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Theory of dislocation-solute atom interactions in solid solutions and related nonlinear anelasticity
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A theory for dislocation-solute atom interactions in solid solutions has been developed which allows one to
calculate the nonlinear dislocation strain-amplitude-dependent internal friction. The suggested model accounts
for different modes of dislocation-solute atom interactiginsSolute atoms distributed in the dislocation glide
plane interact with the dislocation core and represent short-range obstacles for the dislocation (iption;
Solute atoms situated away from the dislocation glide plane create relatively weak long-range elastic stress
fields, also impeding dislocation motion. We assume that dislocations move in a two-component system of
obstacles which differ with respect to the thermodynamics of dislocation—point-defect interactions. Namely,
dislocations overcome short-range obstacles under the combined action of applied stress and thermal energy,
whereas relatively weak long-range obstacles are surmounted athermally. The model predicts a complicated
multistage behavior of the nonlinear internal friction in the strain amplitude—temperature—solute concentration
domain, which is in excellent agreement with recent experimental (Bfd.63-182099)10033-X]

[. INTRODUCTION cently, a detailed experimental investigation of the ADIF in
solid solutions of the CuNi system has been perforthid.

It is generally agreed upon that dislocation-related strainthe present paper we suggest a quantitative model for the
amplitude-dependent internal frictidDIF) in crystals, at ADIF in solid solutions and compare its predictions with
moderate stress amplitudése., well below the yield stress available experimental data.
of a crystal, is due to the reversible oscillatory motion of
dislocations over stress fields of lattice point defécts;
though, under certain circumstances, nonlinear anelasticity
may originate from intrinsic properties of dislocatiénsr A. Elementary dislocation-single foreign atom interactions
dislocation-dislocation interactiori$. Despite the fact that Dislocation—foreign atom interactions originate from

numerous theories of the intemal frictioiF) due t0 s mechanisms: atomic size misfit, modulus effect, or
dislocation—point-defect interactions have been deve|°ped"aelectrostat|c effect when a foreign atom has a valence
theoretical background for several important issues is St'lhlfferent from that of the host atoit.Consider, for simplic-

lacking” Among those issues are the problem of the low “ity, the case of atomic size misfit, when a substitutional sol-
strain amplitude IF background in pure metals and solid SO{te atom is a dilatation center with spherical symmétrif.
lutions in the low-frequency randethe peaking effect dur- ¢ foreign atom is situated at a distancérom the glide
'Ng '”‘?‘d'a“on of cr_ystal_§,and the Iow—tempergture athermal plane of an edge dislocation with the Burgers vector along
ADIF in crystals with different crystallographic structdfié. 0 axis (Fig. 1), the interaction force between the disloca-

Existing theories of the ADIF usually consider the ther- tion gliding in thex direction and the foreign atom®fs
mally activated breakaway or continuous pinning and depin-
ning of dislocations from the lattice defects, distributbd- .
mogeneously or heterogeneoysiy the dislocation glide F(x)= uboVv 2x/z CF e(x2) 0
plane. Traditionally, in the case of dislocation motion in a T a2 (1+x3HA?2T T ma® ’
two-component system of obstacles, it has been inferred that
solute atoms distributed in dislocation glide planes represent
weak and short-range obstacles which dislocations overcome ;.. qczion
with the assistance of thermal fluctuations, whereas forest j force
dislocations create strong obstact®én approach has been
suggested in Ref. 5 to account for the aforementioned un-
solved problems. It has been assumed that for an adequate
description of the dislocation motion in the anelastic range,
dislocation interactions with elastic stress fields of lattice de- . ]
fects distributed in the bulk of a crystal, should be considered Sa"t’;jf M
as well as short-range interactions with defects distributed in de V3
the dislocation glide plane. Thus, even in the simplest case of
immobile solute atoms of the same nat(we point obstacles FIG. 1. Force-distance profiles for dislocation-solute atom inter-
for the dislocation motionhomogeneously distributed in the actions, in the case of atomic size misfit and edge dislocation, for
bulk of a crystal, two different modes of dislocation interac- different relative position and distance between dislocation and sol-
tions with those obstacles should be taken into account. Rexe atom.
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thermal
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> g}iﬁi%js FIG. 3. The model for the dislocation motion with an average
displacementu in the field of localized thermally activated ob-

stacles(small full circleg and diffuse long-range athermal stress
FIG. 2. Schematic representation of a dislocation, gliding withfields (gray large circlesunder the action of an applied stress
the average displacemeuntin stress fields of solute atoms distrib- Crosses represent impenetrable pinning points.
uted in the bulk of a crystal. Small full circles represent solute

atoms in a few atomic planes, adjacent to the dislocation glidgyifferent ways. Dislocations overcome localized forces under

plane. They create strong short-range obstacles in the dislocatiod;Ie combined action of the applied stress and thermal fluc-

glide plane, which can be surmounted with the assistance of thermgl, i s - Relatively weak but long-range diffuse forces are
fluctuations. Open circles show solute atoms, situated away fro

the dislocation glide plane. Large gray symbols on the glide Iannegurmounted athermally. We believe that weak long-range ob-
ghde prane. ~arge gray sy ghae p tacles are not intrinsically athermal. Rather, the waiting

represent long-range athermal stress fields due to these atoms. The f fluctuation b | for | b
range of interaction and the maximum interaction force, as repre-'me or a fiuctuation becomes very long lor long-range ob-

