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Theory of dislocation-solute atom interactions in solid solutions and related nonlinear anelasticity
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A theory for dislocation-solute atom interactions in solid solutions has been developed which allows one to
calculate the nonlinear dislocation strain-amplitude-dependent internal friction. The suggested model accounts
for different modes of dislocation-solute atom interactions:~i! Solute atoms distributed in the dislocation glide
plane interact with the dislocation core and represent short-range obstacles for the dislocation motion;~ii !
Solute atoms situated away from the dislocation glide plane create relatively weak long-range elastic stress
fields, also impeding dislocation motion. We assume that dislocations move in a two-component system of
obstacles which differ with respect to the thermodynamics of dislocation–point-defect interactions. Namely,
dislocations overcome short-range obstacles under the combined action of applied stress and thermal energy,
whereas relatively weak long-range obstacles are surmounted athermally. The model predicts a complicated
multistage behavior of the nonlinear internal friction in the strain amplitude–temperature–solute concentration
domain, which is in excellent agreement with recent experimental data.@S0163-1829~99!10033-X#
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I. INTRODUCTION

It is generally agreed upon that dislocation-related stra
amplitude-dependent internal friction~ADIF! in crystals, at
moderate stress amplitudes~i.e., well below the yield stress
of a crystal!, is due to the reversible oscillatory motion o
dislocations over stress fields of lattice point defects,1 al-
though, under certain circumstances, nonlinear anelast
may originate from intrinsic properties of dislocations2 or
dislocation-dislocation interactions.3,4 Despite the fact tha
numerous theories of the internal friction~IF! due to
dislocation–point-defect interactions have been develope
theoretical background for several important issues is
lacking.5 Among those issues are the problem of the lo
strain amplitude IF background in pure metals and solid
lutions in the low-frequency range,6 the peaking effect dur-
ing irradiation of crystals,7 and the low-temperature atherm
ADIF in crystals with different crystallographic structure.8,9

Existing theories of the ADIF usually consider the the
mally activated breakaway or continuous pinning and dep
ning of dislocations from the lattice defects, distributed~ho-
mogeneously or heterogeneously! in the dislocation glide
plane. Traditionally, in the case of dislocation motion in
two-component system of obstacles, it has been inferred
solute atoms distributed in dislocation glide planes repres
weak and short-range obstacles which dislocations overc
with the assistance of thermal fluctuations, whereas fo
dislocations create strong obstacles.10 An approach has bee
suggested in Ref. 5 to account for the aforementioned
solved problems. It has been assumed that for an adeq
description of the dislocation motion in the anelastic ran
dislocation interactions with elastic stress fields of lattice
fects distributed in the bulk of a crystal, should be conside
as well as short-range interactions with defects distribute
the dislocation glide plane. Thus, even in the simplest cas
immobile solute atoms of the same nature~or point obstacles
for the dislocation motion! homogeneously distributed in th
bulk of a crystal, two different modes of dislocation intera
tions with those obstacles should be taken into account.
PRB 600163-1829/99/60~13!/9353~12!/$15.00
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cently, a detailed experimental investigation of the ADIF
solid solutions of the CuNi system has been performed.9 In
the present paper we suggest a quantitative model for
ADIF in solid solutions and compare its predictions wi
available experimental data.

II. MODEL

A. Elementary dislocation–single foreign atom interactions

Dislocation–foreign atom interactions originate fro
various mechanisms: atomic size misfit, modulus effect,
‘‘electrostatic’’ effect when a foreign atom has a valen
different from that of the host atom.11 Consider, for simplic-
ity, the case of atomic size misfit, when a substitutional s
ute atom is a dilatation center with spherical symmetry.12 If
the foreign atom is situated at a distancez from the glide
plane of an edge dislocation with the Burgers vector alo
thex axis ~Fig. 1!, the interaction force between the disloc
tion gliding in thex direction and the foreign atom is11

F~x!5
mbdV`

pz2

2x/z

~11x2/z2!2 5Fmaxw~x/z!, ~1!

FIG. 1. Force-distance profiles for dislocation-solute atom int
actions, in the case of atomic size misfit and edge dislocation,
different relative position and distance between dislocation and
ute atom.
9353 ©1999 The American Physical Society
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9354 PRB 60G. GREMAUD AND S. KUSTOV
where dV` is the change of the volume of the unstrain
lattice by the substitution for a solute atom,m is the shear
modulus,b is the Burgers vector magnitude. Profiles~1! are
plotted in Fig. 1 for two different spacingsz between the
solute atoms and dislocation glide plane. The maximum
teraction force between the dislocation and foreign atom
pends strongly on the spacingz:

Fmax}1/z2. ~2!

For the case of modulus effect,11 one has

Fmax}1/z3. ~3!

