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Shape-preserving two-dimensional solitons in an Abrikosov vortex lattice
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The dynamics of a vortex lattice in a type-ll superconductor are investigated under certain simplifying
conditions. The Kadomtsev-Petviashvili equation is derived. As this equation admits shape-preserving two-
dimensional soliton solutions, it is suggested that these entities be looked for in experiments. Differences with
respect to previously found solitons in superconductors are strd&@&H53-18209)01237-0

In type-ll superconductors, sufficiently strong magnetic v
fields can penetrate as an array of vortices aligned with the = F(v-V)v=avln,~ VB, (6)
applied field* Each vortex consists of one quantum of flux,
¢o=hcl/2e. They appear between two critical values of the n=B-V2B. @)

applied magnetic inductiorB.; and B,. Below B.;, we

observe classical superconductivity with no magnetic field inVe have scaled the variables such thatwgt, Xx—X/\,
the body of the material. Abov8,,, superconductivity V—V/wok , B—B/By, n—n¢y/By, and

ceases altogether.

Here we consider either an isotropic, type-Il supercondu- 0§= boBo\ i/ uop, 8
tor, such as Nb, or else a layered high-superconductor
below the decoupling line iB, T parameter space, i.e., be-
fore the discreteness of the copper oxide planes becomescluding «>0 is difficult, and for now we will consider the
significant®® Vortex drag is assumed small and pinning neg-=0 limit. This is all the more justified as is small in most
ligible. These conditions can be satisfied in an ultraclearsituations(its neglect is, in fact, practiced in many refer-
material? ences, e.g., Ref. 5; see also the comment on the plasma

When the above conditions are satisfied, the basic equaheory analogy beloy The remainder of this paper will con-
tions are those of vortex continuity, a vortex equation ofcern possible solitonlike behavior of the vortex lattice in a

a=aylwou. 9

motion, and the London equation: superconductor so described.
When =0, and only then, Eqg5)—(9) can be derived
a—sz—VD(B v) (1) from a Lagrangian density. Assumingto be irrotational,
\" l . . .
at andv=V, this density is
oV _ 1 5 1 ’ 1 ) 1
p e+ (V- V)V= anvOng + dod0ng, 2) L=5n(V§)"+ngp+nB- 5B~ 5(VB)*™—n+3.
(10
B,=B-\{V?B, (3 Euler-Lagrange variation with respect b yields Eq. (5)
Where whereas then and B variations yield Eqs(6) and (7), re-

spectively [However, to obtain Eq6) the gradient of tha

1 Euler-Lagrange equation must be taKewe will expand
J=—VIB. (4)  this Lagrangian for small amplitudes. The expansion scheme
Ko will be partially indicated by linear wave considerations. If

A detailed justification of these equations can be found inwe taken=1+6n, B=1+6B; én, 6B~exdi(k-v—ot)],
Ref. 5. HereB, is the local vortex generated magnetic field, We obtain, in the linear limit, from Eqs5)—(7),

assumed to be alongg B,=ng¢yn,. A static applied induc- _

tion Bon, is assumed, anB.;<B,<B,,. The vortex veloc- 0*=K*(1+K) T (1D
ity is v, assumed in the,y plane, anday is the Hall coef-  For k small, this can be written as

ficient. A massu per unit length of the vortex is assum@d.

The London penetration depths . In the following analy- w?= K+ ko — (KZ+kJ)2. (12)
sis, a rectangular cross section of the superconductor is a
sumed, though cylindrical shapes will be discussed briefly
As V-B,=0, z will be cyclic. Under these conditions, Egs.

Ff_we now extract the positive root and assukye<k, , we
obtain

(1)—(4) simplify to 1. 5.
w—ke=— Sk (13)
on +V =0 (5)
g TV (=0, This suggests the expansion
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= e x—1), u=4kZ secR(kgé +k,0— w7+ ), (193
o= ey, (14 1
D(k, ) =Kz —2K; - Ek§=o. (19b)
=%,
We also take Two soliton solutions areX-shaped entities, mobile but

shape preserving. Exact formulas and illustrations can be
) found in Ref. 8, Chap. 7, though in a completely different

physical context. Away from the intersection, behavior of
B=1+eBM+eBO+--- (19 each arm of the X” is similar to Egs.(19) (with two sets of
k,w, and four phasesintroducing

n=1+en®+en@+...

= E1/2¢(1)_|_ 63/2¢(2)+ ..

