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Relating macroscopic electrical relaxation to microscopic movements of the ions
in ionically conducting materials by theory and experiment
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Whatever the preferred representation of the frequency dependence of electrical relaxation experimental
data, complex conductivitys* (v), complex permittivity«* (v), or complex electric modulusM* (v), there
is no escape from the fact that we are dealing with measurements which are macroscopic in nature. The
question of how to relate the macroscopic measurement, which contains the high-frequency dielectric constant
«` , to the microscopic movement of the ions remains to be answered. Comparing the results of a stochastic
transport theory and of the electric modulus formalism, we find that the electric modulus faithfully reproduces
the shape of the dispersion of the microscopic ionic movement. However, the electric modulus relaxation time
is different from the microscopic relaxation time by a known and calculable factor that is proportional to the
product of the high-frequency dielectric constant and temperature. Consequently, the entire electric modulus
relaxation time spectrum is shifted uniformly away from the microscopic ion relaxation time spectrum by the
same frequency-independent factor, and these two relaxation time spectra have effectively the same depen-
dence on temperature, isotope mass, etc. In contrast to electrical conductivity relaxation, nuclear spin relax-
ation is a microscopic probe of ionic movement, and from its result we can directly infer the microscopic
dynamics of the ions. A combined study of ionic motion using electrical relaxation and nuclear spin relaxation
in a crystalline ionic conductor by Leo´n et al. provides the experimental data to enable us to verify the
theoretical relation between the macroscopic electric modulus spectrum and the microscopic ionic hopping
relaxation spectrum.@S0163-1829~99!09537-5#
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I. INTRODUCTION

The most commonly used experimental technique to ch
acterize the dynamics of diffusing ions in glasses, melts,
crystals is electrical relaxation measurements.1–30 The usual
method of studying electrical relaxation in these material
to prepare a disk-shaped specimen with thin-film metal e
trodes deposited on its two parallel faces. An ac bridge
similar arrangement is used to measure conductanceG and
capacitanceC of the specimen as a function of frequencyf.
All the experimental information regarding electrical rela
ation at a given temperature is contained inG(v) andC(v)
wherev (52p f ) is the angular frequency. The real part
the complex conductivitys8 and the real part of the comple
permittivity «8 are obtain by the expressionss85G(L/A)
and «85(C/«0)(L/A), where L is the thickness,A is the
area of the disk-shaped sample, and«0 is the permittivity of
a vacuum. The measurements give us immediately the c
plex permittivity«* (v)5«8(v)2 i«9(v) and complex con-
ductivity s* (v)5s8(v)1 is9(v)5 iv«0«* (v), and the
complex electric modulusM* (v) is related to the more fa
miliar «* (v) ands* (v) by

M* ~v!51/«* ~v! ~1!

and

s* ~v!5 iv«0 /M* ~v!. ~2!

Thus «* (v), s* (v) and M* (v) are just alternative and
interchangeable representations of the same data.

In all materials, electrical measurement of«8(v) at suf-
ficiently high frequencies always gives a constant fin
PRB 600163-1829/99/60~13!/9396~10!/$15.00
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value, which is called the high-frequency dielectric const
«` . Although«` is unrelated to the microscopic ion dynam
ics, it comes with the electrical measurement anyway.
any microscopic theory of ion dynamics, which does n
contain «` , the challenge that it faces in comparing wi
experimental data is how to take care of this unwanted qu
tity. In other words, it is incumbent on the proponent of a
microscopic theory to incorporate«` into the theory before it
can be compared with the electrical measurement. Thus t
is no escape from dealing with«` for anyone who wants to
deduce microscopic dynamics from macroscopic electr
relaxation data.

The so-called electric modulus~EM! formalism ~Refs.
1–4, 6–10, 13, 15–18, 20, 22, and 27–30! for the analysis of
electrical relaxation starts with the argument that for mob
ions the appropriate quantity to consider is the decay of
electric fieldE(t) under the constraint of a constant displac
ment vectorD(t):

E~ t !5E~0!F~ t !, ~3!

whereE(0) is the initial electric field imposed andF(t) is
the electric field relaxation function@0<F(t)<1#. In anal-
ogy to mechanical relaxation, in the frequency domain
electric field relaxation is related to the electric modulus

M* ~v!5M 81 iM 9

5M`F12E
0

`

dt exp~2 ivt !~2dF/dt!G , ~4!

where M`5 limv→` M 851/limv→` «851/«` is a measure
of the ‘‘strength’’ of the electric field relaxation. In the EM
9396 ©1999 The American Physical Society
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PRB 60 9397RELATING MACROSCOPIC ELECTRICAL RELAXATION . . .
formalism, the macroscopic conductivitys* (v) is obtained
from Eq. ~2! as iv«0 /M`@12*0

`dt exp(2ivt)(2dF/dt)#.
Therefore, in the EM formalism«` is incorporated into the
formalism from the start. As discussed in the last paragra
this step is necessary in order to make contact with electr
relaxation measurement.

Workers in the field have used eithers* (v), «* (v), or
M* (v) to represent the data. At the present time there
differences in opinions as to which representation is app
priate to interpret the microscopic movements of the io
While these differences will be settled in the future, at t
time whichever representation is preferred let there be
mistake in recognizing that one is considering thesamedata
and the data are obtained frommacroscopicelectrical relax-
ation measurements. In order to deduce microscopic in
mation of the movements of the ions, a theory of carr
transport and the incorporation of«` is needed to bridge
macroscopic electrical relaxation data and the microsco
motion of mobile ions. One objective of this work is to sho
that there is a relation between the macroscopic data re
sented by the normalized electric modulusM* (v)/M` and
the theoretical expression of the microscopic complex c
ductivity s* (v) derived from the stochastic transport theo
by Scher and Lax.31 The results of the present paper sho
that the shapeof the M* (v)/M` spectrum is the mirror
image of the microscopic ion hopping relaxation spectru
However, the time scales of the two spectra are not the s
and shifted by a factor which is proportional to the produ
of «` and temperature. Thus the extent of the connection
the macroscopic electric modulus to the microscopic mo
ments of the ions has now been ascertained and the
formalism is still the choice to analyze the electrical rela
ation of mobile ions.