The range of the dislocation-solute atom interaction
creases with the spacingz. For example, for the atomic siz
misfit, Eq. ~2!, the maximum of the interaction force alon
the gliding directionx occurs at a distanced5z/) from the
atom’s projection on the glide plane. Thus, solute atoms
the slip plane or in a few adjacent atomic planes interact w
the dislocation on a short range, comparable with the B
gers vector magnitudeb. Solute atoms situated away from
the glide plane give rise to relatively small but long-ran
stresses. The former case corresponds to localized, an
latter to diffuse forces, exerted on the dislocation.13 This
situation can be represented schematically by Fig. 2, wh
full and open spheres represent foreign atoms, distribute
the vicinity and away from the dislocation glide plane, r
spectively. The atoms, situated away from the glide pla
create weak but long-range stresses in the glide plane
shown by gray symbols in Fig. 2. The diffuse forces a
considered as internal stresses, slowly varying in sp
~compared to the Burgers vector magnitudeb!, with a mean
amplitudes i .13,14

The present model is based on an assumption that d
cations overcome these two types of obstacles in essen

FIG. 2. Schematic representation of a dislocation, gliding w
the average displacementū in stress fields of solute atoms distrib
uted in the bulk of a crystal. Small full circles represent solu
atoms in a few atomic planes, adjacent to the dislocation g
plane. They create strong short-range obstacles in the disloc
glide plane, which can be surmounted with the assistance of the
fluctuations. Open circles show solute atoms, situated away f
the dislocation glide plane. Large gray symbols on the glide pl
represent long-range athermal stress fields due to these atoms
range of interaction and the maximum interaction force, as re
sented by the size and darkness of symbols, depend on the sp
between the atom and glide plane.
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different ways. Dislocations overcome localized forces un
the combined action of the applied stress and thermal fl
tuations. Relatively weak but long-range diffuse forces
surmounted athermally. We believe that weak long-range
stacles are not intrinsically athermal. Rather, the wait
time for a fluctuation becomes very long for long-range o
stacles, even if the activation energy is relatively low. W
suppose that this is due to a low attack frequency for ov
coming long-range obstacles.15 This problem deserves spe
cial attention and is beyond the scope of the present work
what follows we will accept the athermal nature of lon
range obstacles as a hypothesis and will verify its valid
comparing experimental results with predictions of t
model.

Schematically, the simultaneous motion of a dislocat
with an average displacementū under applied stresss in the
two-component system of obstacles can be represente
Fig. 3. We also introduce strong impenetrable obstacles,
instance, due to the nodes of the dislocation network, a
larger space scaleL̄, as indicated by crosses in Fig. 3. W
will consider first ~separately! interactions of dislocations
with these three types of obstacles.

B. Basic ingredients of the model

1. Motion of a dislocation over athermal diffuse forces

The interaction force between a dislocation and a so
atom situated away from the dislocation glide plane depe
on the distance between the solute atom and glide plane@Eq.
~2! in the case of atomic size misfit#. Therefore, we introduce
the distribution functionn( f ) of the number of atherma
forces per unit area of the glide plane, which is proportio
to the atomic concentrationC of the solute atoms and i
dependent on their distribution in the bulk of a crystal:

n~ f !d f5A
C

f b d f ,

f , f max, ~4!

whereA is a normalization constant,b is a parameter depen
dent on the distribution of solute atoms in the bulk and
nature of dislocation-solute atom interaction. This distrib

e
on
al
m
e

The
e-
ing

FIG. 3. The model for the dislocation motion with an avera
displacementū in the field of localized thermally activated ob
stacles~small full circles! and diffuse long-range athermal stre
fields ~gray large circles! under the action of an applied stresss.
Crosses represent impenetrable pinning points.
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PRB 60 9355THEORY OF DISLOCATION-SOLUTE ATOM . . .
tion is limited by the maximum value of the interaction for
f max for which dislocation-point obstacle interaction is st
athermal.

Consider, for example, the case of size misfit and rand
solid solution, i.e., the homogeneous volume distribution
solute atoms. The numbern(z)dz of solute atoms per uni
area of the dislocation glide plane, situated on both side
the dislocation glide plane at a distancez in the rangedz is

n~z!dz52
C

a3 dz, ~5!

wherea is the lattice parameter. Since from Eq.~2!

dz}
1

f 3/2d f , ~6!

one obtains from Eqs.~5! and ~6! for the atomic size misfit
and homogeneous solid solution

n~ f !d f5AC
1

f 3/2d f , ~7!

i.e., the parameterb in Eq. ~4! becomes equal to 3/2. For th
modulus effect one obtains from Eqs.~3!, ~5!, and ~4!: b
54/3.

The numberN(F) of obstacles per unit area of the disl
cation glide plane having the maximum interaction for
equal or higher thanF is given by

N~F !5N~ f .F !5E
F

f max
n~ f !d f5A

C

b21 S 1

Fb212
1

f max
b21D .

~8!

In what follows, we suggest using a more convenient
proximate form forN(F)

N~F !5H A
C

b21

1

Fb21 if f , f max,

0 if f > f max.
~9!

It is well known that in solid solutions the most stab
dislocation configuration even in the absence of exter
stress is a zigzag form,14,16 shown in Fig. 4~a!. The average
length of a zigzag along the dislocation linel̄ and zigzag
amplituded̄ satisfy the condition

h25dl, ~10!

whereh is the average obstacle spacing in the glide pla
Under applied stress, the dislocation has a configuration,
picted in Fig. 4~b!, with the anglesa1 anda2

a1>d̄/ l̄ 5~h/ l̄ !2,

a2>
b l̄s

2g
,

~11!

whereg5mb2 is the line tension.
The average pinning force, acting between the disloca

and point obstacle is given by
m
f

of

-

al

e.
e-

n

f p>2g~a11a2!>2gS h2

l̄ 2
1

b l̄s

2g
D . ~12!

