionic conductor
LigslagsTiO3. We shall show that their results verify the
proposed connection between thé* (»)/M., spectrum P(t)=2 w(s), 11
from electrical relaxation to the microscopic movements of S
ions as described by the stochastic transport theory of Scheg the probability that the ion remains fixed in the time inter-
and Lax. val [0t]. Although formulated on a lattice, the CTRWRef.
33(a)] has general applicability to stochastic transport in dis-
ordered systems including the random electron hopping in
chalcogenide glasses demonstrated by Scher and
In 1973, Scher and L&% (SL) published a theory of sto- Montrol**® and some other contexts in Ref. 34. Sources of

chastic transport of charged carrigiisns in our caspin  the distribution of hopping times such as different jump
disordered systems. These authors started from the NyquiBfobabilities and sites are subsumed in the funciiggt).
theorem, which relates admittan@mobility) and noise and In this work, neither the ion transport in ionically conducting
generalizes the Einstein relation between mobijlitynd dif- ~ glasses is described nor any theory of such is subscribed to.
fusion constand to nonzero frequency as NeverthEIGSS, the general appllcablllty of the CTRW and SL
theory of stochastic transport in disordered solids ensures the
o . validity of the following description of the microscopic ion
#*(0)=(q/kT)D*(w), () conductivity. We shall confine our consideration to the com-
mon situation that only one kind of mobile ion contributes to
whereq is the ion chargek is the Boltzmann constant, afdd the electrical relaxation. The description can be easily gen-
is the temperaturé The real part of the frequency- eralized to accommodate the possibility that more than one
dependent diffusion constanD*(w) is related to the kind of mobile ions makes their contribution by taking into
velocity-velocity autocorrelation functiofv(t)v(0)) by account theirj(s,t)’s in the description that follows.

. (8

e @ —w
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Differentiating Eq.(10),

d
)=~ 5 $(V. 12

If the spatial and temporal probability distribution of each

hop of the ion is independent of each other such ti{at)
can be written as a produqt(s) #(t) with 2 p(s)=1, then

calculating{[r(t)—r(0)]?) by the CTRW method and sub-

stituting it into Eq.(7), SL finally obtained the key result:

1 ~ ~
D*(w)=grimdio)f()/[1=P(w)], (13

where

M= ES $?p(s) (14

andJ(w) is the Laplace or causal Fourier transformyt)
defined by

Hw)= f;e-‘ww(t)dt. (15

IIl. RELATION BETWEEN STOCHASTIC TRANSPORT
THEORY AND ELECTRICAL RELAXATION

After the principal results of the stochastic transport
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compared with the macroscopic ors,,, obtained from the
EM formalism[Eg. (4)] via the Maxwell relatior[ Eq. (2)],

[
UEM(‘“):&‘OM*—?;)Z(SO/MOC)(iw)
1

1- fmdt e ot — E<1>(t)
0 dt

X

. (18

which is obtained from Eq92) and (4). This macroscopic
conductivity obtained from electrical measurement can be
rewritten explicitly as the sum of two different contributions,
a pure imaginary paiitwege.. and ogy jon(®),

(19

TEm(©) = 0y ion(®) Hiwege., .

Here oy ion(®) is the macroscopic conductivity coming en-
tirely from motion of ions and it is related to the macroscopic
decay functiond(t) by the expression

UEM,ion(w):(EO/Moc)(i )
the*iwt —iqn(t))
0 dt

>< o0
1—[ dte et
0

00)
—a‘b(t)

(20

theory of SL have been summarized in the above, we are
ready to find the relation between the normalized electric By comparing the expressions inside the curly brackets in

modulus functiorM* (w)/M., [see Eqs(2) and(4)] and the

Egs.(17) and(20), one finds that the microscopic conductiv-

theoretical expression for the conductivity of SL. A way to jty oé(0) and the EM macroscopic conductivity

show this is to rewrite Eq(13) using Egs(12) and(15), as

P w)
1- (o)

the‘i“t< —iqﬁ(t))
0 dt

w0 . d
_ —lot| _
1 fo dte ( —dt¢(t))

D*(w)=(r5,d6)(iw) =(r5nd6)(iw)

(16)

From Egs.(9) and (16), the complex conductivity can be

calculated fromg(t) by

otr(@)=(Ng?/KT)(r2 46)(i )

rdt ol 4 t
o € dt¢STT()

* —iw d
1_f0 dte t(_dtfl'JSTT(t))
(17)