In contrast to electrical relaxation, nuclear spin relaxat
~NSR! is a microscopic technique. Measurement of NS
caused by the motions of ions provides direct information
the microscopic movements of the ions. Recently, Le´n
et al.28 have used both electrical relaxation and NSR to stu
the movement of ions in the crystalline fast ionic conduc
Li0.5La0.5TiO3. We shall show that their results verify th
proposed connection between theM* (v)/M` spectrum
from electrical relaxation to the microscopic movements
ions as described by the stochastic transport theory of S
and Lax.

II. THEORY OF SCHER AND LAX

In 1973, Scher and Lax31 ~SL! published a theory of sto
chastic transport of charged carriers~ions in our case! in
disordered systems. These authors started from the Nyq
theorem, which relates admittance~mobility! and noise and
generalizes the Einstein relation between mobilitym and dif-
fusion constantD to nonzero frequency as

m* ~v!5~q/kT!D* ~v!, ~5!

whereq is the ion charge,k is the Boltzmann constant, andT
is the temperature.32 The real part of the frequency
dependent diffusion constantD* (v) is related to the
velocity-velocity autocorrelation function̂v(t)v(0)& by
h,
al
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ReD* ~v!5E
0

`

cosvt^v~T!v~0!&dt, ~6!

and to the mean-squared displacement of the carrier,^@r (t)
2r (0)#2&, by

D* ~v!52
1

6
v2E

0

`

e2 ivt^@r ~ t !2r ~0!#2&dt. ~7!

This form for D* (v) naturally obeys the Kramers-Kroni
relationship

2Im D* ~v!5
1

p
`E

2`

` ReD* ~v!

v82v
dv8. ~8!

The complex conductivity is given by the relations

s* ~v!5Nqm* ~v!5~Nq2/kT!D* ~v!, ~9!

whereN is the density of the mobile ions. In this work w
shall not take into account the possible correlation betw
successive hops of a mobile ion or cross correlation, wh
would have introduced into the right-hand side of Eq.~9! the
correlation factor or Haven ratiof H .

Whatever the mechanism of ionic transport, a calculat
of s* (v) needs to determine the probability of finding
carrier at any point at timet if it was at the origin att50.
The model used by SL to calculate such a probability fu
tion is a generalization of the continuous-time random w
~CTRW! of Montroll and Weiss.33~a! These authors have in
troduced a way of incorporating a continuous-time varia
into the basic theory of lattice random walks. In the mod
the basic quantity is the probabilityc(s,t) Dt that the time
between hops is in the interval (t,t1Dt) and the displace-
ment iss. Thenf(t), defined by

f~ t !512E
0

t

c~t!dt, ~10!

with

c~ t !5(
s

c~s,t !, ~11!

is the probability that the ion remains fixed in the time inte
val @0,t#. Although formulated on a lattice, the CTRW@Ref.
33~a!# has general applicability to stochastic transport in d
ordered systems including the random electron hopping
chalcogenide glasses demonstrated by Scher
Montroll33~b! and some other contexts in Ref. 34. Sources
the distribution of hopping times such as different jum
probabilities and sites are subsumed in the functionc(s,t).
In this work, neither the ion transport in ionically conductin
glasses is described nor any theory of such is subscribe
Nevertheless, the general applicability of the CTRW and
theory of stochastic transport in disordered solids ensures
validity of the following description of the microscopic io
conductivity. We shall confine our consideration to the co
mon situation that only one kind of mobile ion contributes
the electrical relaxation. The description can be easily g
eralized to accommodate the possibility that more than
kind of mobile ions makes their contribution by taking in
account theirc(s,t)’s in the description that follows.
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Differentiating Eq.~10!,

c~ t !52
d

dt
f~ t !. ~12!

If the spatial and temporal probability distribution of ea
hop of the ion is independent of each other such thatc(s,t)
can be written as a product,p(s)c(t) with (sp(s)51, then
calculating^@r (t)2r (0)#2& by the CTRW method and sub
stituting it into Eq.~7!, SL finally obtained the key result:

D* ~v!5
1

6
r rms

2 ~ iv!c̃~v!/@12c̃~v!#, ~13!

where

r rms
2 5(

s
s2p~s! ~14!

andc̃(v) is the Laplace or causal Fourier transform ofc(t)
defined by

c̃~v!5E
0

`

e2 ivtc~ t !dt. ~15!

III. RELATION BETWEEN STOCHASTIC TRANSPORT
THEORY AND ELECTRICAL RELAXATION

After the principal results of the stochastic transp
theory of SL have been summarized in the above, we
ready to find the relation between the normalized elec
modulus functionM* (v)/M` @see Eqs.~2! and~4!# and the
theoretical expression for the conductivity of SL. A way
show this is to rewrite Eq.~13! using Eqs.~12! and ~15!, as

D* ~v!5~r rms
2 /6!~ iv!

c̃~v!

12c̃~v!
5~r rms

2 /6!~ iv!

35 E
0

`

dt e2 ivtS 2
d

dt
f~ t !D

12E
0

`

dt e2 ivtS 2
d

dt
f~ t !D 6 . ~16!

From Eqs.~9! and ~16!, the complex conductivity can b
calculated fromf(t) by

sSTT* ~v!5~Nq2/kT!~r rms
2 /6!~ iv!

3H E
0

`

dt e2 ivtS 2
d

dt
fSTT~ t ! D

12E
0

`

dt e2 ivtS 2
d

dt
fSTT~ t ! D J .

~17!

The suffix ‘‘STT’’ is introduced in Eq.~17! and from now on
in all subsequent equations to indicate that the quant
including f(t) are obtained from the stochastic transp
theory, which is assumed to describe correctly the mic
scopic ion dynamics. This theoretical expression is to
t
re
c

s
t
-
e

compared with the macroscopic one,sEM* , obtained from the
EM formalism @Eq. ~4!# via the Maxwell relation@Eq. ~2!#,

sEM* ~v!5«0

iv

M* ~v!
5~«0 /M`!~ iv!