Minimization of the average pinning force under conditio
~10! leads to the well-known dynamic Friedel’
distribution16,17 of l̄ and d̄:

l̄ 5S 4h2g

bs D 1/3

,

d̄5S h4bs

4g D 1/3

. ~13!

Substituting l̄ from Eq. ~13! into Eq. ~12! one obtains the
average pinning force for Friedel’s statistics:

f p53~gh2b2/2!1/3s2/3. ~14!

Let us apply the dynamic Friedel distribution to the m
tion of a dislocation in the system of athermal obstacl
When obstacles with retention forcef .F stop the disloca-
tion, their number per unit area of the glide plane is

N~F !5
1

h2 . ~15!

Supposing that the average pinning forcef p is equal to the
retention forceF sufficient to stop the dislocation under a
plied stresss, one obtains from Eqs.~14! and ~15!

F53S gb2

2N~F ! D
1/3

s2/3. ~16!

SubstitutingN(F) from Eq. ~9! into Eq. ~16! we deduce the
dependence of the retention force on the applied stress:

F5S 27gb2~b21!

2AC D 1/~42b!

s2/~42b!. ~17!

FIG. 4. Zigzag configuration of a dislocation in a random so
solution ~a! and bowing out of segments of the zigzagged dislo
tion under applied stress~b!.
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9356 PRB 60G. GREMAUD AND S. KUSTOV
Since the average displacement of the dislocation co
sponds to the zigzag amplitude,ū>d̄, one has from Eqs
~13!, ~15!, ~9!, and~17!

s5BC2/bū~42b!/b, ~18!

where

B5
9~12b!/b

bg S 2Ag

b21D 2/b

is a constant parameter.
For F→ f max, one obtains from Eq.~8! thatN(F)→0, that

is, the average displacement of the dislocation is not c
trolled any more by athermal obstacles. A reasonable e
mate of a critical stressscr1 for the motion of the dislocation
in the stress field of athermal obstacles can be deduced
Eq. ~17! substitutingF5 f max:

scr15EAC, ~19!

where

E5A 2A

27b2g~b21!
f max

~42b!/2

is a constant parameter.
The stress-anelastic strain dependence and the concent
dependence of the critical stress for the motion of a z
zagged dislocation over athermal diffuse forces can be w
ten finally as

s5BC~a11!/2ūa, if s,scr1,

scr15EAC ~20!

with the exponenta in the power dependence of the disl
cation displacement on applied stress

a5
42b

b
. ~21!

Equations~20! are sufficient to determine the compone
of the internal friction, associated with the dislocation m
tion over athermal obstacles. We introduce a rheolog
model for this component of the total anelasticity of so
solutions as a solid friction element with cyclic stres
anelastic strain response as indicated schematically in
5~a!.

2. Motion of a dislocation over localized short-range obstacles

We will consider dislocation motion over the localize
short-range obstacles due to solute atoms distributed in a
adjacent atomic planes as continuous thermally activa
pinning and depinning of a dislocation line without hard p
ning points. We will restrict ourselves to average paramet
without analysis of the statistical problem of finding the r
lation between single dislocation-solute atom interaction
critical stress for dislocation motion.

Surface densityN of short-range obstacles is a function
the solute atom concentrationC:

N5wC, ~22!
e-
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wherew is a parameter reflecting the distribution of solu
atoms in the vicinity of dislocations. This parameter accou
for homogeneous or heterogeneous distribution of solute
oms around dislocations. The former case corresponds to
random solid solution, the latter corresponds for example
pinning of dislocations due to strain aging. We suggest th
at a stress below the critical stress of dislocation motion,
static Mott statistics14,18 is applicable. The sum of the line
tension energy and the binding energyDGm with solute atom
per unit length along the dislocation direction is

Ed5~gA l̄ 21d̄22DGm!/ l̄ . ~23!

Minimization of Eq.~23! with Eqs.~10!, ~15!, and~22!, and
not too large deviations of dislocation from the straight lin
gives l̄ and d̄ in the case of Mott statistics

l̄ 5S 2g

w2C2DGm
D 1/3

,

d̄5S DGm

2gwCD 1/3

. ~24!

One obtains the average pinning force for the Mott statis
by substituting Eq.~24! into Eq. ~12!:

f p5S 2b3g

w2C2DGm
D 1/3

s1~2wCDGmg!1/3. ~25!

Thermally activated depinning should be considered
the case of localized obstacles. Therefore, under oscilla
stress with amplitudes0 and circular frequencyv, the criti-
cal force of depinning from obstacleFcr ~as well as the criti-
cal stressscr2! becomes frequency and temperature dep
dent. We will not consider here the existing theoretic

FIG. 5. Rheological models with corresponding stress-anela
strain hysteresis loops, representing the motion of a dislocatio
stress fields of diffuse~a! and localized forces~b!, and under the
action of line tension between impenetrable pinning points~c!.
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PRB 60 9357THEORY OF DISLOCATION-SOLUTE ATOM . . .
predictions of their temperature and frequency depende
see for example Ref. 19, and introduce formally the tempe
ture and frequency dependence of the pinning fo
Fcr(T,v) and critical stressscr2(T,v). Equation~25! then
gives the critical depinning stress

scr2~T,v!5
1

b SA3 w2DGm

2g
A3 C2Fcr~T,v!2wCDGmD .