The suffix “STT" is introduced in Eq(17) and from now on

oEmion(®) have similar functional forms. In spite of the
similarity in form, we hasten to mention thati;(w) and
oEmion(@) differ in their dependences o becaused(t)

and ¢s11(t) have different characteristic time scales, the
macroscopicrgy and the microscopiestr, respectively. As

we shall show later, this similarity between Edq&7) and

(20) leads us to identifyd(t/7gy) with ¢dgr(t/7577). This
identification gives a more basic interpretation to the macro-
scopic® (t/ 7gy) than the decay of the electric field at con-
stant displacement vector, as customarily done in the EM
formalism?~*?° The prefactors of the frequency dependent
terms in Eqs(17) and(20) are different. This is understand-
able because the microscopic conductivity, EL), is ob-
tained from the mean-square displacement, the frequency-
dependent diffusion constant, and the use of the Nyquist
theorem, which generalizes the Nernst-Einstein relation be-
tween the conductivity and diffusion constant to nonzero fre-
quency. On the other hand, the route to the macroscopic
conductivity, Eq.(20), of the EM formalism is through the
Maxwell relation. Both approaches, being based on sound
physical principles, are legitimate, albeit different ways to
obtain information on the dynamics of the iongs(t) as
well as ®(t) starts from the initial(i.e., att=0) value of
unity and decreases monotonically towards zero with time.

in all subsequent equations to indicate that the quantitieslowever, ¢sr(t) and®(t) are characterized, respectively,
including ¢(t) are obtained from the stochastic transportby two different characteristic time constams;+ and gy .
theory, which is assumed to describe correctly the microWe can go a step further in relating the STT and EM ap-
scopic ion dynamics. This theoretical expression is to bgroaches by rewriting Eq17) as
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<T§n<w)=(Nq2/kT)(fr2m46)(iw)[%—1]
o psri(w)
(21)
and Eq.(20) as
. 1
Temion( @) =(g0/M..) (i ) ~——1}. (22)
iwCI)EM(w)

Here we have introducedis () and&)(w) as the Laplace

RELATING MACROSCOPIC ELECTRICAL RELAXATION . ..

9399

ionic hopping correlation timegrt is satisfied, the two ex-
pressions for the complex conductivitg;ir{(w7srr) and
TEmion(®@Tem), become isomorphic to each other. However,
as a function of the actual frequeney o&( w) differs from
TEmion(®). When plotted against lagw, ogr(w) differs
from gy jon(@) Only by a horizontal shift of the whole curve
oEmion(@) parallel to the logyw axis with a shift factor
equal to logo( st/ 7EM)- This shift factor according to Eq.
(25 depends ore,, through the term log,e... The same
relation holds between Reir{(w)] and Réofy,(w)] be-

transforms ofps7(t) and®(t), respectively, and made use cause from Eq.(19) Rfogy(w)] is exactly equal to
of the relationship between the Laplace transform of the norRe ogy jon(®) 1.

malized functionspgr(t) and®(t) and that of its time de-
rivative, e.g.,

foolte*iwt —icb(t)
0 dt

Writing out explicitly the time dependences &f and ¢srt

as ¢ (t/mgy) and ¢psri(t/ 7571) to show explicitly their re-
spective characteristic times and using the ideniiw)

=7¢(w7) from Egs.(17) and(20), we arrive at the follow-
ing expressions:

=1—iw&)(w).

* 2 2 1
ost{w7str) =(NQ7/KT)(r{,,d6) —

7sTT
1 .
><|~——'wTSTT] (23
dsti{wTsT7)
and
" 1 .
TEmjon( @ Tem) = (80/MwTeM) = —lwTey | -
Py TENM)
(24

We observe that the expressions inside the curly brackets in
Egs.(23) and(24) have essentially the same structure. Both

¢(t/ rs17) and & (t/7gy) describe the dynamics of the ion

In general,rgy is not equal torgtt and they are related to
each other by the ratio shown on the right-hand side of Eq.
(25). Hencerg) cannot be identified with the microscopic
ion hopping relaxation timesrt. Depending on the material
parameters on the right-hand side of E2f), the two relax-
ation times can be very different. In fact, two systems with
identical microscopic ion dynamics and the samgr but
different values ok, will have two different values ofg),,
each related to the samet by Eq.(25). This dependence
of 7gy On e, is considered by some workers as a shortcom-
ing of the EM formalism. We do not agree with this opinion
because this invariably will occur in any representation of
the electrical relaxation data because the latter are from mac-
roscopic measurement whesg inevitably enters. Neverthe-
less, even considered as a shortcoming of the EM formalism,
this is a minor problem that can be overcome. Frasy the
microscopic relaxation time can be readily calculated by the
expression

To11=Tem(NGPr2,9/ (6kTegs.,). (26)

In the EM formalism, the dc conductivitggy qc iS calcu-
lated by the well-known relation

TeMdc= €08 /[ TEM 1M a)(wTEM)]EsOSOC/<TEM>'

wTgy—0
(27)
When substituting Eq25) into Eq.(27), the macroscopic dc

motion, the former microscopically and the latter macro-conductivity ogy ¢c turns out to give correctly the micro-

scopically. The variables st and w 7gy of the functions
inside the curly brackets in, respectively, E(&3) and (24)

scopic dc conductivityrsr gc, 1-€.,

Inst : ' : . N2 S _
indicate once again that the microscopic and macroscopi@emdc=NATimd[6kTrsrr lim  dsri{w7sr)]= 05T 00

dynamics occur at different times scales @fr and ¢y -
Except for this difference in time scalep(t/7s7y) and

orgTT—0
(28)