3H 1

12E
0

`

dt e2 ivtS 2
d

dt
F~ t ! D J , ~18!

which is obtained from Eqs.~2! and ~4!. This macroscopic
conductivity obtained from electrical measurement can
rewritten explicitly as the sum of two different contribution
a pure imaginary partiv«0«` andsEM,ion* (v),

sEM* ~v!5sEM,ion* ~v!1 iv«0«` . ~19!

HeresEM,ion* (v) is the macroscopic conductivity coming en
tirely from motion of ions and it is related to the macroscop
decay functionF(t) by the expression

sEM,ion* ~v!5~«0 /M`!~ iv!

3H E
0

`

dt e2 ivtS 2
d

dt
F~ t ! D

12E
0

`

dt e2 ivtS 2
d

dt
F~ t ! D J .

~20!

By comparing the expressions inside the curly bracket
Eqs.~17! and~20!, one finds that the microscopic conducti
ity sSTT* (v) and the EM macroscopic conductivit
sEM,ion* (v) have similar functional forms. In spite of th
similarity in form, we hasten to mention thatsSTT* (v) and
sEM,ion* (v) differ in their dependences onv becauseF(t)
and fSTT(t) have different characteristic time scales, t
macroscopictEM and the microscopictSTT, respectively. As
we shall show later, this similarity between Eqs.~17! and
~20! leads us to identifyF(t/tEM) with fSTT(t/tSTT). This
identification gives a more basic interpretation to the mac
scopicF(t/tEM) than the decay of the electric field at co
stant displacement vector, as customarily done in the
formalism.1–4,20 The prefactors of the frequency depende
terms in Eqs.~17! and~20! are different. This is understand
able because the microscopic conductivity, Eq.~17!, is ob-
tained from the mean-square displacement, the freque
dependent diffusion constant, and the use of the Nyq
theorem, which generalizes the Nernst-Einstein relation
tween the conductivity and diffusion constant to nonzero f
quency. On the other hand, the route to the macrosco
conductivity, Eq.~20!, of the EM formalism is through the
Maxwell relation. Both approaches, being based on so
physical principles, are legitimate, albeit different ways
obtain information on the dynamics of the ions.fSTT(t) as
well as F(t) starts from the initial~i.e., at t50) value of
unity and decreases monotonically towards zero with tim
However,fSTT(t) andF(t) are characterized, respectivel
by two different characteristic time constantstSTT andtEM .
We can go a step further in relating the STT and EM a
proaches by rewriting Eq.~17! as
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sSTT* ~v!5~Nq2/kT!~r rms
2 /6!~ iv!H 1

ivf̃STT~v!
21J

~21!

and Eq.~20! as

sEM,ion* ~v!5~«0 /M`!~ iv!H 1

ivF̃EM~v!
21J . ~22!

Here we have introducedf̃STT(v) andF̃(v) as the Laplace
transforms offSTT(t) andF(t), respectively, and made us
of the relationship between the Laplace transform of the n
malized functionsfSTT(t) andF(t) and that of its time de-
rivative, e.g.,

E
0

`

dt e2 ivtS 2
d

dt
F~ t ! D512 ivF̃~v!.

Writing out explicitly the time dependences ofF and fSTT
as F(t/tEM) and fSTT(t/tSTT) to show explicitly their re-
spective characteristic times and using the identityw̃(v)
5tw̃(vt) from Eqs.~17! and ~20!, we arrive at the follow-
ing expressions:

sSTT* ~vtSTT!5~Nq2/kT!~r rms
2 /6!

1

tSTT

3H 1

f̃STT~vtSTT!
2 ivtSTTJ ~23!

and

sEM,ion* ~vtEM!5~«0 /M`tEM!H 1

F̃EM~vtEM!
2 ivtEMJ .

~24!

We observe that the expressions inside the curly bracke
Eqs.~23! and ~24! have essentially the same structure. Bo
f(t/tSTT) and F(t/tEM) describe the dynamics of the io
motion, the former microscopically and the latter mac
scopically. The variablesvtSTT and vtEM of the functions
inside the curly brackets in, respectively, Eqs.~23! and ~24!
indicate once again that the microscopic and macrosc
dynamics occur at different times scales oftSTT and tEM .
Except for this difference in time scale,f(t/tSTT) and
F(t/tEM) are the same functions of the reduced time va
ables. Similarly, their Laplace transformsf̃STT(vtSTT) and

F̃EM(vtEM) as well as the entire structures inside the cu
brackets in Eqs.~23! and ~24! are thesamefunctions of the
reduced frequency variablesvtSTT andvtEM . In particular,
they have the same value in the limits ofvtSTT→0 and
vtEM→0, respectively. Thus sSTT* (vtSTT) and
sEM,ion* (vtEM) will have equal dc conductivity as required
the factors outside the curly brackets in Eqs.~23! and ~24!
are the same, i.e.,

tSTT/tEM5~Nq2r rms
2 !/~6kT«0«`!. ~25!

Once this relation between the macroscopic conductivity
laxation timetEM of the EM formalism and the microscopi
r-

in

-

ic

-

-

ionic hopping correlation timetSTT is satisfied, the two ex-
pressions for the complex conductivity,sSTT* (vtSTT) and
sEM,ion* (vtEM), become isomorphic to each other. Howev
as a function of the actual frequencyv, sSTT* (v) differs from
sEM,ion* (v). When plotted against log10 v, sSTT* (v) differs
from sEM,ion* (v) only by a horizontal shift of the whole curv
sEM,ion* (v) parallel to the log10 v axis with a shift factor
equal to log10(tSTT/tEM). This shift factor according to Eq
~25! depends on«` through the term log10 «` . The same
relation holds between Re@sSTT* (v)# and Re@sEM* (v)# be-
cause from Eq.~19! Re@sEM* (v)# is exactly equal to
Re@sEM,ion* (v)#.