~26!

We account also for the anelastic strain due to the bow
out of dislocation segments between localized obstacle
s,scr2(T,v), bowing out of dislocation segments is r
sponsible for the following average displacement of the d
location:

ū5
bs

12g
l̄ 2, ~27!

where l̄ is given by Eq.~24!. Finally, the stress-anelasti
strain response due to the motion of the dislocation o
localized obstacles is given by

s5C4/3Pū if s,scr2~T,v!,

scr2~T,v!5C2/3Q~T,v!, ~28!

whereP and Q are parameters, of whichQ is temperature
and frequency dependent:

P5
6

b
~A2gw2DGm!2/3,

Q~T,v!'
1

b F S w2DGm

2g D 1/3

Fcr~T,v!2wC1/3DGmG .
~29!

We assumed in Eq.~29! that, as a first approximation
Q(T,v) is only temperature and frequency dependent,
glecting weak concentration dependence of its second te

The rheological model associated with the bowing out a
continuous thermally activated pinning and depinning of
dislocation from short-range obstacles is conventionally r
resented by a solid friction element in a series with an e
ment of elasticity, Fig. 5~b!. Figure 5~b! also shows sche
matically the corresponding cyclic stress–anelastic st
behavior, and the influence of increasing temperature an
frequency on the critical stressscr2(T,v).

3. Restoring force due to line tension of dislocation
between unbreakable pinning points

Finally, account should be taken of the restoring force d
to the line tension of a dislocation segmentL̄ between two
unbreakable obstacles. Similar to Eq.~27!, the average dis-
placement of the dislocation line is

ū5
bL̄2

12g
s. ~30!

Introducing a new constant parameterS512g/bL̄2, one ob-
tains from Eq.~30! for the stress due to dislocation line te
sion between unbreakable pinning points
e,
a-
e

g
If

-

r

-
.

d
e
-
-

in
or

e

s5Sū. ~31!

On the rheological level, Eq.~31! corresponds to an elemen
of elasticity with the appropriate stress-strain behavior,
represented in Fig. 5~c!.

C. Rheological model for the nonlinear anelasticity
in solid solutions

We have introduced separately three basic ingredient
dislocation anelasticity in solid solutions with their corr
sponding rheological interpretations. When the dislocation
displaced from its equilibrium position under the action
applied stress, as depicted in Fig. 3, all three types of
stacles, discussed in the previous sections, impede its
tion. Therefore, the total applied stresss is composed of the
three components, associated with different mechanisms

s5s11s21s3 , ~32!

wheres1 , s2 , s3 are the components of the applied stre
due to diffuse, localized forces and the line tension due
bowing out of the dislocation between unbreakable pinn
points, respectively. We assume that these components
determined by the corresponding Eqs.~20!, ~28!, and ~31!.
Using Eqs.~20!, ~28!, and~31!, which define separately eac
of the mechanisms, in Eq.~32! implies that all three compo
nents are assumed to be independent, interrelated only
the magnitude of applied stress. Here we follow the us
approach to treating different components of applied str
as additive, for example, line tension, viscous friction, a
inertial term in the case of the oscillating string model.
the rheological level, Eq.~32! can be thought of as a paralle
connection of the separate rheological elements. The c
plete rheological model associated with Eq.~32! with the
components defined by Eqs.~20!, ~28!, and ~31! is repre-
sented in Fig. 6.

III. NUMERICAL SIMULATION. COMPARISON
WITH EXPERIMENT

Formally, four different cases are possible, depending
the relationship between the values of the applied stress c

FIG. 6. Rheological model for the motion of a dislocation
solid solution under applied stresss with the stress components
corresponding to overcoming of diffuse long-range obstacles,s1 ,
and localized ones,s2 , and to the action of the line tension betwee
impenetrable pinners,s3 .
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9358 PRB 60G. GREMAUD AND S. KUSTOV
ponentss1 ,s2 and critical stressesscr1,scr2(T,v):
Low stress amplitudes

s1,scr1,

s2,scr2~T,v!. ~33!

Intermediate stress amplitudes

s15scr1,

s2,scr2~T,v! ~34!

or

s1,scr1,

s25scr2~T,v!. ~35!

High stress amplitudes

s15scr1,

s25scr2~T,v!. ~36!

Despite the simplicity of Eqs.~20!, ~28!, and~31! relating
the componentss1 , s2 , s3 to the anelastic strain, a gener
analytical solution for the dependenceū(s) does not exist
for any of the conditions~33!–~36!. In the present work,
numerical calculations of the anelastic response have b
performed for the periodic applied stresss(t)5s0 sinvt. At
this stage it is worthwhile to operate with the macrosco
anelastic strain«an rather than with the average dislocatio
displacement. Since anelastic strain is

«an5rbū, ~37!

wherer is the density of mobile dislocations, all of the pr
vious algebraic manipulations are valid for the anelas
strain. We note now that the anelastic strain rate can be
ily derived analytically from Eq.~32! accounting for Eqs.
~37!, ~20!, ~28!, and~31!;

«̇an5ṡY S aBC~a11!/2
«an

a21

~rb!a 1C4/3
P

rb
1

S

rbD ,

«̇an5ṡY S C4/3
P

rb
1

S

rbD ,

«̇an5ṡY S aBC~a11!/2
«an

a21

~rb!a 1
S

rbD ,

«̇an5rb
ṡ

S
~38!

for all of the conditions~33!–~36!, respectively. We intro-
duce dimensionless parameters

A15
aB

S S E

SD a21

,

A25
P

S
, ~39!
en

c

c
s-

and dimensionless variables

a15
s0

E
5AC

s0

scr1
,

a2~T,v!5
Q~T,v!