®(t/7gy) are the same functions of the reduced time vari-The consistency oérgy qc With the microscopic dc conduc-

ables. Similarly, their Laplace transforngss(w7s77) and

(TJEM(wTEM) as well as the entire structures inside the curly.

brackets in Eqs(23) and(24) are thesamefunctions of the
reduced frequency variablesrstt and w gy, . In particular,
they have the same value in the limits efrgr+—0 and
wtgy—0,  respectively.  Thus o&r{wrsry)  and
TEm.ion(@Tem) Will have equal dc conductivity as required if
the factors outside the curly brackets in E(&3) and (24)
are the same, i.e.,

7s11/ Tem= (NG?r i)/ (BK Tege..). 25

tivity explains whyogy 4. calculated by Eq(27) are always
in good agreement with experimentally measured
vaIue§‘4'1°’12‘13'20'27‘3°

Except for the slowly varying ~* factor in Eq.(25), the
temperature dependence of;r and 7gy, is the same. They
have about the same activation energy as long as the activa-
tion energy in temperature units is much larger tiae-
pendence ofsrt and gy on the isotope mass of the mobile
ion is exactly the sam¥. Therefore, many of the discussions
based on activation energy®and isotope ma$d° of ¢y,
remain applicable tastt and the theoretical interpretations
suggested continue to be valid.

Once this relation between the macroscopic conductivity re- It follows from ¢s{w7s77) and &)EM(wTEM) being the

laxation timergy, of the EM formalism and the microscopic

samefunctions of the variables gt and w7gy, respec-
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tively, that the normalized electric modulté* (wrgy)/M..  frequency dependenokw™® due to processes that are be-

~ H H H H 5,19,45-47
of Eq. (4) can be related to the microscopig{wrstr) by Ile\_/ed to be unrelated_ to the mobile ion mot_ﬂd’h‘. __
This feature ofc’(w) is general and found in most ionic

. . ~ . ~ glasses, in melts such as CKN, and in ionically conducting
M* (0 7em)/ M =10 Tey® (0 Tey) =T 0 Temdsri{ @ TsT7). crystals including Na g-aluming’ and yttria-stabilized
@9 irconid® and Lip sLag =TiO3.2° There are a number of indi-
cations that thé\w° contribution too”’ (w) is distinctly dif-
o0& w), this result_ Ieads_ to the important conclusion that{i%rr(]a rétulentg?%i‘%ﬁg;g?;{?ﬁg;”g igcrﬁ(?%nlzcisjrcg)\(/;t?/n;lc:?t{rl]téu
the shape of the dispersion M* (w7em)/(Mww7em) 0b- temperature dependence/fs extremely weak compared to
tained from the data analysis using the EM~formaI|sm can befhe thermally activated temperature dependence of the dc
identified with the shape of the dispersioniefsr{w7st).  conductivity o4 and of the frequency where’ (f) first be-
The latter originates from the microscopic movement of theyins to rise abovery.. Likewise, changes in the alkali-oxide
ions and determines the frequency-dependent transport Cogmle fraction in glasses have a much weaker effect on the
ficients in the microscopic stochastic transport theldy.  value ofA than they do on the dc conductivity. The same is
(23)]. Therefore, the shape of the observed loss peak ofye for the substitution of one alkali for anothghe mixed
Im[M*(w7ev)/M.] is uniquely determined by the move- ajkali). Finally, changes in the thermal history of the same
ment of the ions. This correspondence between the EM forglass which change the dc conductivity. by nearly half an
malism and the stochastic transport theory, though not totallyrder of magnitude have no effect on the valueddf
exact[i.e., there is a difference in the relaxation times as Hence, from the experimental facts! (o) is the sum of

given by Eq.(25)], also justifies the fact that the electric o distinct contributionsAw®® and ol (o), ie. o' (o)

modulus has a theoretical basis, e.g., the stochastic tranqutairm(QHAwl.o_ The former is unrelated to the ion diffu-

th?ory of ?fhef and .Lax. Altrloughz,\,, differs from 7srr byf sion, and the latter is the contributed by the movement of the
a factor, t §~d|sper5|ons_dﬂ (“’TEM)/(Mw“”EM) and of  j5ns. When the data are represented by the EM formalism,
the quantityi gsri{w7sr7) In the stochastic transport theory ! () is the real part ofr%,(w) or, in view of Eq.(19), is

are exacFIy the same. Therefore, any dispgrsion coming froq}éM’ion(w)’ the real part OfU’EM,ion(w)- Thus, in real ionic
ion hopping and picked up by the stochastic transport theor