In general,tEM is not equal totSTT and they are related to
each other by the ratio shown on the right-hand side of
~25!. HencetEM cannot be identified with the microscop
ion hopping relaxation timetSTT. Depending on the materia
parameters on the right-hand side of Eq.~25!, the two relax-
ation times can be very different. In fact, two systems w
identical microscopic ion dynamics and the sametSTT but
different values of«` will have two different values oftEM ,
each related to the sametSTT by Eq. ~25!. This dependence
of tEM on «` is considered by some workers as a shortco
ing of the EM formalism. We do not agree with this opinio
because this invariably will occur in any representation
the electrical relaxation data because the latter are from m
roscopic measurement where«` inevitably enters. Neverthe
less, even considered as a shortcoming of the EM formali
this is a minor problem that can be overcome. FromtEM the
microscopic relaxation time can be readily calculated by
expression

tSTT5tEM~Nq2r rms
2 !/~6kT«0«`!. ~26!

In the EM formalism, the dc conductivitysEM,dc is calcu-
lated by the well-known relation

sEM,dc5«0«` /@tEM lim
vtEM→0

F̃~vtEM!#[«0«` /^tEM&.

~27!

When substituting Eq.~25! into Eq.~27!, the macroscopic dc
conductivity sEM,dc turns out to give correctly the micro
scopic dc conductivitysSTT,dc, i.e.,

sEM,dc5Nq2r rms
2 /@6kTtSTT lim

vtSTT→0
f̃STT~vtSTT!#5sSTT,dc.

~28!

The consistency ofsEM,dc with the microscopic dc conduc
tivity explains whysEM,dc calculated by Eq.~27! are always
in good agreement with experimentally measur
values.1–4,10,12–13,20,27–30

Except for the slowly varyingT21 factor in Eq.~25!, the
temperature dependence oftSTT and tEM is the same. They
have about the same activation energy as long as the ac
tion energy in temperature units is much larger thanT. De-
pendence oftSTT andtEM on the isotope mass of the mobi
ion is exactly the same.13 Therefore, many of the discussion
based on activation energy35–38and isotope mass13,35 of tEM
remain applicable totSTT and the theoretical interpretation
suggested continue to be valid.

It follows from f̃STT(vtSTT) and F̃EM(vtEM) being the
samefunctions of the variablesvtSTT and vtEM , respec-
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tively, that the normalized electric modulusM* (vtEM)/M`

of Eq. ~4! can be related to the microscopicf̃STT(vtSTT) by

M* ~vtEM!/M`5 ivtEMF̃~vtEM!5 ivtEMf̃STT~vtSTT!.
~29!

Sincef̃STT(vtSTT) appears in the expression@Eq. ~23!# for
sSTT* (v), this result leads to the important conclusion th
the shape of the dispersion ofM* (vtEM)/(M`vtEM) ob-
tained from the data analysis using the EM formalism can
identified with the shape of the dispersion ofi f̃STT(vtSTT).
The latter originates from the microscopic movement of
ions and determines the frequency-dependent transport c
ficients in the microscopic stochastic transport theory@Eq.
~23!#. Therefore, the shape of the observed loss peak
Im@M* (vtEM)/M`# is uniquely determined by the move
ment of the ions. This correspondence between the EM
malism and the stochastic transport theory, though not tot
exact @i.e., there is a difference in the relaxation times
given by Eq. ~25!#, also justifies the fact that the electr
modulus has a theoretical basis, e.g., the stochastic tran
theory of Scher and Lax. AlthoughtEM differs fromtSTT by
a factor, the dispersions ofM* (vtEM)/(M`vtEM) and of
the quantityi f̃STT(vtSTT) in the stochastic transport theor
are exactly the same. Therefore, any dispersion coming f
ion hopping and picked up by the stochastic transport the
in Eq. ~23! will be seen exactly in the same shape or form
the EM representation of the data as a function ofvtEM or at
frequenciesv in the neighborhood of (tEM)21.

It is worthwhile to point out from Eq.~25! that the quan-
tity («0 /M`tEM) on the right-hand side of Eq.~24! is inde-
pendent of«` . Hence, as a function ofvtEM , the ionic
motion contribution to the conductivity,sEM,ion* (vtEM),
given by Eq.~24!, is independent of the value of the high
frequency dielectric constant«` . In the Appendix we sum-
marize the relations between quantities of STT and EM f
malism and reemphasize the fact thatsEM,ion* (vtEM) is
uniquely determined byF(t/tEM) and vice versa, indepen-
dent of the value of the high-frequency dielectric consta
«` .

Before closing this section, some remarks on the CTR
used by Scher and Lax are appropriate. In the past, Tuna39

made a literal interpretation of the CTRW procedure of
as an ongoing renewal process which led to frequen
independentD* (v) ands* (v). This difficulty is removed
by a proper treatment of the CTRW problem as demonstra
by Lax and Scher40 and others.41–43 Also, a formal equiva-
lence between the averaged particle transport in disord
systems and the generalized master equation or the CT
theory was established by Klafter and Silbey.43 Although the
CTRW as a theory is on firm grounds, it may not be gene
enough to describe any model of charged carrier trans
such as that proposed by Maasset al.44

IV. EFFECT DUE TO THE CONSTANT LOSS
CONTRIBUTION TO ELECTRICAL RELAXATION

Experimentally, it has been repeatedly found in electri
relaxation measurements12,15,19,27–30that there is an addi
tional contribution tos8(v) having approximately the linea
t
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frequency dependenceAv1.0 due to processes that are b
lieved to be unrelated to the mobile ion motion.13,15,19,45–47

This feature ofs8(v) is general and found in most ioni
glasses, in melts such as CKN, and in ionically conduct
crystals including Na b-alumina27 and yttria-stabilized
zirconia28 and Li0.5La0.5TiO3.