E
5

1

A6 C

scr2~T,v!

scr1
,

Y5S «an

rb2D S S

EAC
D ,

S5
s~ t !

scr1
5

a1

AC
sinvt, ~40!

wherea1 is an independent variable, related to the appl
stress amplitude, andY is proportional to the anelastic strain
Parametera2(T,v) is associated with the temperature- a
frequency-dependent critical stress for the thermally a
vated depinning of dislocations. The explicit form of th
temperature~frequency! dependence of this critical stress h
not been discussed in the present work, see Sec. II B 2. N
ertheless, we will considera2(T,v) as an independent vari
able, related to the temperature and/or frequency. Equat
~38! in dimensionless form are

Ẏ5
Ṡ

A1Ya21Ca1A2C4/311
,

Ẏ5
Ṡ

A2C4/311
,

Ẏ5
Ṡ

A1Ya21Ca11
,

Ẏ5Ṡ ~41!

for all of the conditions~33!–~36!, respectively.
Two parameters,A1 andA2 , together with the constanta,

determine completely the shape of the stress-anelastic s
hysteresis. Introducing two additional parameters,A3 and
A4 , as

A35
rb

JS
,

A45rb
E

S
, ~42!

whereJ is the elastic compliance, and recalling that the d
rement and modulus defect are

dh5
1

Js0
2 R «ands,

DJ

J
5

«anus5s0

Js0
,

~43!

one obtains from Eqs.~43!, ~42!, and~40!
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FIG. 7. Calculated total stress-anelastic strain hysteresis loops and their components for the impurity contentC50.1 and different values
of the parametera2 ~temperature! anda1 ~stress amplitude!: ~1! is the total stress-anelastic strain hysteresis;~2! is the hysteresis due to
surmounting diffuse localized forces;~3! is the hysteresis due to overcoming localized obstacles;~4! is the line tension between rigid pinner
Model parametersA1515, A25900, A35231025, A4520. The hysteresis loops correspond to the data in Fig. 8, where selected
amplitudes are indicated by the vertical arrows.
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dh5A3

C

a1
2 R YdS,

DJ

J
5A3

AC

a1
YU

s5s0

,

«an5A4ACY. ~44!

Thus we see from Eq.~44! that the parametersA3 andA4 are
scaling for the values of the decrement and modulus def
and anelastic strain, respectively.

Account has also been taken, within each loading cy
for the strain rate dependence of surmounting localized
stacles by mobile dislocations. As a first approximation
suggested that the critical stressscr2 is strain-rate dependen

scr25scr2u «̇an51~ «̇an!
1/m, ~45!

where m is a constant parameter. Throughout the pres
simulations we assumedm55, the value which is represen
tative for the strain rate dependence of the effective st
component during macrodeformation of crystals. Obvious
the parameterm is of secondary importance, since the pow
dependence in Eq.~45! with the exponent 1/m50.2 represent
ct,

,
b-
e

nt

ss
,
r

rather weak functions of anelastic strain rate«̇. Calculations
have shown that, indeed, accounting for the strain rate
pendence ofscr2 had only a marginal effect on the results

Numerical integration of Eq.~41! by the Runge-Kutta
method was performed using the algorithm from Ref. 2
The technique of calculations was previously designed
determining the nonlinear cyclic anelastic response
solids.4 Numerical simulation yielded first the dependenc
«an(s), «an(s1), «an(s2), «an(s3), as is shown, for ex-
ample, in Fig. 7. From these components of the anela
response, the values ofdh , DJ/J, r 5dh /(DJ/J), dh1 , R
5dh1 /dh can be easily derived as functions of the dime
sionless stressa1 , the temperature-dependent critical stre
a2 , and the solute concentrationC, wheredh anddh1 are the
total ADIF and its athermal component, respectively,r is the
ratio of the ADIF to the amplitude-dependent modulus def
~ADMD !, R is the relative fraction of the ADIF due to over
coming of the athermal long-range diffuse forces. The to
decrement and its athermal component were calculated f
the area within the corresponding hysteresis loops«an(s)
and«an(s1), see Fig. 7. The ADMD was determined as t
ratio of the amplitude of the first harmonic component of t
anelastic strain in phase with the applied stress to the ela
strain amplitude. Our main concern in the present pape
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the influence of temperature and solute atom content on
strain amplitude dependence of the above-mentioned pa
eters of nonlinear anelasticity, since they have been repo
in a recent detailed experimental study.9