sented by the size and darkness of symbols, depend on the spaciﬁbadeS' even if_th_e activation energy is refatively low. We
between the atom and glide plane. stppose that this is due to a low attack frequency for over-

coming long-range obstaclé3This problem deserves spe-
where 8V is the change of the volume of the unstrainedcial attention and is_beyond the scope of the present work. In
lattice by the substitution for a solute atom,is the shear What follows we will accept the athermal nature of long-
modulus,b is the Burgers vector magnitude. Profilds are ~ 'ange obstacles as a hypothesis and will verify its validity
plotted in Fig. 1 for two different spacings between the Comparing experimental results with predictions of the
solute atoms and dislocation glide plane. The maximum inmodel. _ _ , _ ,
teraction force between the dislocation and foreign atom de- Schematically, the simultaneous motion of a dislocation

pends strongly on the spacing with an average displacementunder applied stress in the
two-component system of obstacles can be represented by
F max® 1/22. (2 Fig. 3. We also introduce strong impenetrable obstacles, for

instance, due to the nodes of the dislocation network, at a

larger space scalk, as indicated by crosses in Fig. 3. We
F max® 1/25. (3)  Wwill consider first (separately interactions of dislocations
with these three types of obstacles.

The range of the dislocation-solute atom interaction in-
creases with the spacizg For example, for the atomic size
misfit, Eq. (2), the maximum of the interaction force along
the gliding directionx occurs at a distancg=z/v3 from the 1. Motion of a dislocation over athermal diffuse forces

atom's projection on the glide plane. Thus, solute atoms in - The interaction force between a dislocation and a solute
the slip plane or in a few adjacent atomic planes interact withytom situated away from the dislocation glide plane depends
the dislocation on a short range, comparable with the Buryp, the distance between the solute atom and glide jEge
gers vector magnitudb. Solute atoms situated away from () in the case of atomic size migfiTherefore, we introduce
the glide plane give rise to relatively small but long-rangethe distribution functionn(f) of the number of athermal
stresses. The former case corresponds to localized, and th§ces per unit area of the glide plane, which is proportional
latter to diffuse forces, exerted on the dislocattdrThis {5 the atomic concentratiof of the solute atoms and is
situation can be represented schematically by Fig. 2, whergependent on their distribution in the bulk of a crystal:

full and open spheres represent foreign atoms, distributed in

the vicinity and away from the dislocation glide plane, re- o

spectively. The atoms, situated away from the glide plane, n(f)df=A_zdf,

create weak but long-range stresses in the glide plane, as f

shown by gray symbols in Fig. 2. The diffuse forces are

For the case of modulus effetone has

B. Basic ingredients of the model

considered as internal stresses, slowly varying in space f<fax (4)
(compared to the Burgers vector magnitumlewith a mean
amplitudeo; .13 whereA is a normalization constang is a parameter depen-

The present model is based on an assumption that dislalent on the distribution of solute atoms in the bulk and the
cations overcome these two types of obstacles in essentiallyature of dislocation-solute atom interaction. This distribu-
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tion is limited by the maximum value of the interaction force y solute atoms  dislocation
f max for which dislocation-point obstacle interaction is still . / \.
athermal. i .

Consider, for example, the case of size misfit and random ’\/\,
solid solution, i.e., the homogeneous volume distribution of . .
solute atoms. The numbex(z)dz of solute atoms per unit d » .
area of the dislocation glide plane, situated on both sides of *
the dislocation glide plane at a distareén the rangedzis 1 X

(a) 6=0
C
n(z)dz=2¥dz, (5)

wherea is the lattice parameter. Since from E@g)

1
dZOCf—37§df, (6)

() 0#0

one obtains from Eqg5) and(6) for the atomic size misfit

and homogeneous solid solution . ) . . Lo .
FIG. 4. Zigzag configuration of a dislocation in a random solid

solution (a) and bowing out of segments of the zigzagged disloca-

1 . .
n(f )dszcf_glzdf, (7) tion under applied stregd).
i.e., the parametes in Eq. (4) becomes equal to 3/2. For the 2 blo
modulus effect one obtains from Eq®), (5), and(4): B fp=2y(a;+ay)=2y l_—2+ 2 ) (12
=4/3.

The numbeiN(F) of obstacles per unit area of the dislo- \inimization of the average pinning force under condition
cation glide plane having the maximum interaction force(10) |eads to the well-known dynamic Friedel's

equal or higher thar is given by distributiort®17 of T andd:

1 1 ) - (4h2y)1’3

N(F)=N(f>F)=meaXn(f)df=A
F

ﬁ—l(F/“_ B | =

max bo
8
. . h*bo| /3
In what follows, we suggest using a more convenient ap- E=< ) ‘ (13)
proximate form forN(F) 4y
C 1 Substitutingl_from Eqg. (13 into Eg. (12) one obtains the
N(F)= Am AT if f<fax ) average pinning force for Friedel's statistics:
0 if f=f fp=3(7h2b2/2)1’302’3. (14)

It is well known that in solid solutions the most stable Let us apply the dynamic Friedel distribution to the mo-
dislocation configuration even in the absence of externafion of a dislocation in the system of athermal obstacles.
stress is a zigzag fortf;*® shown in Fig. 4a). The average When obstacles with retention forde>F stop the disloca-
length of a zigzag along the dislocation limeand zigzag tion, their number per unit area of the glide plane is
amplitudeasatisfy the condition