29 There are a number of indi
cations that theAv1.0 contribution tos8(v) is distinctly dif-
ferent in physical origin from the ac conductivity contribu
tion due to the diffusion of mobile ions.45,46For example, the
temperature dependence ofA is extremely weak compared t
the thermally activated temperature dependence of the
conductivitysdc and of the frequency wheres8( f ) first be-
gins to rise abovesdc. Likewise, changes in the alkali-oxid
mole fraction in glasses have a much weaker effect on
value ofA than they do on the dc conductivity. The same
true for the substitution of one alkali for another~the mixed
alkali!. Finally, changes in the thermal history of the sam
glass which change the dc conductivitysdc by nearly half an
order of magnitude have no effect on the value ofA.47

Hence, from the experimental facts,s8(v) is the sum of
two distinct contributionsAv1.0 and s ion8 (v), i.e., s8(v)
5s ion8 (v)1Av1.0. The former is unrelated to the ion diffu
sion, and the latter is the contributed by the movement of
ions. When the data are represented by the EM formali
s ion8 (v) is the real part ofsEM* (v) or, in view of Eq.~19!, is
sEM,ion8 (v), the real part ofsEM,ion* (v). Thus, in real ionic
conductors, the measured macroscopic conductivitys8(v) is
the sum

s8~v!5sEM,ion
8 ~v!1Av1.0. ~30!

The Av1.0 term is equivalent to a constant dielectric lo
D«95A/«0 .

When analyzing electrical relaxation data to gain inform
tion on ion dynamics, one must bear in mind the omnipr
ence of the additional contribution in the form of either t
constant loss to the dielectric loss orAv1.0 to the ac conduc-
tivity s8(v). Ionic conductors, at higher concentrations
ions and temperatures, haveAv1.0 much weaker than
sEM,ion8 (v) for frequencies extending from low frequencie
up to at least some decades above the onset frequency o
conductivity relaxation,v2s , defined as the frequency a
which the measureds8(v) has risen to twice the dc conduc
tivity level. The example of sodium trisilicate glass has be
given in Fig. 2 of Ref. 46. It can be seen there that at f
quencies equal tov2s and below the measureds8(v) is
approximately the same assEM,ion8 (v). In particular, the
measuredsdc is practically the same assEM,dc, which is
related totEM or the mean̂ tEM& by Eq. ~27!. The recipro-
cals of tEM and ^tEM& are approximately the same as th
frequencyvp of the M 9(v) peak exhibited by the data
When the condition above holds,sEM,ion8 (v) rises rather rap-
idly and it is invariably found that̂tEM&21'vp is compa-
rable tov2s . For the Na trisilicate glass see Fig. 1 of Re
20~c!, and for another example see Fig. 5 of Ref. 20~a!.

However, the situation is quite different for ionic condu
tors containing low concentrations of mobile ions. T
M 9(v) peak is nearly Debye-like withF(t)'exp(2t/tEM)
in Eq. ~18!. An example can be found in Fig. 3 of Ref. 4
The correspondingsEM,ion8 (v) calculated fromM* (v) by
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Eqs.~18! and~19! has a very slow rise with frequency abov
vp'^tEM&21. For the example of the Vycor glass shown
Fig. 3 of Ref. 46, theM 9(v) peak of which has been fitte
by the stretched exponential functionF(t)'exp
(2t/tEM)0.95, the correspondingsEM,ion8 (v) rises abovesdc

slowly with the approximate power law (v/vp)0.05. Such a
slow rise of sEM,ion8 (v) has the consequences that~i! v2s

will be much larger thanvp had this been the only contribu
tion to the ac conductivity and~ii ! the actualv2s will be
determined by the regime when eventuallysEM,ion8 (v) is
dominated by the much more rapidly risingAv1.0 contribu-
tion. In effect, v2s is determined by the rise ofs8(v)
5sEM,ion8 (v)1Av1.0 caused effectively by theAv1.0 contri-
bution. Therefore, in this casev2s can be much larger tha
vp . For the Vicor glass, Fig. 3 of Ref. 46 shows th
(vp/2p)'10 Hz, while Fig. 2 of Ref. 46 indicates tha
(v2s/2p)'43103 Hz. Also, they could have very differ
ence temperature dependences. Sincev2s is determined
principally by theAv1.0 contribution unrelated to ion diffu-
sion, its magnitude bears no direct connection to the
hopping frequency, whether macroscopic or microsco
Beyondv2s , s8(v) rises rapidly and in a short interval ha
attained theAv1.0 dependence. This behavior, shown for t
Vicor glass in Fig. 2 of Ref. 46, is found48 also in the potas-
sium germanate glassxK2O-(12x)GeO2 with x50.0023 of
Jain and Krishnaswami:49 and inxNa2S-(12x)B2S3 with x
50.001 of Patel and Martin.50 Since the rise ofs8(v) in
ionic conductors with low ion concentrations principally r
flects theAv1.0 contribution, it should not be interpreted a
originating from the dynamics of diffusion ions. Neverth
less, other workers apparently have not taken these facts
consideration, leading them to make erroneous statem
These statements include, ‘‘The modulus analysis igno
the effect that, for a given conductivity, a lower number de
sity of more mobile charge carriers implies faster ionic
laxation and thus a higher onset frequency of the conduc
ity dispersion. At very low number densities of mobi
charge carriers, theM 9 peak therefore occurs in the dc r
gime, and in shape it approximates to a Debye peak. T
does not, of course imply an entirely frequency independ
conductivity. The characteristic dispersion in conductivity
still present~Ref. 50 here!, but it lies outside the dynamic
window of the modulus formalism,’’ made by the authors
Ref. 51. Another statement is, ‘‘In glasses where there
few charge carriers, the modulus peak~which scales with
sdc) is shifted to lower frequencies where no dispersion
experienced. The narrowing of the modulus spectrum
identified as an artifact of the data analysis,’’ made by
author of Ref. 52. Some authors51,53 proposed that the a
conductivity datas8(v) of ionic glasses at all concentration
can be scaled by one way or the other to a master cu
Reference 53 demonstrated successful scaling for four
dium germanate glassesxNa2O-(12x)GeO2 for x50.1,
0.03, 0.01, and 0.003. We point out that while the author
Ref. 53 recognized that there is an additiveAv1.0 contribu-
tion to the ac conductivity due to processes unrelated to
cation diffusion, no attempt is made to subtract it off. F
these glasses, theAv1.0 contribution is not negligible, and
until it is subtracted off froms8(v), the result is unclear
The pivotal data of the lowest concentrationx50.003 have a
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kink which on the one hand enables the data to fall appro
mately on a master curve with the other glasses, but on
other hand it casts doubts on the data. In similar glas
xK2O-(12x)GeO2 studied by Jain and Krishnaswami the
conductivity curves forx50.0023 and 0.20 have differen
shapes~see Fig. 6 of Ref. 49! and cannot be scaled to
single master curve no matter what scaling factor is u
including the form proposed in Ref. 53. The same applies
the data ofxNa2S•(12x)B2S3 with x50.0010 and 0.010,50

and to the comparison of the Vycor glass with the Na tris
cate glass shown in the inset of Fig. 2 in Ref. 46.