) \ . Ol¥onductors, the measured macroscopic conductixity) is
in Eq. (23) will be seen exactly in the same shape or form iNthe sum
the EM representation of the data as a functioweg,, or at
frequenciesw in the neighborhood of#cy) ~1. ) , 10
It is worthwhile to point out from Eq(25) that the quan- o' (@)= 0oy jon( @) T Aw™" (30)

tity (eq/M..7gpm) ON the right-hand side of Eq24) is inde- L ) ) ) )
pendent ofs... Hence, as a function obrey, the ionic  The Aw' term is equivalent to a constant dielectric loss

AS”ZA/SO.

given by Eq.(24), is independent of the value of the high- When analyzing electrical relaxation data to gain informa-
tion on ion dynamics, one must bear in mind the omnipres-

frequency dielectric constast, . In the Appendix we sum- - A :
marize the relations between quantities of STT and EM forence of the additional contribution in the form of either the

malism and reemphasize the fact thafy . (®7ey) iS constant loss to the dielectric lossAnto the ac conduc-
uniquely determined byb(t/7e,) andvice vé(;gaindepen- tivity o' (w). lonic conductors, at1 Qigher concentrations of
dent of the value of the high-frequency dielectric constant/°"S and temperatures, havio ™~ much weaker than

L

e oemion(@) for frequencies extending from low frequencies
Before closing this section, some remarks on the CTRWHP to at least some decades above the onset frequency of the

used by Scher and Lax are appropriate. In the past, Tu}?a|eycor]ductivity relaxation,w,,, , dt_afined as the frequency at
made a literal interpretation of the CTRW procedure of SLWhich the measured’(w) has risen to twice the dc conduc-
as an ongoing renewal process which led to frequencyt-"_"ty Igvel._The example of sodium trisilicate glass has been
independenD* (w) and o* (w). This difficulty is removed ~9iven in Fig. 2 of Ref. 46. It can be seen there that E?.t fre-
by a proper treatment of the CTRW problem as demonstrate@luéncies equal ta,, and below the measured’(w) is
by Lax and Schéf and otheré:~*3 Also, a formal equiva- aPproximately the same asgyon(@). In particular, the
lence between the averaged particle transport in disorderdfi€asuredog. is practically the same asgy 4., Which is
systems and the generalized master equation or the CTRYglated torgy or the mean(rgy) by Eq.(27). The recipro-
theory was established by Klafter and Sildélthough the ~ cals of 7gy and (7gy) are approximately the same as the
CTRW as a theory is on firm grounds, it may not be generafrequency w, of the M"(w) peak exhibited by the data.
enough to describe any model of charged carrier transpoMhen the condition above holdsgy ;,,(®) rises rather rap-
such as that proposed by Maastsal ** idly and it is invariably found thatrgy) '~ w, is compa-
rable tow,, . For the Na trisilicate glass see Fig. 1 of Ref.
20(c), and for another example see Fig. 5 of Ref(a20
However, the situation is quite different for ionic conduc-
tors containing low concentrations of mobile ions. The
Experimentally, it has been repeatedly found in electricaM”(w) peak is nearly Debye-like witkb (t) ~exp(—t/7zpy)
relaxation measurements®192’=%0that there is an addi- in Eq. (18). An example can be found in Fig. 3 of Ref. 46.
tional contribution tos’ () having approximately the linear The correspondingrgy io(w) calculated fromM* (w) by

Since psrr{ wTs7r) appears in the expressi¢Rq. (23)] for

motion contribution to the conductivityggy i@ Tem),

IV. EFFECT DUE TO THE CONSTANT LOSS
CONTRIBUTION TO ELECTRICAL RELAXATION
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Egs.(18) and(19) has a very slow rise with frequency above kink which on the one hand enables the data to fall approxi-
wp~(7em) L. For the example of the Vycor glass shown in mately on a master curve with the other glasses, but on the
Fig. 3 of Ref. 46, theM”(w) peak of which has been fitted other hand it casts doubts on the data. In similar glasses
by the stretched exponential function®(t)~exp XK;0-(1—x)GeG, studied by Jain and Krishnaswami the ac
(—t/7em)®% the correspondingrfy, (@) rises abovery, ~ conductivity curves forx=0.0023 and 0.20 have different
slowly with the approximate powe’r lawef )%, Such a shapes(see Fig. 6 of Ref. 49and cannot be scaled to a
slow rise of oy . (w) has the consequen?:es tHat o single master curve no matter what scaling factor is used
. EM,ion . 20 including the form proposed in Ref. 53. The same applies to
will be much larger tham, had this been the only contribu- o
tion 1o th ductivie i) the actual il b the data 0fxNa,S- (1—x)B,S; with x=0.0010 and 0.018
lon 1o the ac conductivity andi) the actua ‘,"2" WIT B and to the comparison of the Vycor glass with the Na trisili-
determined by the regime when eventually,; ,,(w) is