A. Model parameters

At the present stage we intend to compare qualitativ
the results of simulations with experimental data. Therefo
calculations have been performed for rather arbitrary val
of the model parameters. The major part of the calculati
has been done for the solute concentrationC50.1. The pa-
rametera determines, primarily, the slope of the strain a
plitude dependence of the ADIF at low strain amplitudes a
is the only one chosen to fit the experimental data. It
associated with the type of dislocation–foreign atom inter
tion and the distribution of diffuse forces, see Eqs.~20!, ~21!,
and ~4!. ParametersA1 and A2 , if not specified otherwise
have been set up to 15 and 900, respectively. These pa
eters are associated, primarily, with the relationship betw
the retention force due to the diffuse and localized forc
and the line tension due to bowing out between unbreak
obstacles, respectively. For example, the valueA25900 pro-
vides L̄/ l̄ 56.5 for the concentrationC50.1. Circular fre-
quency v was assumed to be 2p. Simulations have been
performed assuming homogeneous stress distribution in
crystal. The qualitative comparison will be done with t
experimental anelastic behavior under inhomogene
strain.9

B. Results of simulations. Comparison with experiment

1. Influence of temperature on the ADIF, ADMD, and r value

Figure 8 shows the calculated stress amplitude dep
dence of the ADIF, ADMD, and their ratior for different
values of the parametera2 . As discussed above, a change
a2 corresponds to a variation of temperature. Figure 9 rep
sents experimental strain amplitude dependences of
ADIF, ADMD, and ther value, measured in a Cu-7.6 at.
Ni single crystal at a frequency of about 100 kHz, see Re
for more details. A remarkable qualitative agreement of
tails of the ADIF, ADMD, andr-value behavior is obtained
without fitting of the model parameters.

As has already been intimated,9 several distinguishing
stages of the ADIF behavior with changing the temperat
are inherent in solid solutions of fcc metals:~i! Existence
of a single athermal low-temperature asymptote with a w
strain amplitude dependence;~ii ! Deviation of the ADIF
from this asymptote at progressively lower strain amplitud
with increasing temperatures; a pronounced temperature
pendence of the ADIF is observed in this stage;~iii ! Occur-
rence of a strongly strain-amplitude-dependent, but wea
temperature-dependent stage with a saturation for the hig
strain amplitudes.

The simple microscopic model developed in the pres
work, shows perfect qualitative agreement with the exp
mental ADIF behavior. Even more impressive is the agr
ment of the influence of temperature on the strain amplit
dependence of the ADIF to the ADMD ratio, Figs. 8~c! and
9~c!. We note here that, in contrast to the ADIF and ADM
the calculatedr value can be directly compared with th
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experimental results. Numerous details of ther («0 ,T) de-
pendences are reproduced in the model:~i! Existence of a
low-temperature asymptote, decreasing with the strain am
tude increase from the value;2.5 to approximately 1;~ii !
deviation from this asymptote at progressively lower str
amplitudes with increasing temperature, so as to increase
r value; ~iii ! Formation of a pronounced maximum of ther
value at high strain amplitudes, which shifts to the low
strain amplitudes with increasing temperature.

Ishii21 was the first to emphasize the importance of thr
value to classify mechanisms of the ADIF. He has analyz
a great variety of observed values, as compared with
prediction of the breakaway Granato and Lu¨cke model that
the r value is a constant of the order of unity.22 Up to now,
there are few reports on ther-value behavior over a wide
range of strain amplitudes.23,9 See also the analysis of Bak
er’s data24 in Ref. 21, which show that ther value is essen-
tially not constant. The tradition is still to consider it as
constant parameter, peculiar to a single specific AD
mechanism.25 Thus, the present theory enables us to make
attempt to analyze the strain amplitude dependence of tr

FIG. 8. Calculated stress amplitude dependence of the de
ment ~a!, strain-amplitude-dependent modulus defect~b! and their
ratio ~c! for impurity contentC50.1 at different temperatures~val-
ues of the parametera2!. Model parametersA1515, A25900, A3

5231025, A4520.
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value, and a remarkable agreement with experimental res
is obtained.

Calculations of the stress-anelastic strain hysteresis a
one to explain peculiarities of the strain-amplitude dep
dences in Figs. 8 and 9. The hysteresis loops in Fig. 7
respond to the cross sections of the temperature depende
from Fig. 8, marked off by the arrows. Each vertical colum
in Fig. 7 represents hysteresis loops at a constant temp
ture, horizontal row—at a constant stress amplitude.

At low temperatures, Figs. 7~a!–7~c!, the anelastic strain
is purely hysteretic over the entire range of strain amplitud
At low and intermediate strain amplitudes, Figs. 7~a! and
7~b!, the critical stressscr1 is not exceeded. Here, the di
placement of dislocations is controlled by athermal diffu
forces and line tension between localized obstacles.
stress amplitude dependence of the ADIF and ADMD f
lows a single low-temperature asymptote in Domain I, s
Figs. 8 and 9. The role of the line tension increases w
increasing stress amplitude, resulting in the continuous
crease of ther value as depicted in Fig. 8~c!. For the highest

FIG. 9. Experimental strain amplitude dependences of the d
rement~a!, strain-amplitude-dependent modulus defect~b! and of
their ratio ~c! for the Cu-7.6 at. % Ni single crystal taken for tem
peratures 8–277 K at a frequency of about 100 kHz~see Ref. 9 for
more results!.
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stress amplitudes, the critical stressscr1 is exceeded, Fig.
7~c!. However, the anelastic strain, ADIF and ADMD do n
increase considerably, since the displacement of dislocat
is limited by the line tension between localized obstacles

At intermediate temperatures, Figs. 7~d!–7~f!, at low and
moderate stress amplitudes, Figs. 7~d! and 7~e!, the anelastic
behavior is the same as at low temperatures. Therefore
ADIF and ADMD stress amplitude dependence follows t
same low-temperature asymptote in Domain I, Figs. 8 an
However, localized forces can now be surmounted at h
stress amplitudes. When both critical stresses are exceed
drastic increase of the anelastic strain occurs, Fig. 7~f!, since
the strain becomes controlled only by the line tension
tween unbreakable obstacles. Therefore, the steep rise o
ADIF and ADMD is observed when both critical stresses a
exceeded in Domain III, Figs. 8 and 9.