V. EXPERIMENTAL VERIFICATION

Unlike electrical relaxation, nuclear spin relaxation~NSR!
is a microscopic probe of the motion of the ions. At th
Larmor frequencyvL , the NSR rateT1

21(vL ,T) is given by
the expression

1

T1~vL ,T!
5C@J~vL ,T!14J~2vL ,T!#, ~31!

where C is the coupling constant.J(v,T) is the spectral
density function which is the real part of the Fourier tran
form of the spin relaxation correlation functionfs(t/ts),

J~v,T![ReE
0

`

fs~ t/ts!exp~2 ivt !dt. ~32!

Let us ignore, for the remainder of this section, the fact t
nuclear spin relaxation and macroscopic conductivity rel
ation in ionic glasses have different frequency dispersi
and hence different time correlation functions,22–25,36a point
we shall return to discuss in the next section. Such a dif
ence is nonexistent for the crystalline fast ionic conduc
Li0.5La0.5TiO3 ~LLTO!, as found by Leo´n et al.29 Then, in
this case, since spin relaxation is a microscopic prope
fs(t/ts) is to be identified with the microscopic ion hoppin
correlation functionfSTT(t/tSTT). Substituting the latter for
the former into Eq.~32!, we have

J~v,T!5ReE
0

`

fSTT~ t/tSTT!exp~2 ivt !dt[Ref̃STT~v!,

~33!

wheref̃STT(v) is the Fourier transform offSTT(t/tSTT) as
defined in a previous section.

León et al.29 obtained both the macroscopic electrical r
laxation and microscopic lithium nuclear spin relaxation d
on LLTO. In the measurement temperature range, the La
is effectively immobile and Li is the sole mobile ion contrib
uting to both electrical relaxation and nuclear spin relaxati
They fitted their electrical relaxation data in the EM forma
ism by choosing the stretched exponential exp@2(t/tEM)b#
for F(t/tEM) and found that the stretch exponentb has the
temperature-independent value of 0.40. Instead of work
with the numerical values of the Fourier transform of t
stretched exponential forM* (v), which is inconvenient,
they used the approximate expression

M* ~v!/M`5 iv/@sEM,ion* ~v!/«0«`1 iv#, ~34!



io
ta
r-

,

er

9402 PRB 60K. L. NGAI AND C. LEÓN
which results from Eqs.~2! and ~19!, and approximated
sEM,ion* (v) therein by the analytic form

sEM,ion* ~v!5sdc$11@ iv/~sdc/«0«`!#12b%. ~35!

As far as LLTO is concerned, the approximate express
given by Eq.~35! has proved to fit the experimental da
satisfactorily. From the well-known relation of the EM fo
malism, sdc5«0«` /^tEM&, where ^tEM&5*0

`F(t/tEM)dt,
one rewrites Eq.~35! as

sEM,ion* ~v!5sdc$11@ iv^tEM&#12b%. ~36!

By partial integration of Eq.~4!, the Fourier transform of
F(t) is

F̃EM~v!5«`M* ~v!/ iv. ~37!

Substituting Eq.~34! into Eq. ~37!, León et al. arrived at the
result,

F̃EM~v!51/@sEM,ion* ~v!/«0«`1 iv#. ~38!
g
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The same expression can be obtained from Eq.~22! given
previously. Using the approximation tosEM,ion* (v) given by

either Eq.~35! or ~36!, F̃EM(v) can be rewritten as

F̃EM~v!5
1

~sdc/«0«`!$11@ iv/~sdc/«0«`!#12b%1 iv
.

~39!

Sincef̃STT(v) andF̃EM(v) have the same functional form
but differ only in the time scale@i.e., fSTT(t/tSTT)
[F(t/tEM)#, then we can obtain the former from the latt
by scaling all quantitiessdc/«0«` appearing in Eq.~39!
~which is ^tEM&21) by the ratiotEM /tSTT. According to Eq.
~25!, this scaling factor is equal toT/T0 , i.e.,

tEM~T!/tSTT~T!5T/T0 , ~40!

where

T0[~Nq2r rms
2 !/~6k«0«`!. ~41!

After the scaling is performed to obtainf̃SST(v), the spec-
tral density function, Eq.~33!, is obtained as
J~v!5ReF 1

~sdc/«0«`!~T/T0!$11@ iv/~sdc/«0«`!~T/T0!#12b%1 ivG . ~42!
to
ted

r
x-
inary

d
on
The parameters of LLTO appearing in Eq.~41! are known.
They areN52.1631027m23, r rms

2 5(3.87310210)2 m2, and
«0«`57.531010F m21. The calculated value ofT0 for
LLTO is 135 K. León et al. used this expression forJ(v)
and Eq.~31! to calculateT1

21(vL ,T) from the macroscopic
electrical conductivity relaxation data of LLTO, includin
sdc, «` , and the stretch exponentb. There is good agree
ment between the calculated values and the actual ex
mental NMR data of LLTO as shown in Fig. 1. This goo

agreement verifies thatf̃STT(vtSTT) and F̃EM(vtEM), as

well as the correspondingfSTT(t/tSTT) and F̃(t/tEM), are
the same function~i.e., having the sameb in the stretched
exponential functions! of the reduced frequency and reduc
time, andtEM is related to the microscopictSTT by Eq. ~25!
in LLTO.