| ) o 4 cate glass shown in the inset of Fig. 2 in Ref. 46.
dominated by the much more rapidly risifgs*° contribu-
tion. In effect, w,, is determined by the rise of'(w)
= ofpion( @) +Aw'? caused effectively by thAw'? contri-
bution. Therefore, in this case,, can be much larger than  Unlike electrical relaxation, nuclear spin relaxatiiSR)
w,. For the Vicor glass, Fig. 3 of Ref. 46 shows that is a microscopic probe of the motion of the ions. At the
(wp/2m)~10 Hz, while Fig. 2 of Ref. 46 indicates that Larmor frequencyw , the NSR ratel; Y(w.,T) is given by
(wy,/2)~4Xx 10° Hz. Also, they could have very differ- the expression
ence temperature dleopendences. Siage is determined 1

rincipally by theAw*" contribution unrelated to ion diffu-

Eion, Fi)ts 3|/”na)é;nitude bears no direct connection to the ion Ti(w,,T) =Cl(oL, T)+4J(20,, )], (3Y)

hopping frequency, whether macroscopic or microscopic. , . .
Beyondw,, , o’ () rises rapidly and in a short interval has Where C is the coupling constanti(w,T) is the spectral

attained theAw'© dependence. This behavior, shown for thedensity functio_n which i_s the real part of th_e Fourier trans-
Vicor glass in Fig. 2 of Ref. 46, is foufiflalso in the potas- fOrm of the spin relaxation correlation functighy(t/7s),

sium germanate glasd<,0-(1—x)GeO, with x=0.0023 of .

Jain and Krishnaswandt and inxNa,S-(1-x)B,S; with x J(w,T)ERei bt/ r)exp —iwt)dt. (32)
=0.001 of Patel and Martirf Since the rise ofr’(w) in 0

ionic conductors with low ion concentrations principally re- ] ) ] )
flects theAw ™ contribution, it should not be interpreted as Let us ignore, for the remainder of this section, the fact that

originating from the dynamics of diffusion ions. Neverthe- nuclear spin relaxation and macroscopic conductivity relax-

less, other workers apparently have not taken these facts in@ioNn in ionic glasses have different frequenzc;ysﬁdispersions
consideration, leading them to make erroneous statement&’

V. EXPERIMENTAL VERIFICATION

d hence different time correlation functicis2>*6a point

These statements include, “The modulus analysis ignore¥€ shall return to disfcusshin the ”'“il)_(t SefCtior_" Such addiffer-
; " _ence is nonexistent for the crystalline fast ionic conductor

Sty of more mobile charge carfers mplies faster foni re-Liod 2 TiO, (LLTO), as found by Lép etal?® Then, in

laxation and thus a higher onset frequency of the conductiviliS case, since spin relaxation is a microscopic property,

ity dispersion. At very low number densities of mobile ®s(t/7s) is to be identified with the microscopic ion hopping

charge carriers, th&1” peak therefore occurs in the dc re- correlation functlork;SSTT(t/rSTT). Substituting the latter for

gime, and in shape it approximates to a Debye peak. Thifhe former into Eq(32), we have

does not, of course imply an entirely frequency independent .

conductivity. The characteristic dispersion in conductivity is _ i —Pa

still present(Ref. 50 herg but it lies outside the dynamic e, T) Reio st/ rsrexp —lot)dt=Redsi(w),

window of the modulus formalism,” made by the authors of (33

Ref. 51. Another statement is, “In glasses where there are -

few charge carriers, the modulus peakhich scales with Where ¢sr(w) is the Fourier transform ofsri(t/7srr) as

040 is shifted to lower frequencies where no dispersion isdefined in a previous section.

experienced_ The narrowing of the modulus Spectrum is Leon et aI.29 obtained both the macroscopic electrical re-

identified as an artifact of the data analysis,” made by thdaxation and microscopic lithium nuclear spin relaxation data

author of Ref. 52. Some authdts$® proposed that the ac ©n LLTO. In the measurement temperature range, the La ion

Conductivity datar’(w) of ionic giasses at all concentrations is eﬁeCtively immobile and Li is the sole mobile ion contrib-

can be scaled by one way or the other to a master Curvé].ting to both electrical relaxation and nuclear Spin relaxation.

Reference 53 demonstrated successful scaling for four Sd[hey fitted their electrical relaxation data in the EM formal-

dium germanate glassesNa,O-(1—x)GeO, for x=0.1, iSm by choosing the stretched exponential [ex{t/7ey)”]

0.03, 0.01, and 0.003. We point out that while the author ofor ®(t/7¢y) and found that the stretch expongsihas the

Ref. 53 recognized that there is an additive'© contribu- ~ temperature-independent value of 0.40. Instead of working

tion to the ac conductivity due to processes unrelated to th#ith the numerical values of the Fourier transform of the

cation diffusion, no attempt is made to subtract it off. Forstretched exponential foM*(w), which is inconvenient,

these glasses, thew™© contribution is not negligible, and they used the approximate expression

until it is subtracted off fromo'(w), the result is unclear.