For the range of high temperatures, the critical stress
the motion over localized obstacles becomes low and can
exceeded at moderate stress amplitudes, Fig. 7~h!. This leads
to a deviation of the ADIF and ADMD from the low
temperature asymptote and the formation of a weakly str
amplitude-dependent, but strongly temperature-depen
trend in Domain II. Exceeding of the critical stressscr2 is not
accompanied by a steep rise of the anelastic strain@ADIF and
ADMD, see Figs. 8~a! and 8~b!#, since the diffuse forces
limit dislocation displacement. A pronounced increase of
anelastic strain occurs only when the temperatu
independent critical stressscr1 is also exceeded at highe
stress amplitudes, Fig. 7~i!.

2. Influence of substitutional atom concentration on the ADIF

Figure 10~a! depicts the calculated strain amplitude d
pendence of the ADIF for different solute concentrationsC.
The range of concentrations used corresponds to the v
tion of the ratioL̄/ l̄ from 1.4 to 10.5 for the concentration
of 0.01 and 0.2, respectively. Thus, the simulation appear
be meaningless for lower concentrations, having the fix
value of the restoring force due to the line tension betwe
unbreakable obstacles@parameterS, see Eq.~30!#, since it
becomes lower than the restoring force due to the line t
sion between localized forces. For lowerC, one should de-
crease theS parameter as well. This requirement is in fa
agreement with the well-known increase of the dislocat
density in deformed crystals with the impurity content. F
example, the dislocation pattern in the CuNi system chan
from a homogeneous distribution for Cu-2 at. % Ni to a mo
heterogeneous one with high dislocation density in slip lin
for Cu-5 at. % Ni crystals.26,27 Figure 10~b! represents the
experimental strain amplitude dependence of the decrem
for crystals of the CuNi system, taken at low temperatu
~more data can be found in Ref. 9!. Again, a remarkable
agreement is observed about the details of the experime
and calculated results in a qualitative, if not almost quant
tive, manner:

~i! an increase of the low-temperature and low-amplitu
ADIF without change of the slope of the stress amplitu
dependence,

~ii ! a shift of the strongly strain-amplitude-depende
stage of the ADIF to higher stress amplitudes with the
crease of impurity content,

c-
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9362 PRB 60G. GREMAUD AND S. KUSTOV
~iii ! an increase of the slope of the steep ADIF stage
higher impurity concentration,

~iv! more ~low impurity content! or less~high concentra-
tion of impurity! pronounced saturation of the ADIF stre
amplitude dependence for the highest stress amplitudes

It is worthwhile to note here that the model predicts t
existence of a peaking effect as a function of the solute a
~or irradiation defect! content. Indeed, forC50 the ADIF
becomes zero, since only the line tension between unbr
able obstacles controls dislocation motion. Thus, the
crease of the ADIF with solute concentration at higherC, see
Fig. 10, implies the existence of a maximum as a function
the impurity~or irradiation defect! contents, that is, the peak
ing effect.

3. Athermal and thermally activated components
of strain-amplitude-dependent

internal friction

In this section we will analyze stress amplitude
temperature dependence of the relative fraction of the AD
due to athermal events,R5dhl /dh , i.e., the ADIF fraction
due to the dislocation overcoming diffuse forces. The res
of the calculations are depicted in Fig. 11. The fraction of
total damping due to the athermal diffuse forces is rep
sented for the stress amplitude dependences of the decre
at different values of thea2 parameter~different tempera-
tures! from Fig. 8~a!. As one may expect, the contribution o

FIG. 10. Influence of the impurity content on the amplitu
dependence of the internal friction:~a! calculated stress amplitud
dependences for different impurity contents anda252; model pa-
rametersA1515, A25900,A35231025, A4520; ~b! experimen-
tal strain amplitude dependences for Cu-1.3 at. % Ni and Cu
at. % Ni crystals, measured at low temperatures at a frequenc
about 100 kHz~see Ref. 9 for more details!.
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the athermal events approaches 1 at very low and beco
smaller at very high temperatures, that is the contribution
the thermally activated events exhibits a maximum as a fu
tion of temperature.R also exhibits a maximum on the stre
amplitude scale. The position of this maximum shifts
lower stress amplitudes when the temperature is increase
remarkable result is that in a large part of the stre
temperature domain, the contribution of the athermal eve
is overwhelming. In only a relatively narrow range of tem
peratures and stress amplitudes is the contribution of t
mally activated overcoming of localized forces higher th
that of the athermal surmounting the diffuse forces~R is
lower than 0.5!.