VI. DIFFERENCE BETWEEN LLTO AND IONIC
GLASSES

NMR measurements in LLTO by Leo´n et al.29 are made
in the temperature range from about 170 to 500 K, enco
passing the maximum ofT1

21(vL ,T). The maximum of
T1

21(vL ,T) with vL520 MHz is located atTmax'310 K.
Therefore the ratioT/T0 is always larger than 1, but n
greater than 4 in the entire temperature range. The r
Tmax/T0 is about 2.3. The nuclear spin relaxation correlat
time atTmax, tSTT(Tmax), customarily is taken to be equal t
vL because the maximum ofT1

21(vL ,T) occurs at a tem-
perature whenvLtSTT(T)'1 is satisfied. According to Eq
~40! we have the relation

tEM~Tmax!/tSTT~Tmax!5Tmax/T0 , ~43!
ri-

-

io

which indicates that, atTmax, the NSR time,tSTT(Tmax), is
shorter than the conductivity relaxation timetEM(Tmax). Al-
though tSTT(Tmax) is only a factor of 2.3 shorter than
tEM(Tmax) and may be considered to be practically equal
each other, their relation to each other is to be contras
with a very different one found in several ionic glasses.23–25

The experimental data on ionic glasses23–25,35,36show that

FIG. 1. Temperature dependence of 1/T1 at 10.6 MHz~d!, 20
MHz ~j!, and 31 MHz~m!. Solid lines are theoretical values fo
1/T1 obtained from the experimental electrical conductivity rela
ation data at the same frequencies. The inset shows the imag
part of the electric modulus at several temperatures~179, 193, 206,
221, and 235 K!. Solid lines in the inset are fits to a stretche
exponential function for the electric modulus relaxation functi
FEM(t/tEM).
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the spin-lattice relaxation timets(Tmax) is several orders o
magnitudelonger thantEM(Tmax). For example, in the glass
fast ion conductor ~Li2S!0.56~SiS2!0.44, the ratio
tEM(Tmax)/ts(Tmax) is about 531023 at vL54 MHz. Based
on the finding that@tEM(Tmax)/ts(Tmax)#'2.3 for LLTO and
the non-Arrhenius temperature dependence of its dc con
tivity, León et al.29 suggest that the assumption of a
Arrhenius law for the temperature dependence of the dc c
ductivity of ionic glasses may not be true and it contribu
to the large but apparent discrepancy between the two tim
All data of ~Li2S!0.56~SiS2!0.44 cited were taken within the
glassy state. It is possible that at the higher temperatureTmax

of NMR measurement the extrapolated value oftEM(Tmax)
by the Arrhenius law has the order of 10210 s and will ex-
hibit a slight departure from the Arrhenius dependence
seen in some other,54–56 though not all, glassy fast ion
conductors.57 However, if the behavior of the dc conductivit
of ~Li2S!0.56~SiS2!0.44 is similar to others, the departure
tEM(Tmax)'10210 s is slight and cannot explain the two o
ders of magnitude difference betweentSTT(Tmax) and
tEM(Tmax). Moreover, the same result thattSTT(Tmax)
@tEM(Tmax) was found24 in heavy metal flurozirconate
glasses using nuclear spin relaxation in the rotating fram
a much lower frequency. In this case, the measuremen
T1r

21(vL ,T) was atvL525 kHz and in a temperature rang
in the glassy state where the temperature dependence
tSTT and tEM undoubtedly have the Arrhenius form. Hen
we conclude that the interesting suggestion of Leo´n et al.
cannot be an explanation of the effect found in glassy io
conductors. From the relation betweentSTT(Tmax) and
tEM(Tmax) given by Eqs.~40! and ~41! and granted thatN
and«` in the glassy ionic conductors and in LLTO are n
too different, there is the possibility thatr rms

2 is larger for the
former than the latter. The value ofr rms in LLTO was esti-
mated from 1/T2 measurements to be 3.7 Å, a distance clo
to that found between theA sites of the perovskite structur
~3.8 Å!.29 Nevertheless,r rms

2 in the glassy ionic conductor
has to be larger by more than two orders of magnitude t
the lattice spacing distance of LLTO in order that this c
explain the observed value of the ratiotEM(Tmax)/tSTT(Tmax).
Such a larger rms

2 is unphysical, and this possibility can als
be ruled out.

One current explanation of the result thattSTT(Tmax)
@tEM(Tmax) is based on the proposal that the correlat
functions of nuclear spin relaxation and of electrical cond
tivity relaxation are different in glassy ionic conductors.36,44

The structural disorder present in ionic glasses engende
greater importance to interactions between ions at a sho
separation distance in determining the nuclear spin relaxa
correlation function exp@2(t/ts)

12ns# than the conductivity
relaxation correlation function exp@2(t/tEM)12ns#. As a con-
sequence of the enhanced correlation between the ions,ns is
larger thanns , which indicates that the dispersion of sp
relaxation is broader, as confirmed by experiment.22–25,36

The application of the coupling model36 explained the vari-
ous differences in the properties of nuclear spin relaxa
and of electrical conductivity relaxation includin
@ts(Tmax)/tEM(Tmax)#@1. Monte Carlo simulation of the
closely related disordered Coulomb lattice gas model44 ar-
rived at the same conclusions. In retrospect, we should h
c-
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ve

comparedfs(t/ts)5exp@2(t/ts)
12ns# with the ion hopping

correlation functionfSTT(t/tSTT)5exp@2(t/tSTT)
12nSTT# in-

stead of withF(t/tEM)5exp@2(t/tEM)12ns#. Nonetheless,
since nSTT is equal to nEM becausefSTT(t/tSTT) and
F(t/tEM) are the same function of the reduced time andtSTT
andtEM have the same activation energy~see near the end o
Sec. III!, the conclusions reached in earlier works on ion
glasses36 remained unchanged. In the future we shall rev
this problem in ionic glasses to compare nuclear spin re
ation with the microscopic conductivity relaxation.