The pivotal data of the lowest concentratios 0.003 have a M* ()M =iol[ogyjon(@)/e0etiw], (34
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which results from Eqs(2) and (19), and approximated The same expression can be obtained from 28) given
TEmion(@) therein by the analytic form previously. Using the approximation tefy; ;,,(®) given by

. _ either Eq.(35) or (36), ) can be rewritten as
Eion @)= 0 1+ (10l (Tgeleoe) TP (39) 939 or (36), Deu(w)

. . . ~ 1
As far as LLTO is concerned, the approximate expression &g\ (w)= i -
given by Eq.(35 has proved to fit the experimental data (04c/e0e {1+ [iw/(0gc/e08) |7 Fi+iw
satisfactorily. From the well-known relation of the EM for- (39
malism, og.=eoe../(7em), Where (rgp)=[oP(t/7em)dt,  Sincedsri(w) andPgy(w) have the same functional form,

one rewrites Eq(35) as but differ only in the time scaleli.e., ¢sr(t/7517)
. _ 1-p =®d(t/mgy)], then we can obtain the former from the latter
TEmion( @) = oad L+ [To(Tem)]™ 7} (36)  py scaling all quantitiessy./eqe.. appearing in Eq.(39)
. . 71 . .
By partial integration of Eq(4), the Fourier transform of (Which is(7ey) ™) by the ratiorgy/7s7r. According to Eq.
D(t) is (25), this scaling factor is equal t6/T,, i.e.,
~ Tem(T) 7sr(T) =T/To, (40)
= * i
Pep(w)=e.M* (w)liw. (37) where
Substituting Eq(34) into Eq.(37), Leon et al. arrived at the
result, To=(NQPr i)/ (Bkege-). (41)
~ . , After the scaling is performed to obtaifiss(®), the spec-
Pep(w) = U ogy jon( @)/ epestiw]. (38)  tral density function, Eq(33), is obtained as
J =R ! 42
()= RE 0o (TITo {1+ [T/ (0 glege.) (T - Pl 10| (42)

The parameters of LLTO appearing in E41) are known.  which indicates that, af .y, the NSR time,rst( Ty, iS
They areN=2.16x 10°’m~3, r2 =(3.87x107192m? and  shorterthan the conductivity relaxation timegy(Tma)- Al-
£08,=7.5X10°Fm L. The calculated value off, for  though 7st(Tne) is only a factor of 2.3 shorter than
LLTO is 135 K. Lem et al. used this expression fal( w) Tem(Tmay @nd may be considered to be practically equal to
and Eq.(31) to calculateT; *(w, ,T) from the macroscopic each other, their relation to each other is to be contrasted
electrical conductivity relaxation data of LLTO, including With a very different one found in several ionic glas&&s®

04er €., and the stretch exponeg There is good agree-  The experimental data on ionic glasse$>*>*%how that
ment between the calculated values and the actual experi-
mental NMR data of LLTO as shown in Fig. 1. This good

agreement verifies thapsr{w7sy) and &)EM(wTEM), as

well as the correspondingst(t/ 7s17) and ®(t/rgy), are
the same functiorii.e., having the samg in the stretched
exponential functionsof the reduced frequency and reduced
time, andrgy, is related to the microscopitsrt by Eq. (25

in LLTO.

VI. DIFFERENCE BETWEEN LLTO AND IONIC
GLASSES

NMR measurements in LLTO by Lecet al?® are made

in the temperature range from about 170 to 500 K, encom- 10 10°% 10* 10° 10°

. . 1 . FREQUENCY (Hz)
passing the maximum off; “(w_,T). The maximum of T T T
T;Y(w,,T) with o, =20 MHz is located aff n,~310 K. 2 3 4 5
Therefore the ratiol/T, is always larger than 1, but no 1000/T (K'1)
greater than 4 in the entire temperature range. The ratio
Tmax/To IS @about 2.3. The nuclear spin relaxation correlation FIG. 1. Temperature dependence of LAt 10.6 MHz(®), 20
time atTnax, Tst{Tmay, CUstomarily is taken to be equal to MHz (M), and 31 MHz(A). Solid lines are theoretical values for
w_ because the maximum dffl(wL ,T) occurs at a tem- 1/T, obtained from the experimental electrical conductivity relax-

perature whenw, 7s1(T)~1 is satisfied. According to Eq. ation data at the same frequencies. The inset shows the imaginary
(40) we have the relation part of the electric modulus at several temperat(t&9, 193, 206,