We now expand the Lagrangidf0) in e. Our expansion in n=kgétkoo—witt i, 1=12,
e limits considerations to a specific class, rather than abort-

ing the physical description. We are now interested in situa- 1 D(kl—kz,wl—w2)|
tions such that deviations from a uniform distribution of the A=- Zn D(ky+ky, w1+ wp) |’

vorticies is small. Similarly for the magnetic field; deviations

from woh, in velocities of propagation are also taken to bewe have for largda|,
small (weak dispersion Finally, y dependence is slow as ) )
compared to that or. It is often found that models for this 4k sectt 7, +4kg seci(7,—A), o<0
limited class of situations are extremely informative, validity = (20
extending further than we might expect from the derivation,

for examples, see Chap. 8 of Ref. 8, and also the other Worlfhus, a rectangular cross-section, ultraclean type-Il super-

refer((i,\)n.ced. there. RN conductor can essentially support shape-preserving solitons.
L™ is trivial, as all that survives is- . However, the They are stable; see Chap. 8 of Ref. 8.

4kZ sechi(n;—A)+4kg seck 7, o>0.

next order leads to useful information, For cylindrical superconductors, the cylindrical
1,01 Kor'teweg—de Vries equatidrhas been derivedlt is, in
L@=_ n(1)¢(§1)+ nWp®_— EB(l) + §¢(§1) + - 1//(52) ’ variables we prefer,
(16) 3 1 1
and then® and B(® terms cancel. We obtain, as Euler- Vet Wit Vi 5oV =0, 21)

Lagrange equations, o . . . .
wherev is in ther direction. The one soliton solution col-

snd): l/,{g}): B, lapses, growing in amplitude as it nears the axis. we would
just add to Ref. 5 that interesting two soliton solutions are

sBM:  n(M=pM) illustrated in Ref. 8, Chap. N soliton solutions that inter-
penetrate as they collapse, are known.

Sy nW=yd. Thus our solution, outlined in Eq20), differs from that

of Ref. 5. First of all, ours is essentially shape preserving,
whereas that of Ref. 5 collapses, thus being more difficult to
observe. Second, ours cannot possibly be described with one
1 .1 , 1 , space variable, we must introduce two. In summary, ours is
LG = w(Tl)lp(glu —¢§1) — _¢(§1§) + —lﬁffl) statically more interesting, with Coffey’s possibly dynami-

2 2 2 cally more so.

It is tempting to equate the mathematical problem consid-
ered here with that of ion acoustic waves in a two component
We have not written out the perfect differentials, as they willplasma.(Here « is the ratio of the Alfva velocity to c,
not contribute to the Euler-Lagrange equations. Our expandgsually at most of the order of 16.) However, there is a
sion of a Lagrangian is computationally simpler than thesubtlety when so doing. From the plasma problem, in dimen-
standard method, in which each equation, such as our Egsionless units, both Eq) and(6) can be recovered when a
(5)—(7) is expanded ire. Although less work is involved, the substitution is maden«n;, v v;, andB«— 1+ ¢, where
end result is, of course, the same. The preceding equatids the electrostatic potential and the “i” subscript denotes
yields, as its Euler-Lagrange equation, omitting subscript$ons. However, the equation corresponding (I for a

The third-order Lagrangian ie, when expressed in terms of
w(l), is

+ perfect differentials. (17)

and reverting to §,v) = (¢, 4,) notation, plasma is
3 1 1 n=e?-VZ2¢. (22)
1 —

The approximatiore®=1+ ¢, which would complete the
This is the Kadomtsev-Petviashvili equation. It is integrable identity, is, however, not good enough. If we go back to our
and has both one and multiple soliton solutions, as describederivation of the Kadomtsev-Petviashvili equation, we find
in Ref. 8. The simplest, one soliton solution, is that new terms quadratic igp would appear(cubic in the
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Lagrangian. This leads to different coefficients in the de- fying assumptions were necessary. However, a search for

rived Kadomtsev-Petviashvili equation for the two problems.solitons in superconductors should probably begin with the
In conclusion, we have demonstrated the possibility ofshape-preserving variety. Their detection could lead to a

finding shape-preserving, fully two-dimensional solitons innonintrusive determination of the value af

an ultraclean, type-Il superconductor. This shape-preserving Tnanks are due to M. W. Coffey, Z. Galasiewicz, T.

quality is in contradistinction to the one space variable entiq gnkowska-Czerwiska, and A. A. Skorupski. This work
ties forseen in the pioneering work of Ref. 5. Many simpli- was supported by KBN Grant No. 2P03B-114-11.
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