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Shape-preserving two-dimensional solitons in an Abrikosov vortex lattice

E. Infeld
Sołtan Institute for Nuclear Studies, Hoz˙a 69, Warsaw, Poland

~Received 12 April 1999!

The dynamics of a vortex lattice in a type-II superconductor are investigated under certain simplifying
conditions. The Kadomtsev-Petviashvili equation is derived. As this equation admits shape-preserving two-
dimensional soliton solutions, it is suggested that these entities be looked for in experiments. Differences with
respect to previously found solitons in superconductors are stressed.@S0163-1829~99!01237-0#
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In type-II superconductors, sufficiently strong magne
fields can penetrate as an array of vortices aligned with
applied field.1 Each vortex consists of one quantum of flu
f05hc/2e. They appear between two critical values of t
applied magnetic induction,Bc1 and Bc2 . Below Bc1 , we
observe classical superconductivity with no magnetic field
the body of the material. AboveBc2 , superconductivity
ceases altogether.

Here we consider either an isotropic, type-II supercon
tor, such as Nb, or else a layered high-Tc superconductor
below the decoupling line inB,T parameter space, i.e., be
fore the discreteness of the copper oxide planes beco
significant.2,3 Vortex drag is assumed small and pinning ne
ligible. These conditions can be satisfied in an ultracle
material.4

When the above conditions are satisfied, the basic eq
tions are those of vortex continuity, a vortex equation
motion, and the London equation:

]Bv

]t
52¹∧~Bv∧v!, ~1!

m
]v

]t
1~v•¹!v5aHv∧nz1f0J∧nz , ~2!

Bv5B2lL
2¹2B, ~3!

where

J5
1

m0
¹∧B. ~4!

A detailed justification of these equations can be found
Ref. 5. HereBv is the local vortex generated magnetic fie
assumed to be alongz, Bv5nf0nz . A static applied induc-
tion B0nz is assumed, andBc1,B0,Bc2 . The vortex veloc-
ity is v, assumed in thex,y plane, andaH is the Hall coef-
ficient. A massm per unit length of the vortex is assumed6

The London penetration depth islL . In the following analy-
sis, a rectangular cross section of the superconductor is
sumed, though cylindrical shapes will be discussed brie
As ¹•Bv50, z will be cyclic. Under these conditions, Eq
~1!–~4! simplify to

]n

]t
1¹•~nv!50, ~5!
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1~v•¹!v5av∧nz2¹B, ~6!

n5B2¹2B. ~7!

We have scaled the variables such thatt→v0t, x→x/lL ,
v→v/v0lL , B→B/B0 , n→nf0 /B0 , and

v0
25f0B0lL

2/m0m, ~8!

a5aH /v0m. ~9!

Includinga.0 is difficult, and for now we will consider the
a50 limit. This is all the more justified asa is small in most
situations~its neglect is, in fact, practiced in many refe
ences, e.g., Ref. 5; see also the comment on the pla
theory analogy below!. The remainder of this paper will con
cern possible solitonlike behavior of the vortex lattice in
superconductor so described.

When a50, and only then, Eqs.~5!–~9! can be derived
from a Lagrangian density. Assumingv to be irrotational,
andv5¹c, this density is

L5
1

2
n~¹c!21nc t1nB2

1

2
B22

1

2
~¹B!22n1

1

2
.

~10!

Euler-Lagrange variation with respect toc yields Eq. ~5!
whereas then and B variations yield Eqs.~6! and ~7!, re-
spectively.@However, to obtain Eq.~6! the gradient of then
Euler-Lagrange equation must be taken.# We will expand
this Lagrangian for small amplitudes. The expansion sche
will be partially indicated by linear wave considerations.
we taken511dn, B511dB; dn, dB;exp@i(k•v2vt)#,
we obtain, in the linear limit, from Eqs.~5!–~7!,

v25k2~11k2!21. ~11!

For k small, this can be written as

v25kx
21ky

22~kx
21ky

2!2. ~12!

If we now extract the positive root and assumeky!kx , we
obtain

v2kx52
1

2
kx

31ky
2kx

21 . ~13!

This suggests the expansion
9302 ©1999 The American Physical Society
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j5e1/2~x2t !,

s5ey, ~14!

t5e3/2t.

We also take

n511en(1)1e2n(2)1¯ ,

B511eB(1)1e2B(2)1¯ , ~15!

c5e1/2c (1)1e3/2c (2)1¯ .

We now expand the Lagrangian~10! in e. Our expansion in
e limits considerations to a specific class, rather than ab
ing the physical description. We are now interested in sit
tions such that deviations from a uniform distribution of t
vorticies is small. Similarly for the magnetic field; deviation
from v0lL in velocities of propagation are also taken to
small ~weak dispersion!. Finally, y dependence is slow a
compared to that onx. It is often found that models for this
limited class of situations are extremely informative, valid
extending further than we might expect from the derivatio
for examples, see Chap. 8 of Ref. 8, and also the other w
referenced there.