221, and 235 K Solid lines in the inset are fits to a stretched
TeEM(Tmad/ TsTH{ Tmaxd = Tmax! To (43)  exponential function for the electric modulus relaxation function
Dev(t/ Tem)-
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the spin-lattice relaxation timey(T ., is several orders of comparedes(t/7s) =exd —(t/79)* "] with the ion hopping
magnituddongerthan ey (Tma)-. FOr example, in the glassy correlation functiongs(t/ 7srr) = exd — (V/7srn)* = "sT1] in-
fast ion conductor (Li,;S)osdSiS)oas the ratio stead of with®(t/rgy)=exd —(t/7eym)' "o]. Nonetheless,
Tem(Tmad/7(Tma) is about 51073 at w =4 MHz. Based Since ngrr is equal to ngy because ¢sri(t/7s7r) and
on the finding thaf 7epm(Tma/ 7(Tmay ]=2.3 for LLTO and ®(t/7gy) are the same function of the reduced time aggr
the non-Arrhenius temperature dependence of its dc condu@nd ey have the same activation ener@ge near the end of
tivity, Leon etal?® suggest that the assumption of an S€c. 1), the conclusions reached in earlier works on ionic

Arrhenius law for the temperature dependence of the dc Corglasse%6 remained unchanged. In the future we shall revisit

ductivity of ionic glasses may not be true and it contributesNiS Problem in ionic glasses to compare nuclear spin relax-

to the large but apparent discrepancy between the two time@.ti?n Wm; th? tmig:ro_sco|pic concli_tlj_(%figit_y rela>;a'|t|ipn. The di
Al data of (LizS)osdSiSplos cited were taken within the & ool SR b e erystallin Jattice, and
glassy state. It is possible that at the higher temperaiyke y Y '

FNMR m rement the extrapolated val T this eliminates the enhancement of the correlation between
0 easureme € extrapolate auefgit,,(_ ma) ions at shorter separation distances for the nuclear spin re-
by the Arrhenius law has the order of 18 s and will ex-

) . X laxation in glasses. Henag,~n, for LLTO, and it follows
hibit a slight departur_(ke_)afrom the Arrhenius dependenpe 4% om the theoretical explanation of the difference between
seen in some othéf;>® though not all, glassy fast ion

7 . . "' nuclear spin relaxation and conductivity relaxafforthat
g?r}ﬂ?(g)ori;gzv)veveig 'L}:qe”:re?gvé?r:gjsthtehzcggggﬁg:g"% LLTO is a special case, having effectively no difference be-
2705 044 > - : : tween 7{(T a0 and the microscopic conductivity relaxation
Tem(Tma) =10 10 s is slight and cannot explain the two or- 7s( Tma) b y

ders of magnitude difference betweers(T,.) and time TSTT(-[:maX). This prediction is consistent with the find-

ing of Len etal. in LLTO that [75(Tmad/em(T
7em(Tma). Moreover, the same result thatsr(Tma) %%1/2.3) and [ raro(Trad mens(T ax)][:é/;.‘%). E‘IMr(wga)i)/\]/e
>1em(Tma) Was found* in heavy metal flurozirconate ST max’ EML om

| : | . laxation in the rotating f conclude that the LLTO data of Let al.lend further sup-
glasses using nuciear spin refaxation in the rotating frame $ort to the explanation of the difference between nuclear spin

a_TUCh lower frequency. In this case, the measurement elaxation and conductivity relaxation given by Ref. 36.
T1, (0w, T) was ate =25 kHz and in a temperature range

in the glassy state where the temperature dependences of

7s77 and 7gy undoubtedly have the Arrhenius form. Hence VIl. CONCLUSION
we conclude that the interesting suggestion of e al.
cannot be an explanation of the effect found in glassy ionig
conductors. From the relation betweery{(Tma) and