_ N(F)=
h2=dl. (10 B~

whereh is the average obstacle spacing in the glide pIane.SUppO‘Q’ing that the average pinning fofigeis equal to the

Under applied stress, the dislocation has a configuration, dé_e_tention forcer suﬁicignt to stop the dislocation under ap-
picted inpgig_ 4b), with the anglesy; and a, 9 plied stressr, one obtains from Eqg14) and (15)

(15

‘yb2 1/3
~ A/ = (/112 Y A 2/3
al—d/_l (h/1)#, F 3(2N(F)) o®, (16
blo (11
ar=—5—, SubstitutingN(F) from Eq. (9) into Eq. (16) we deduce the
2y

dependence of the retention force on the applied stress:
where y= ub? is the line tension. ) Ya—

The average pinning force, acting between the dislocation _ 27yb?(B—1)\ M B)Uzm_ﬁ) (17)
and point obstacle is given by 2AC '
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Since the average displacement of the dislocation corre-

sponds to the zigzag amplitudgga, one has from Egs.
(13), (19), (9), and(17)

//;Crl
o=BCHEGA-PIE, (18) I %

athermal A Gl | %// / "

|
| obstacles i
|
|

\ |
=1R J
Qa
=l §

where A
L -Ocri
(1-p)p 2B i I
B= 9— ﬂ (a) | 1 % /
b B_ 1 | thermal |
Y obstacles

i ! S, ol |
IS a constant parameter. | O T, ©) - * | _
i A ’

For F— f ax, One obtains from Ed8) thatN(F)— 0, that

is, the average displacement of the dislocation is not con- / / | %
trolled any more by athermal obstacles. A reasonable esti- — ' s,
mate of a critical stress; for the motion of the dislocation ) | Cerd T, ©) :
in the stress field of athermal obstacles can be deduced from | |
. _ i line
Eq. (17) substitutingF = f ,ax: : one 103/'/11
oen=E\C, (19 | —
| u
Where o f/ﬂ |
2A (4= B2 FIG. 5. Rheological models with corresponding stress-anelastic
E= 210%v(B—1) fmaxB strain hysteresis loops, representing the motion of a dislocation in
4 stress fields of diffuséa) and localized forcegb), and under the
is a constant parameter. action of line tension between impenetrable pinning pofo)s

The stress-anelastic strain dependence and the concentration . _ o
dependence of the critical stress for the motion of a zig\Where ¢ is a parameter reflecting the distribution of solute
Zagged dislocation over athermal diffuse forces can be writatoms in the vicinity of dislocations. This parameter accounts

ten finally as for homogeneous or heterogeneous distribution of solute at-
oms around dislocations. The former case corresponds to the

o=BCVge if <oy, random solid solution, the latter corresponds for example, to

pinning of dislocations due to strain aging. We suggest that,

o= E\/E (20 at a stress below the critical stress of dislocation motion, the

_ _ ~ static Mott statistic¥"!® is applicable. The sum of the line
with the exponentr in the power dependence of the dislo- tensjon energy and the binding enery ,, with solute atom
cation displacement on applied stress per unit length along the dislocation direction is

_4°8 (21) Eq=(yVI2+d=AG)/1. 23

P Minimization of Eq.(23) with Egs.(10), (15), and(22), and
Equations(20) are sufficient to determine the component not too large deviations of dislocation from the straight line,
of the internal friction, associated with the dislocation mo-gives| andd in the case of Mott statistics
tion over athermal obstacles. We introduce a rheologica

o

model for this component of the total anelasticity of solid — 2y s
solutions as a solid friction element with cyclic stress- = (poZ—AG,n) '
anelastic strain response as indicated schematically in Fig.
5(a). 1/3
= AGm) (24
2. Motion of a dislocation over localized short-range obstacles 2y¢C

We will consider dislocation motion over the localized One obtains the average pinning force for the Mott statistics
short-range obstacles due to solute atoms distributed in a felty substituting Eq(24) into Eq. (12):
adjacent atomic planes as continuous thermally activated
pinning and depinning of a dislocation line without hard pin- f
ning points. We will restrict ourselves to average parameters, P
without analysis of the statistical problem of finding the re-
lation between single dislocation-solute atom interaction and Thermally activated depinning should be considered in

2b3,y 1/3
(PCTG) o+ (ZQDCAGm’y)]'/s. (25
m

critical stress for dislocation motion. the case of localized obstacles. Therefore, under oscillatory
Surface densit\\ of short-range obstacles is a function of stress with amplituder, and circular frequency, the criti-
the solute atom concentrati@ cal force of depinning from obstacke,, (as well as the criti-

cal stresso») becomes frequency and temperature depen-
N=¢C, (22 dent. We will not consider here the existing theoretical
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predictions of their temperature and frequency dependence,
see for example Ref. 19, and introduce formally the tempera-
ture and frequency dependence of the pinning force
Fo(T,w) and critical stressrq,(T,w). Equation(25) then
gives the critical depinning stress

1

2AG,
oo T, )= b

2y

3 /e

WFcr(T,w)—gDCAGm).
(26)