In contrast to ionic glasses, LLTO is crystalline. The d
tances between ions are fixed by the crystalline lattice,
this eliminates the enhancement of the correlation betw
ions at shorter separation distances for the nuclear spin
laxation in glasses. Hencens'ns for LLTO, and it follows
from the theoretical explanation of the difference betwe
nuclear spin relaxation and conductivity relaxation36 that
LLTO is a special case, having effectively no difference b
tweents(Tmax) and the microscopic conductivity relaxatio
time tSTT(Tmax). This prediction is consistent with the find
ing of León et al. in LLTO that @ts(Tmax)/tEM(Tmax)#
'(1/2.3) and @tSTT(Tmax)/tEM(Tmax)#5(1/2.3). Thus we
conclude that the LLTO data of Leo´n et al. lend further sup-
port to the explanation of the difference between nuclear s
relaxation and conductivity relaxation given by Ref. 36.

VII. CONCLUSION

Conductivity relaxation is obtained by a macroscop
measurement, and it is not immediately clear how it is
lated to the microscopic ion hopping motion. By compari
the results of a stochastic microscopic transport theory of
dynamics of ionic movement with the electric modulus re
resentation of the macroscopic conductivity relaxation da
we have shown that the form of microscopic ion hoppi
correlation function is faithfully reproduced in the electr
modulus formalism. This correspondence between the mi
scopic description and the electric modulus analysis of
macroscopic measurement of ionic motion indicates that
electric modulusM* is the most suitable representation
macroscopic data compared with other alternatives, e.g.«*
and s* . However, the macroscopic conductivity relaxatio
time obtained from the electric modulus analysis of the d
differs from the microscopic ion hopping correlation time b
a known factor, which is a weakly temperature-depend
factor. Consequently, the two times have practically
same thermal activation energy and other dependence
variables such as the isotope mass of the diffusing ion.

Nuclear spin lattice relaxation and conductivity relaxati
data of the crystalline ionic conductor Li0.5La0.5TiO3 ob-
tained by Leo´n et al. have been employed here to demo
strate that in this crystalline conductor the nuclear spin
laxation correlation function is in every respect the same
the microscopic ion hopping conductivity correlation fun
tion. The latter has been calculated from the macrosco
electrical relaxation data, according to the relation betwe
them established in this work. Thus the nuclear spin rel
ation data enable us to verify the relation between the m
roscopic conductivity relaxation function and the micr
scopic ion hopping correlation function, the principal res
of this work. The property of crystalline LLTO is distinctly
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different from ionic glasses. The ionic glasses exhibit a la
difference between nuclear spin relaxation and conducti
relaxation. The suggestion that the possibility of a no
Arrhenius temperature dependence of the dc conducti
like that found in LLTO can explain the large difference
ionic glasses is examined and dismissed in view of exp
mental data. However, the property of LLTO turns out to
a special case, which is consistent with the explanation of
large difference offered previously for ionic glasses.36

ACKNOWLEDGMENTS

The work done at the Naval Research Laboratory w
supported by the Office of Naval Research. The stay of
of the authors~C.L.! at the Naval Research Laboratory w
supported by the Spanish NATO Science Committee. T
authors thank Professor Jacobo Santamaria, Professor
Sanz, and Professor Otmar Kanert for helpful discussions
the relation between spin-lattice relaxation and electr
conductivity relaxation.

APPENDIX

The relations between the microscopic~STT! and macro-
scopic~EM formalism! descriptions are summarized here
follows:

sEM,ion* ~vtEM!5sSTT* ~vtSTT!, ~A1!

F̃EM~vtEM!5f̃STT~vtSTT!, ~A2!

FEM~ t/tEM!5fSTT~ t/tSTT!, ~A3!

sSTT* ~vtSTT!5~Nq2/kT!~r rms
2 /6!

1

tSTT

3H 1

f̃STT~vtSTT!
2 ivtSTTJ , ~A4!

sEM,ion* ~vtEM!5«0«`

1

tEM
H 1

F̃EM~vtEM!
2 ivtEMJ ,

~A5!

and

tSTT/tEM5~Nq2r rms
2 !/~6kT«0«`!. ~A6!
ie
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In spite of the identities~A1!–~A3! as functions of the re-
duced frequency and reduced time, the corresponding m
roscopic and microscopic quantities differ, in general, a
function of the actual frequencyv or time t. Thus, for ex-
ample, one cannot identifyF(t) with f(t). However, one
can identifyFEM(t/tEM) with fSTT(t/tSTT) as stated by Eq.
~A3!. According to Eq.~A6!, «` /tEM is independent of«` .
ThussEM,ion* (vtEM) in Eq. ~A5! as a function of the reduce
frequencyvtEM is also independent of«` .

Let us consider two systems having one and the sa
microscopic dynamics of ionic motion~i.e., all the STT
quantities are the same for both systems!, but they have two
different high-frequency dielectric constants,«`,1Þ«`,2 . In
the macroscopic electric modulus descriptions, these
systemsi 51 and 2 require two separate descriptions. Th
applying Eqs.~A1! to the macroscopic conductivity of th
two systems,sEM,ion,1* (vtEM,1) and sEM,ion,2* (vtEM,2), we
have

sSTT* ~x!5~Nq2/kT!~r rms
2 /6!

1

tSTT
H 1

f̃STT~x!
2 ixJ

5sEM,ion,i* ~yi !5«0«`,i

1

tEM,i
H 1

F̃EM,i~yi !
2 iy iJ ,

~A7!

wherex5vtSTT, yi5vtEM,i , and i 51,2. From Eq.~A6! it
follows that the factors outside the curly brackets on
extreme right-hand side of Eq.~A7! are independent of the
systemi because

«0«`,1 /tEM,15«0«`,2 /tEM,25~Nq2r rms
2 !/~6kTtSTT!.

~A8!

Furthermore, from Eq.~A2! we have

F̃EM,1~vtEM,1!5F̃EM,2~vtEM,2!5f̃STT~vtSTT!. ~A9!

Because«`,1Þ«`,2 , Eq. ~A7! implies that the macroscopi
relaxation timestEM,i of the two systems are different, bu
from Eq. ~A1! we have

sEM,ion,1* ~vtEM,1!5sEM,ion,2* ~vtEM,2!5sSTT* ~vtSTT!.
~A10!

Equation~A10! being valid means that

sEM,ion,1* ~v!ÞsEM,ion,2* ~v!. ~A11!
y
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