Conductivity relaxation is obtained by a macroscopic
easurement, and it is not immediately clear how it is re-
. lated to the microscopic ion hopping motion. By comparin
TEM(Tmé_lx) given by E_qs..(40) and (41) and 9fa”ted thal the results of a StOChEEStiC microps?:ogic transporty theors of tge
ande.. in the glassy ionic conductors and in LLTO are not g namics of ionic movement with the electric modulus rep-
too different, there is the possibility thB]iﬂS is larger for the  regentation of the macroscopic conductivity relaxation data,
former than the latter. The value of,sin LLTO was esti- e have shown that the form of microscopic ion hopping
mated from I, measurements to be 3.7 A, a distance closgorrelation function is faithfully reproduced in the electric
to that found between tha sites of the perovskite structure mggulus formalism. This correspondence between the micro-
(3.8 A).?° Neverthelessr ., in the glassy ionic conductors scopic description and the electric modulus analysis of the
has to be larger by more than two orders of magnitude thamacroscopic measurement of ionic motion indicates that the
the lattice spacing distance of LLTO in order that this canglectric modulusM* is the most suitable representation of
explain the observed value of the ratigy(Tmad/7sT{Tmax):  macroscopic data compared with other alternatives, &g.,
Such a large 7 is unphysical, and this possibility can also and o* . However, the macroscopic conductivity relaxation
be ruled out. time obtained from the electric modulus analysis of the data
One current explanation of the result thair(Tn.)  differs from the microscopic ion hopping correlation time by
>7em(Tmay is based on the proposal that the correlationa known factor, which is a weakly temperature-dependent
functions of nuclear spin relaxation and of electrical conducfactor. Consequently, the two times have practically the
tivity relaxation are different in glassy ionic conductd?$?  same thermal activation energy and other dependences on
The structural disorder present in ionic glasses engendersvariables such as the isotope mass of the diffusing ion.
greater importance to interactions between ions at a shorter Nuclear spin lattice relaxation and conductivity relaxation
separation distance in determining the nuclear spin relaxatiogata of the crystalline ionic conductor Jd.a, <TiO3 ob-
correlation function exp-(t/7)'~"™] than the conductivity tained by Léa et al. have been employed here to demon-
relaxation correlation function ekp (/=) "v]. Asacon-  strate that in this crystalline conductor the nuclear spin re-
sequence of the enhanced correlation between theQns, laxation correlation function is in every respect the same as
larger thann,, which indicates that the dispersion of spin the microscopic ion hopping conductivity correlation func-
relaxation is broader, as confirmed by experinf@nt>*® tion. The latter has been calculated from the macroscopic
The application of the coupling mod@lexplained the vari- electrical relaxation data, according to the relation between
ous differences in the properties of nuclear spin relaxationhem established in this work. Thus the nuclear spin relax-
and of electrical conductivity relaxation including ation data enable us to verify the relation between the mac-
[7s(Tma/TEm(Tma]>1. Monte Carlo simulation of the roscopic conductivity relaxation function and the micro-
closely related disordered Coulomb lattice gas mdat-  scopic ion hopping correlation function, the principal result
rived at the same conclusions. In retrospect, we should hawef this work. The property of crystalline LLTO is distinctly
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different from ionic glasses. The ionic glasses exhibit a largén spite of the identitieA1)—(A3) as functions of the re-
difference between nuclear spin relaxation and conductivityduced frequency and reduced time, the corresponding mac-
relaxation. The suggestion that the possibility of a non-roscopic and microscopic quantities differ, in general, as a
Arrhenius temperature dependence of the dc conductivitjunction of the actual frequency or timet. Thus, for ex-

like that found in LLTO can explain the large difference in ample, one cannot identifgp(t) with ¢(t). However, one
ionic glasses is examined and dismissed in view of experiean identify® gy (t/ 7ey) With ¢sr1(t/ 7s17) as stated by Eq.
mental data. However, the property of LLTO turns out to be(A3). According to Eq(A6), &.,/ gy is independent of., .

a special case, which is consistent with the explanation of th&hus oty ;,(@ 7em) in Eq. (A5) as a function of the reduced

large difference offered previously for ionic glassés. frequencyw gy is also independent of,, .
Let us consider two systems having one and the same
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«r’éﬁx)=(Noﬁ/kT)(rﬁm./@—[~ —ix]
APPENDIX TSTT | ds1(X)

The relations between the microscop&TT) and macro- 1 1 _
scopic(EM formalism) descriptions are summarized here as :UEM,ion,i(yi)=808w,i— — 1Y,
follows: TEMi | PeyilYi)

Temion @ Tem) = os{ @ 7sT7), (A1) (A7)
wherex=wrgrt, Yi=w7gy;, andi=1,2. From Eq(A6) it
D ey wTey) = Pt 0TsT7), (A2) follows that the factors outside the curly brackets on the
el Tem) = Pstl @ TSt extreme right-hand side of EGA7) are independent of the
Dyt Tem) = st/ 75T7)S (A3)  systemi because
1 €081/ Tem1= €08 2/ Tem 2= (NP1 50/ (6K Tsry).
ot (0rs)=(NGYKT)(r2,J6) — (A8)
TsTT Furthermore, from EqA2) we have
1 ~ ~ ~
X ‘ —i wTSTT] . (A4) Pey(@07em1) = PemA 0 Tem 2 = dsti{@7sT7). (A9)
bsti{wTsTT) Becauses.. 1# €., EQ. (A7) implies that the macroscopic
relaxation timesrgy ; of the two systems are different, but
. 1 1 . from Eq. (A1) we have
TEMion( W TEM) = €080 T—————loTem,
TEM cI)EM((‘UTEM) UEM,ion,l(wTEM,l):O'EMJon,z(wTEM‘Z):UETT(wTSTT)-
(A5) (A10)
and Equation(A10) being valid means that
rsr! TEm=(NGPr 2,9/ (6k Tege.. ). (A6) TEmion @) # TEyion A ®)- (A11)
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