We account also for the anelastic strain due to the bowing
out of dislocation segments between localized obstacles. If
o<o¢o(T,w), bowing out of dislocation segments is re-
sponsible for the following average displacement of the dis-
location:

o= 20 2

- Ey ’ ( 7)
where | is given by Eq.(24). Finally, the stress-anelastic
strain response due to the motion of the dislocation over
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FIG. 6. Rheological model for the motion of a dislocation in

solid solution under applied stresswith the stress components,
corresponding to overcoming of diffuse long-range obstaclgs,
and localized onegr,, and to the action of the line tension between
impenetrable pinnersrs.

o=Su (31

localized obstacles is given by

On the rheological level, Eq31) corresponds to an element

of elasticity with the appropriate stress-strain behavior, as

_ ~ABpTT
o=CTPU T o<ow(Tw), represented in Fig.(6).
Tero(T,0)=C¥Q(T, w), (28)

where P and Q are parameters, of whic® is temperature
and frequency dependent:

C. Rheological model for the nonlinear anelasticity
in solid solutions

We have introduced separately three basic ingredients of
dislocation anelasticity in solid solutions with their corre-
sponding rheological interpretations. When the dislocation is
displaced from its equilibrium position under the action of
applied stress, as depicted in Fig. 3, all three types of ob-
stacles, discussed in the previous sections, impede its mo-
tion. Therefore, the total applied stresss composed of the
three components, associated with different mechanisms

6
P=1 (V279?AGm?°,

1[{ @?AG,
Q(T'w)QBH 2y

1/3
) FolT,0)— gpcl%em}
(29

We assumed in Eq(29) that, as a first approximation,
Q(T,w) is only temperature and frequency dependent, ne-
glecting weak concentration dependence of its second term. )
The rheological model associated with the bowing out andVhereo, o2, o3 are the components of the applied stress
continuous thermally activated pinning and depinning of thedue to diffuse, localized forces and the line tension due to
dislocation from short-range obstacles is conventionally repPowing out of the dislocation between unbreakable pinning
resented by a solid friction element in a series with an elePOINts, respectively. We assume that these components are
ment of elasticity, Fig. 8). Figure 3b) also shows sche- determined by the corresponding EG&0), (28), and (31).
matically the corresponding cyclic stress—anelastic strait/Sing Eqs.(20), (28), and(31), which define separately each

behavior, and the influence of increasing temperature and/@& the mechanisms, in E¢32) implies that all three compo-
frequency on the critical stresg,»(T,®). nents are assumed to be independent, interrelated only via

the magnitude of applied stress. Here we follow the usual
approach to treating different components of applied stress
as additive, for example, line tension, viscous friction, and
inertial term in the case of the oscillating string model. At
Ghe rheological level, Eq:32) can be thought of as a parallel
connection of the separate rheological elements. The com-
plete rheological model associated with E§2) with the
components defined by Eq&0), (28), and (31) is repre-
sented in Fig. 6.

o=01+ 0+ 03, (32

3. Restoring force due to line tension of dislocation
between unbreakable pinning points

Finally, account should be taken of the restoring force du

to the line tension of a dislocation segménbetween two
unbreakable obstacles. Similar to E87), the average dis-
placement of the dislocation line is

bL?

u=
IIl. NUMERICAL SIMULATION. COMPARISON

. — WITH EXPERIMENT
Introducing a new constant parame8 12y/bL?, one ob-

tains from Eq.(30) for the stress due to dislocation line ten-
sion between unbreakable pinning points

Formally, four different cases are possible, depending on
the relationship between the values of the applied stress com-
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ponentso; , 0, and critical stresses 1,0 ¢ T, w): and dimensionless variables
Low stress amplitudes o o
0 0
a;=—=yC—,
01<0¢1, = \/—Ucrl
0'2<Ucr2(T1w)- (33) Q(le) 1 Uch(T!w)
Intermediate stress amplitudes A(Tw)=—F—= 8C  Oen
01=0cr1, - (ﬂ) s
02<0(T,w) (34 pbz E\/E ’
or
_TO A Gt 40
01<0¢1, B Ocr1 - \/Esmw ’ (40
0= 0T, w). (35  wherea, is an independent variable, related to the applied

stress amplitude, andis proportional to the anelastic strain.
Parameter,(T,w) is associated with the temperature- and
frequency-dependent critical stress for the thermally acti-
vated depinning of dislocations. The explicit form of the
02= 0o T, @). (36)  temperaturéfrequency dependence of this critical stress has
not been discussed in the present work, see Sec. I B 2. Nev-
Despite the simplicity of Eqg20), (28), and(31) relating  ertheless, we will consider,(T,w) as an independent vari-
the components;, o,, o3 to the anelastic strain, a general able, related to the temperature and/or frequency. Equations
analytical solution for the dependenaéo) does not exist (38) in dimensionless form are
for any of the conditiong33)—(36). In the present work, _
numerical calculations of the anelastic response have been ) >
performed for the periodic applied stresét) = o Sinwt. At Y= AYY ICF ACP+ 1’
this stage it is worthwhile to operate with the macroscopic ! 2
anelastic straire 5, rather than with the average dislocation

High stress amplitudes

01=0¢r1»

displacement. Since anelastic strain is o )
Y= 473 ’
_ A,C"+1
ean=pbu, (37
wherep is the density of mobile dislocations, all of the pre- i 3
vious algebraic manipulations are valid for the anelastic Y= —AlYa—lCa+1v

strain. We note now that the anelastic strain rate can be eas-
ily derived analytically from Eq.(32) accounting for Egs.