Quite interesting are certain details of the decrement
R behavior in Domain II, see Fig. 8~a!. At a first glance, one
might expect the increase of the decrement in this dom
after exceedingscr2 be due to the overcoming localize
forces. A straightforward way to estimate the contribution
the thermally activated events would be to subtract the v
ues of the decrement at the low-temperature asymptote f
the current values, as it is usually done for the stra
amplitude-dependent and independent IF components.
simple operation would result in a predominant contributi
of the thermally activated component, since the decrem
increases up to 3 to 4 times in Domain II, as compared w
the low-temperature asymptote, see Fig. 8~a!. However, this
straightforward approach gives completely wrong results
the real contribution of the thermally activated events
mains relatively low, see Fig. 11. The reason for that is
fact that thermally activated and athermal events are inte
lated via the anelastic strain amplitude. A deviation from t
low-temperature asymptote implies an increase of the ane
tic strain amplitude in Domain II@ADMD, see Fig. 8~b!#,
and, as a consequence, an increase also of the athermal
component, as compared with the low-temperature asy
tote.

Thus we conclude that, in the major part of th
temperature-stress amplitude domain, the ADIF is predo
nantly due to the motion over athermal diffuse forces, d
spite the pronounced temperature dependence of the A
for example, in Domain II.

.6
of

FIG. 11. Stress amplitude dependence of the fraction of
athermal damping, calculated for different temperatures~values of
a2!. The results correspond to the data in Figs. 7 and 8~a!.
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C. Critical stresses for dislocation motion over diffuse
and localized forces

An essential assumption underlying the results reporte
previous sections is that the critical stress for the motion
dislocations over diffuse forces can be higher than the c
cal stress related to their motion over the localized on
Before analyzing the situation in more detail, we shall fi
present the results of the simulations in a wide range of c
cal stressscr2 ~temperatures!, whenscr2 is both significantly
higher or lower thanscr1. Figure 12 demonstrates such r
sults. The critical stressscr1 has been decreased an order
magnitude, as compared to the results in Figs. 7, 8, and
The vertical line in Fig. 12 separates approximately the
mains with different relationship betweenscr1 and scr2.
Strictly speaking, there is no fixed value of the applied str
dividing these domains, sincescr2 is not constant for each o
the strain amplitude dependences, but depends slightly on
strain rate~stress amplitude!. Nevertheless, such an approx
mate division of the domains is representative. Obvious
the ADIF behavior is essentially the same at low stress a
plitudes ~Domain I!, when neither of the critical stresses
exceeded. At higher stress amplitudes, the ADIF behav
shows a perfect at the very least qualitative agreement w
experimental results whenscr1.scr2. In contrast, the ADIF
behavior diverges fundamentally from the experimental d
when scr2.scr1: After exceeding the critical stressscr1,
the ADIF deviates from the low-temperature and low-stra
amplitude asymptote; however, this deviation is purely te
perature independent. A transition to a steep stage of
ADIF, on the contrary, is strongly temperature dependen

FIG. 12. Calculated stress amplitude dependence of the de
ment for solute atom concentrationC50.1 and different tempera-
tures ~values of the parametera2!, showing the influence of the
relationship between critical stressesscr1 andscr2 on the expected
temperature dependence of the decrement. Values of model pa
eters:A1536, A25900,A35231025, A452.
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Thus, good agreement of the suggested model with
merous experimental observations, assuming thatscr1 can be
lower thanscr2 and a radical discrepancy otherwise, enab
us to conclude that diffuse forces exerted on a mobile dis
cation in a solid solution, at least at elevated temperatu
can be predominant over the localized ones. To justify t
statement, we would like to point here to an issue appare
missing in the previous works. The assertion that localiz
forces are always predominant over the diffuse ones is ba
on the analysis performed by Nabarro13 and Labusch.28

However, Nabarro made the estimations for the flow stres
T50 K. Labusch28 also did not consider the influence o
temperature on the diffuse and localized forces. We beli
that generalization of this conclusion to the range of eleva
temperatures is not justified if diffuse forces represent lo
range elastic stress fields, which are surmounted atherm
Indeed, the critical stress for the motion over diffuse force
temperature independent, whereas the critical stress of
tion over localized obstacles is strongly reduced with
creasing temperature. Therefore, it appears quite plaus
that, at elevated temperatures, diffuse forces may bec
predominant over the localized ones. This statement also
lows directly from Friedel’s conclusion that the long-ran
hardening by solute atoms is responsible, at least partly,
the athermal high-temperature plateau of the elastic limi
solid solutions.14

IV. CONCLUSION

The suggested microscopic model for the dislocatio
solute atom interactions in solid solutions enabled us to
culate the nonlinear dislocation anelasticity in solid so
tions. A complicated multistage behavior of the intern
friction, Young’s modulus defect, and their ratio in th
temperature–strain amplitude–solute concentration dom
is predicted. Results of numerical simulations show good
the very least qualitative, agreement with experimental d
The agreement implies that, as opposed to the conventi
approach, the critical stress for the motion of dislocations
the field of diffuse forces due to foreign atoms situated aw
from the dislocation glide plane may exceed the critic
stress due to localized interactions with foreign atoms i
few atomic planes adjacent to the dislocation glide plane
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