L (1) is trivial, as all that survives is2cj
(1) . However, the

next order leads to useful information,

L (2)52n(1)cj
(1)1n(1)B(1)2

1

2
B(1)21

1

2
cj

(1)21ct
(1)2cj

(2) ,

~16!

and then(2) and B(2) terms cancel. We obtain, as Eule
Lagrange equations,

dn(1): cj
(1)5B(1),

dB(1): n(1)5B(1),

dc (1): n(1)5cj
(1) .

The third-order Lagrangian ine, when expressed in terms o
c (1), is

L (3)5ct
(1)cj

(1)1
1

2
cj

(1)32
1

2
cjj

(1)21
1

2
cs

(1)2

1perfect differentials. ~17!

We have not written out the perfect differentials, as they w
not contribute to the Euler-Lagrange equations. Our exp
sion of a Lagrangian is computationally simpler than t
standard method, in which each equation, such as our
~5!–~7! is expanded ine. Although less work is involved, the
end result is, of course, the same. The preceding equa
yields, as its Euler-Lagrange equation, omitting subscr
and reverting to (u,v)5(cj ,cs) notation,

ut1
3

2
uuj1

1

2
ujjj1

1

2
]j

21uss50. ~18!

This is the Kadomtsev-Petviashvili equation. It is integrab7

and has both one and multiple soliton solutions, as descr
in Ref. 8. The simplest, one soliton solution, is
t-
-

,
rk
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u54kj
2 sech2~kjj1kss2vt1d!, ~19a!

D~k,v![kjv22kj
42

1

2
ks

250. ~19b!

Two soliton solutions areX-shaped entities, mobile bu
shape preserving. Exact formulas and illustrations can
found in Ref. 8, Chap. 7, though in a completely differe
physical context. Away from the intersection, behavior
each arm of the ‘‘X’’ is similar to Eqs.~19! ~with two sets of
k,v, and four phases!. Introducing

h i5kj i
j1ks i

s2v it1d i , i 51,2,

D52
1

2
lnU D~k12k2 ,v12v2!

D~k11k2 ,v11v2!
U,

we have for largeusu,

u5H 4kj1

2 sech2 h114kj2

2 sech2~h22D!, s,0

4kj1

2 sech2~h12D!14kj2

2 sech2 h2 , s.0.
~20!

Thus, a rectangular cross-section, ultraclean type-II su
conductor can essentially support shape-preserving solit
They are stable; see Chap. 8 of Ref. 8.

For cylindrical superconductors, the cylindrica
Korteweg–de Vries equation9 has been derived.5 It is, in
variables we prefer,

vt1
3

2
vv r1

1

2
v rrr 1

1

2t
v50, ~21!

wherev is in the r direction. The one soliton solution col
lapses, growing in amplitude as it nears the axis. we wo
just add to Ref. 5 that interesting two soliton solutions a
illustrated in Ref. 8, Chap. 9.N soliton solutions that inter-
penetrate as they collapse, are known.

Thus our solution, outlined in Eq.~20!, differs from that
of Ref. 5. First of all, ours is essentially shape preservi
whereas that of Ref. 5 collapses, thus being more difficul
observe. Second, ours cannot possibly be described with
space variable, we must introduce two. In summary, our
statically more interesting, with Coffey’s possibly dynam
cally more so.

It is tempting to equate the mathematical problem cons
ered here with that of ion acoustic waves in a two compon
plasma.~Here a is the ratio of the Alfve´n velocity to c,
usually at most of the order of 1026.! However, there is a
subtlety when so doing. From the plasma problem, in dim
sionless units, both Eqs.~5! and~6! can be recovered when
substitution is made:n↔ni , v↔vi , andB↔11f, wheref
is the electrostatic potential and the ‘‘i’’ subscript denot
ions. However, the equation corresponding to~7! for a
plasma is

n5ef2¹2f. ~22!

The approximationef.11f, which would complete the
identity, is, however, not good enough. If we go back to o
derivation of the Kadomtsev-Petviashvili equation, we fi
that new terms quadratic inf would appear~cubic in the



e-
s
o
in

vin
nt
li-

for
the

a

T.

9304 PRB 60BRIEF REPORTS
Lagrangian!. This leads to different coefficients in the d
rived Kadomtsev-Petviashvili equation for the two problem

In conclusion, we have demonstrated the possibility
finding shape-preserving, fully two-dimensional solitons
an ultraclean, type-II superconductor. This shape-preser
quality is in contradistinction to the one space variable e
ties forseen in the pioneering work of Ref. 5. Many simp
.
f

g
i-

fying assumptions were necessary. However, a search
solitons in superconductors should probably begin with
shape-preserving variety. Their detection could lead to
nonintrusive determination of the value ofm.
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