(37), (20), (28), and(3D); Y=3 (41
g1 for all of the conditiong33)—(36), respectively.
Ea= / aBClat 1)/2% 43__ ) , Two parametersh; andA,, together with the constam,
(pb) pb b determine completely the shape of the stress-anelastic strain
hysteresis. Introducing two additional parameteks, and
b | [l > Aa, 85
an pb pb 1
pb
a—1 A = —
& S MENEY
Lo (a+1)/2.7an -~
San "/ (“BC (pb>“+pb)’ i
_ o As=pb 5 (42)
ean=pb 3 (38)

wherelJ is the elastic compliance, and recalling that the dec-
for all of the conditions(33)—(36), respectively. We intro- rement and modulus defect are
duce dimensionless parameters

1
(g b
S S AJ Sal‘](r:a'o ( )
T doy
p 0
A2=§’ (39 one obtains from Eqg43), (42), and(40)



PRB 60 THEORY OF DISLOCATION-SOLUTE ATOM.. .. 9359
02:10 02=2 a2=0.1
Stress, arb.units Stress, arb.units Stress, arb.units

0.04 4

@

(®)

@

©

0.04 q

@

®

0.04 1

% 0.00008

Anelastic strain,

arb.units

lastic strain,

a;=0.12 arb.units
Anelastic strain,
a;=0381 arb.units
1 -15 15
p— —1
-2 -2
-3 -3
——4 —o—4
-10 4 103 -104

FIG. 7. Calculated total stress-anelastic strain hysteresis loops and their components for the impurityCcoftérand different values
of the parametea, (temperatureanda; (stress amplitude (1) is the total stress-anelastic strain hystereds;js the hysteresis due to
surmounting diffuse localized force@) is the hysteresis due to overcoming localized obsta¢iss the line tension between rigid pinners.
Model parameterd; =15, A,=900,A;=2x10"° A,=20. The hysteresis loops correspond to the data in Fig. 8, where selected stress
amplitudes are indicated by the vertical arrows.

rather weak functions of anelastic strain rateCalculations
have shown that, indeed, accounting for the strain rate de-

A1 pendence otr.,, had only a marginal effect on the results.

AJ Jc Numerical integration of Eq(41) by the Runge-Kutta
—=A;—Y , method was performed using the algorithm from Ref. 20.
J a o=0y The technique of calculations was previously designed for
determining the nonlinear cyclic anelastic response of
ean=As\/CY. (44)  solids* Numerical simulation yielded first the dependences

eal0), €al01), €a02), €af03), as is shown, for ex-

Thus we see from Ed44) that the parameters; andA, are an, .
dé4) b 3 4 @mple, in Fig. 7. From these components of the anelastic

scaling for the values of the decrement and modulus defec
response, the values @&,, AJ/J, r=6,/(AJ/J), 6h1, R

and anelastic strain, respectively. ! ) \ .
Account has also been taken, within each loading cycle= ®h1/n can be easily derived as functions of the dimen-

for the strain rate dependence of surmounting localized obSiONIesS stresa,, the temperature-dependent critical stress
stacles by mobile dislocations. As a first approximation we?2, @nd the solute concentrati@ whered, andy, are the

suggested that the critical stress,, is strain-rate dependent t0tal ADIF and its athermal component, respectivelis the
ratio of the ADIF to the amplitude-dependent modulus defect
Ocr2= U'cr2|éan: 1(&an) l/m, (45)

(ADMD), Riis the relative fraction of the ADIF due to over-
coming of the athermal long-range diffuse forces. The total
where m is a constant parameter. Throughout the presenlecrement and its athermal component were calculated from
simulations we assumeatd=>5, the value which is represen- the area within the corresponding hysteresis loepgo)
tative for the strain rate dependence of the effective stresande, (o), see Fig. 7. The ADMD was determined as the
component during macrodeformation of crystals. Obviouslyyatio of the amplitude of the first harmonic component of the

the parametem is of secondary importance, since the poweranelastic strain in phase with the applied stress to the elastic
dependence in E¢45) with the exponent M=0.2 represent strain amplitude. Our main concern in the present paper is
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the influence of temperature and solute atom content on the 10" 3

strain amplitude dependence of the above-mentioned param: ] —}‘O Domain Il
eters of nonlinear anelasticity, since they have been reportec ~ , | omai -
in a recent detailed experimental stutly.
5
.3
A. Model parameters 10
At the present stage we intend to compare qualitatively 10 4

the results of simulations with experimental data. Therefore,
calculations have been performed for rather arbitrary values
of the model parameters. The major part of the calculations 10°
has been done for the solute concentratin0.1. The pa- 10"
rametera determines, primarily, the slope of the strain am- — 10
plitude dependence of the ADIF at low strain amplitudes and 2 e 4 o
is the only one chosen to fit the experimental data. It is ]
associated with the type of dislocation—foreign atom interac- ] —- 04
tion and the distribution of diffuse forces, see E@9), (21), S 10°
and (4). Parameter®\; and A,, if not specified otherwise, ]
have been set up to 15 and 900, respectively. These param
eters are associated, primarily, with the relationship between
the retention force due to the diffuse and localized forces,
and the line tension due to bowing out between unbreakable
obstacles, respectively. For example, the valges 900 pro-

vides L/l =6.5 for the concentratio©€=0.1. Circular fre-
guency o was assumed to ben2 Simulations have been
performed assuming homogeneous stress distribution in the
crystal. The qualitative comparison will be done with the
experimental anelastic behavior under inhomogeneous
strain®

Domain I

®)

=8,/(AJ/J)

0 T T LI L L] T T T v VT Trrry
0.001 0.01 0.1 1
1. Influence of temperature on the ADIF, ADMD, and r value 4

Figure 8 shows the calculated stress amplitude depen- giG, 8. Calculated stress amplitude dependence of the decre-
dence of the ADIF, ADMD, and their ratio for different  ment(a), strain-amplitude-dependent modulus defégtand their
values of the parametey,. As discussed above, a change of ratio (c) for impurity contentC=0.1 at different temperaturdsal-

a, corresponds to a variation of temperature. Figure 9 repredes of the parameter,). Model parameteré; =15, A,=900, A;
sents experimental strain amplitude dependences of the2x10°5, A,=20.

ADIF, ADMD, and ther value, measured in a Cu-7.6 at. %
Ni single cwst_al ala frequency of ab_ouf[ 100 kHz, see Ref. 9experimental results. Numerous details of ti{ey,T) de-
for more details. A remarkable qualitative agreement of de- . .

. S , pendences are reproduced in the modéi) Existence of a
tails of the ADIF, ADMD, andr-value behavior is obtained low-temperat tote. d ) ith the strai -
without fitting of the model parameters. -mperature asymplote, decreasing with the strain ampli

As has already been intimat&dseveral distinguishing (Ud€ increase from the value2.5 to approximately 1(ii)
stages of the ADIF behavior with changing the temperaturéjev'a,t'On from this asymptote at progressively lower strain
are inherent in solid solutions of fcc metalsi) Existence ~aMmplitudes with increasing temperature, so as to increase the
of a single athermal low-temperature asymptote with a weak Value; (i) Formation of a pronounced maximum of the
strain amplitude dependencéi) Deviation of the ADIF value at high strain amplitudes, which shifts to the lower
from this asymptote at progressively lower strain amplitudestrain amplitudes with increasing temperature.
with increasing temperatures; a pronounced temperature de- Ishii®* was the first to emphasize the importance of the
pendence of the ADIF is observed in this sta@&) Occur-  Vvalue to classify mechanisms of the ADIF. He has analyzed
rence of a strongly strain-amplitude-dependent, but weakly great variety of observed values, as compared with the
temperature-dependent stage with a saturation for the highegtediction of the breakaway Granato andcka model that
strain amplitudes. ther value is a constant of the order of unf/Up to now,

The simple microscopic model developed in the presenthere are few reports on thevalue behavior over a wide
work, shows perfect qualitative agreement with the experitange of strain amplitude€s:® See also the analysis of Bak-
mental ADIF behavior. Even more impressive is the agreeer’s datd* in Ref. 21, which show that thevalue is essen-
ment of the influence of temperature on the strain amplituddially not constant. The tradition is still to consider it as a
dependence of the ADIF to the ADMD ratio, FigdcBand  constant parameter, peculiar to a single specific ADIF
9(c). We note here that, in contrast to the ADIF and ADMD, mechanisnf® Thus, the present theory enables us to make an
the calculatedr value can be directly compared with the attempt to analyze the strain amplitude dependence of the

B. Results of simulations. Comparison with experiment
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107 5 stress amplitudes, the critical stress,; is exceeded, Fig.
] :;KK Domain Tl 7(c). However, the anelastic strain, ADIF and ADMD do not
102 [~+160K increase considerably, since the displacement of dislocations
1 |—-210k 7/ is limited by the line tension between localized obstacles.
1{=2m7K £ S At intermediate temperatures, Figgd~7(f), at low and
& 1077  Domainll el ol & moderate stress amplitudes, Fig&d)7and 7e), the anelastic
behavior is the same as at low temperatures. Therefore, the
107 4 Domain I ADIF and ADMD stress amplitude dependence follows the

same low-temperature asymptote in Domain I, Figs. 8 and 9.
However, localized forces can now be surmounted at high
stress amplitudes. When both critical stresses are exceeded, a
10" TToex drastic increase of the anelastic strain occurs, Rig, 3ince

10 the strain becomes controlled only by the line tension be-
tween unbreakable obstacles. Therefore, the steep rise of the
ADIF and ADMD is observed when both critical stresses are
exceeded in Domain Ill, Figs. 8 and 9.

For the range of high temperatures, the critical stress for
the motion over localized obstacles becomes low and can be
exceeded at moderate stress amplitudes, Fig. This leads
) to a deviation of the ADIF and ADMD from the low-
temperature asymptote and the formation of a weakly stress-
amplitude-dependent, but strongly temperature-dependent
3K trend in Domain Il. Exceeding of the critical stresg, is not
1]——s9K accompanied by a steep rise of the anelastic sfEiF and
4| 160K ADMD, see Figs. &) and 8b)], since the diffuse forces
limit dislocation displacement. A pronounced increase of the
anelastic strain occurs only when the temperature-
independent critical stress,,; is also exceeded at higher
stress amplitudes, Fig(iJ.

@

Domain I

On/(AT/T)

I

© 2. Influence of substitutional atom concentration on the ADIF

s w0t 1t 107 Figure 1@a) depicts the calculated strain amplitude de-
pendence of the ADIF for different solute concentrati@hs
The range of concentrations used corresponds to the varia-

FIG. 9. Experimental strain amplitude dependences of the decion of the ratioL/l from 1.4 to 10.5 for the concentrations
rement(a), strain-amplitude-dependent modulus def@@tand of  of 0.01 and 0.2, respectively. Thus, the simulation appears to
their ratio(c) for the Cu-7.6 at. % Ni single crystal taken for tem- pe meaningless for lower concentrations, having the fixed
peratures 8-277 K at a frequency of about 100 kst Ref. 9 for  yalue of the restoring force due to the line tension between
more results unbreakable obstacldparameterS, see Eq.(30)], since it

becomes lower than the restoring force due to the line ten-
value, and a remarkable agreement with experimental resultsson between localized forces. For low@r one should de-
is obtained. crease theS parameter as well. This requirement is in fair

Calculations of the stress-anelastic strain hysteresis allowgreement with the well-known increase of the dislocation
one to explain peculiarities of the strain-amplitude dependensity in deformed crystals with the impurity content. For
dences in Figs. 8 and 9. The hysteresis loops in Fig. 7 corexample, the dislocation pattern in the CuNi system changes
respond to the cross sections of the temperature dependendesm a homogeneous distribution for Cu-2 at. % Ni to a more
from Fig. 8, marked off by the arrows. Each vertical columnheterogeneous one with high dislocation density in slip lines
in Fig. 7 represents hysteresis loops at a constant temperfor Cu-5 at. % Ni crystalé®?’ Figure 1@b) represents the
ture, horizontal row—at a constant stress amplitude. experimental strain amplitude dependence of the decrement

At low temperatures, Figs.(@—7(c), the anelastic strain for crystals of the CuNi system, taken at low temperature
is purely hysteretic over the entire range of strain amplitudesimore data can be found in Ref).9Again, a remarkable
At low and intermediate strain amplitudes, Figga)7and  agreement is observed about the details of the experimental
7(b), the critical stressr¢1 is not exceeded. Here, the dis- and calculated results in a qualitative, if not almost quantita-
placement of dislocations is controlled by athermal diffusetive, manner:
forces and line tension between localized obstacles. The (i) an increase of the low-temperature and low-amplitude
stress amplitude dependence of the ADIF and ADMD fol-ADIF without change of the slope of the stress amplitude
lows a single low-temperature asymptote in Domain |, sealependence,

Figs. 8 and 9. The role of the line tension increases with (ii) a shift of the strongly strain-amplitude-dependent
increasing stress amplitude, resulting in the continuous destage of the ADIF to higher stress amplitudes with the in-
crease of the value as depicted in Fig(&. For the highest crease of impurity content,
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S (2) 1
10- T T T T T rrom T T T rrTor T T rrrrrr 3
0.001 0.01 0.1 1 10 0 T
a; 0.001 0.01 0.1 1
107 3 a
i | =cCu-13N;, 7K
102 { [ 76N 8K FIG. 11. Stress amplitude dependence of the fraction of the
athermal damping, calculated for different temperatuedues of
, a,). The results correspond to the data in Figs. 7 af@l. 8
& 107 4
4 the athermal events approaches 1 at very low and becomes
107 5 smaller at very high temperatures, that is the contribution of
(b the thermally activated events exhibits a maximum as a func-
107 - > T tion of temperatureR also exhibits a maximum on the stress
10 10 107 10 107 amplitude scale. The position of this maximum shifts to

€ . ..
0 lower stress amplitudes when the temperature is increased. A

FIG. 10. Influence of the impurity content on the amplitude '€éMarkable result is that in a large part of the stress-
dependence of the internal frictiona) calculated stress amplitude temperature domain, the contribution of the athermal events
dependences for different impurity contents agg-2; model pa- is overwhelming. In only a relatively narrow range of tem-
rametersA; = 15, A,=900,A;=2x10"°, A,=20; (b) experimen-  peratures and stress amplitudes is the contribution of ther-
tal strain amplitude dependences for Cu-1.3 at. % Ni and Cu-7.gnally activated overcoming of localized forces higher than
at. % Ni crystals, measured at low temperatures at a frequency Qhat of the athermal surmounting the diffuse ford&sis
about 100 kHzsee Ref. 9 for more detajls lower than 0.5.

) Quite interesting are certain details of the decrement and

(i) an increase of the slope of the steep ADIF stage foig hehayior in Domain I, see Fig.(8). At a first glance, one
higher impurity concentration, _ might expect the increase of the decrement in this domain
_ (iv) more (low impurity content or less(high concentra-  ager exceedingo,, be due to the overcoming localized
tion of impurity) pronounced saturation of the ADIF stress ¢ce5 A straightforward way to estimate the contribution of
amplitude dependence for the highest stress amplitudes. ¢ thermally activated events would be to subtract the val-

Itis worthwhile to note here that the model predicts the eq of the decrement at the low-temperature asymptote from
existence of a peaking effect as a function of the solute atorg,e ¢yrrent values, as it is usually done for the strain-
(or irradiation defegtcontent. Indeed, foC=0 the ADIF 5 jityde-dependent and independent IF components. This
becomes zero, since only the line tension between unbrealjmsje operation would result in a predominant contribution
able obstacles controls dislocation motion. Thus, the dept the thermally activated component, since the decrement
crease of the ADIF with solute concentration at higBesee i creases up to 3 to 4 times in Domain II, as compared with
Fig. 10, implies the existence of a maximum as a function oty low-temperature asymptote, see Fig) 8However, this
Fhe impurity (or irradiation defegtcontents, that is, the peak- straightforward approach gives completely wrong results and
ing effect. the real contribution of the thermally activated events re-
mains relatively low, see Fig. 11. The reason for that is the
fact that thermally activated and athermal events are interre-
lated via the anelastic strain amplitude. A deviation from the
low-temperature asymptote implies an increase of the anelas-

In this section we will analyze stress amplitude—tic strain amplitude in Domain I[ADMD, see Fig. &b)],
temperature dependence of the relative fraction of the ADIFand, as a consequence, an increase also of the athermal ADIF
due to athermal event®=4,,/6,, i.e., the ADIF fraction component, as compared with the low-temperature asymp-
due to the dislocation overcoming diffuse forces. The resultsote.
of the calculations are depicted in Fig. 11. The fraction of the Thus we conclude that, in the major part of the
total damping due to the athermal diffuse forces is repretemperature-stress amplitude domain, the ADIF is predomi-
sented for the stress amplitude dependences of the decremeaintly due to the motion over athermal diffuse forces, de-
at different values of the, parameter(different tempera- spite the pronounced temperature dependence of the ADIF,
tureg from Fig. 8a). As one may expect, the contribution of for example, in Domain II.

3. Athermal and thermally activated components
of strain-amplitude-dependent
internal friction
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10" 3 Thus, good agreement of the suggested model with nu-
] merous experimental observations, assumingdhatcan be
lower thano,, and a radical discrepancy otherwise, enables
us to conclude that diffuse forces exerted on a mobile dislo-
cation in a solid solution, at least at elevated temperatures,
can be predominant over the localized ones. To justify this
statement, we would like to point here to an issue apparently
missing in the previous works. The assertion that localized
forces are always predominant over the diffuse ones is based
] on the analysis performed by Nabdrffcand Labuscik®
10° — —— ——rrrr However, Nabarro made the estimations for the flow stress at
0.001 0.01 0.1 1 T=0K. Labusck® also did not consider the influence of
a temperature on the diffuse and localized forces. We believe
that generalization of this conclusion to the range of elevated
?émperatures is not justified if diffuse forces represent long-
range elastic stress fields, which are surmounted athermally.
Indeed, the critical stress for the motion over diffuse forces is
femperature independent, whereas the critical stress of mo-

FIG. 12. Calculated stress amplitude dependence of the decr
ment for solute atom concentrati@=0.1 and different tempera-
tures (values of the parametaa,), showing the influence of the
relationship between critical stresseg; and o, on the expected
temperature dependence of the decrement. Values of model para

eters:A; =36, A,= 900, A;=2X 1075, A,=2. tion over localized obstacles is st.rongly reducgd with i_n—
creasing temperature. Therefore, it appears quite plausible
C. Critical stresses for dislocation motion over diffuse that, at elevated temperatures, diffuse forces may become
and localized forces predominant over the localized ones. This statement also fol-

An essential assumption underlying the results reported ifPWs directly from Friedel's conclusion that the long-range
previous sections is that the critical stress for the motion off@rdening by solute atoms is responsible, at least partly, for
dislocations over diffuse forces can be higher than the critithe athermal thh-temperature plateau of the elastic limit of
cal stress related to their motion over the localized onesSolid solutions:

Before analyzing the situation in more detail, we shall first

present the results of the simulations in a wide range of criti-

cal stressr,,, (temperatures wheno,, is both significantly IV. CONCLUSION

higher or lower tharo,,. Figure 12 demonstrates such re-  1he gyggested microscopic model for the dislocation-
sults. The critical stress;, has been decreased an order of o) te atom interactions in solid solutions enabled us to cal-
magnitude, as compared to the results in Figs. 7, 8, and 1Qyate the nonlinear dislocation anelasticity in solid solu-
The vertical line in Fig. 12 separates approximately the dotions. A complicated multistage behavior of the internal
mains with different relationship betweem,; and oc2-  friction, Young’s modulus defect, and their ratio in the
Strictly speaking, there is no fixed value of the applied streSgsmperature—strain amplitude—solute concentration domain
dividing these domains, sineg,, is not constant for each of s yredicted. Results of numerical simulations show good, at
the strain amplitude dependences, but depends slightly on thge very least qualitative, agreement with experimental data.
strain rate(stress amplitude Nevertheless, such an approxi- The agreement implies that, as opposed to the conventional
mate division of the domains is representative. Obviouslygnproach, the critical stress for the motion of dislocations in
the ADIF behavior is essentially the same at low stress aMge field of diffuse forces due to foreign atoms situated away
plitudes (Domain ), when neither of the critical stresses is oy the dislocation glide plane may exceed the critical
exceeded. At higher stress amplitudes, the ADIF behaviogess due to localized interactions with foreign atoms in a

shows a perfect at the very least qualitative agreement withsy atomic planes adjacent to the dislocation glide plane.
experimental results whew>o.,. In contrast, the ADIF

behavior diverges fundamentally from the experimental data
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