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Theory of tunneling for thick junctions with rough interfaces
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A formally exact expression for the tunneling current, for its separation into specular and diffuse compo-
nents, and for its directionality, is given for a thick tunnel junction with rough interfaces in terms of the
properties of appropriately defined scattering amplitudes. An approximate evaluation yields the relative mag-
nitudes of the specular and diffuse components, and the angular dependence of the diffuse component, in terms
of certain statistical properties of the junction interfad&9163-18209)09737-4

INTRODUCTION this article is thus quite different from a previous discussion
of diffuse scattering in tunnelifigvhich has no way to sepa-

The study of the quantum-mechanical tunneling of elec+ate the specular from the diffuse scattering, to calculate their
trons between two metallic electrodes separated by a thifelative magnitudes, or to investigate the factors influencing
barrier is an important method for investigating condensedlirectionality in the case of rough interfaces. The summary
matter systemée.g., see Ref.)1 Although the vast majority @nd conclusions section at the end of the paper gives an
of tunneling experiments have been carried out on tunnepverview of the main results.
junctions whose interfaces have a significant roughness, the
impressive theoretical Iiteratui‘retreating the properties of ELAT TUNNEL JUNCTION INTERFACES
different types of tunnel barriers and tunneling mechanisms AND THE TUNNELING CONE

has almost without exceptiofsee, however, Ref.)2dis- id | lina f | h
cussed only the case of flat tunnel junctions. This article Consider an electron tunneling from one metal to another

; ; - through an insulating barrier. In the prototypical probtém
presents a detailed theory of tunneling appropriate for tunneEe electron is described by the Satlirger equation

junctions with rough interfaces. The potential significance oft
such a development is apparent from one of our conclusions,
namely that for junctions where the interface roughness fluc-
tuations exceed an electron wavelength in magnitude, th(la

contribution of the diffuse transmission of electrons to the he potentialV(z) is shown in Fig. 1. The energy of the

tunneling current dominates the specular transmission that §Iif;:)s?§a:'lei§r%ti\gde:2 ?ea?g? so that the insulating slab is
usually calculated. y gion.

A central idea in the flat interface theory of tunneling is theT]%?melectron wave function in the insulating region has
that for thick barriers the electrons which dominate the tun-
neling are those whose momenta are directed close to the
forward direction.}*=° This “tunneling cone” effect is the
basis for attempts to determine the anisotropy of the super-
conducting energy gafsee p. 126 of Ref.)1 and has also ki=[ 2+ k212 K =[(2m/%E%)(Vo—E)]*2  (3)
recently been invoked in the explanation of tunneling phe-
nomena in high-temperature supercondu€@rsvhere the  Throughout this article three-dimensional vectors are de-
spectrum of quasiparticle excitation energies is highly anisonoted by boldface uppercase letters and two-dimensional
tropic. The investigation carried out below of tunneling di- vectors by boldface lowercase letters. ThRs; (r,z).
rectionality in the case of rough interfac@ghere flat inter- The current tunneling across a thick,{>1) barrier in
face tunneling cone ideas are not applicableus has the presence of an applied voltageisl
important implications for these studies.

The theory of wave scattering at rough surfaces is a 26 d2k
highly developed subjetwith applications in many areas of Jzz—J dE[f(E)— f(E—eV)]J ——D(E k), (4
physics. Below, some established ideas from these studies, h (2)
such as the use of certain scattering amplitudes and of en-

(—h212m)V2y+V(z) y=E . (1)

wl(R):eik~r(Be7K|kZ+B/eK|kZ), (2)

semble averages over the random variables describing the V(z)
rough interfaces, are used to derive a formal expression for V0 h
the tunneling current and to separate it into specular and hy— e 72
diffuse components. This expression is then evaluated within M I M’

the framework of two complementary classical approxima- + 0 z

tion schemes, a small perturbation method valid for rough-

ness fluctuations smaller than the electron wavelength, and a FIG. 1. Barrier potential for aM-I-M’ (metal-insulator-metal
quasiclassical approximatiofimplemented via the tangent tunnel junction. The random height functions associated with inter-
plane methogvalid in the opposite limit. The approach of faces az=—t andz=0 areh;(r) andh,(r), respectively.
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D(E,k)=g(k)exp — 2kt)2m( Ak, ) %Py (K), (5) normalization of the plane wavéghe quantitiesS;; andS;,
' are called scattering amplitudes.
_ 21-1 L2 2 For the tunneling problem, the basic scattering amplitudes
Pak (K)=[2m(Ak)"]"exgl—k*/[2(Ak)"]}: - (6) areS, y [i.e., 1=M and 2=1 in Eq.(8)] andSy,., describ-

whereD is the transmission coefficient ai}, is a normal- Ing the transmission of an electron from the m,eMaIto the
! insulatorl, and from the insulatalr to the metaM’, respec-

. . 2 _ . . .
ized ["e"fPAh(k)d k=1] two dimensional Gaussian func- tively. An important simplification in the calculation &

tion of width Ak, =[x, /(2t)]*2. The factor exp{-2«t) in s that for the thick junctions considered here, only the ex-
Eq. (5) comes from the exponential decay of the wave funcponentially decaying waves need be considered in the insu-
tion in the insulating layer, whereas the Gaussian functionating region, and the exponentially increasing waves can be
reflects the fact that for thick barriers, only electrons whichneglected(e.g., see Ref. 10 It can be shown that in this
have momenta close to the forward direction contribute tapproximation the scattering amplituBg ,, describing the

the tunneling current(This last property is often called the transmission from meta¥l to metalM’ is given by
“tunneling cone” effect) The prefactorg is a relatively

weakly varying function of momentum and energy of order
of magnitude unity, and can usually be neglected in calcula-SM,’M(k’,k)=f d?k"Sy (K’ K")S) m(K”,k)e' @k~ amt,
tions of the tunneling currer(e.g., see the discussion on p. 9
21 of Ref. 1. Below, g and its analogs will be put equal to

unity. . . . .
y The metal-insulator interfaces are given in terms of the

random functionsh,(r), «=1,2 by the equationg= —t
ROUGH TUNNEL JUNCTION INTERFACES—FORMAL +hy(r) andz=h,(r). The ensemble average of edt}(r)
THEORY is taken to be zero, so that the average interfaces are flat. The
Consider an electron which is incident on the tunnel junc_boundary conditions satisfied by the wave function are that

tion from the metaM in Fig. 1. The electron passes into the both the wave function and its normal derivative are continu-
classically forbidden region a=—t and then, after having ©US On both interfaces. ,
been attenuated by a factor expét), it arrives at thez The ensemble average of E(@) must give an average
=0 interface where it is finally transmitted into the metal Wave functiony, corresponding to flat interfaces; the aver-
M’. Becausex, is given by Eq.(3), independently of age scattering amplitude thus has the fo®a(k’, k)
whether the interfaces are rough or not, it is primarily elec-=V,,(k)5(k’ —k). The scattering amplitude is now written
trons with small parallel momentum componektshat ar-  as the sum of its average value and a fluctuating part:
rive at the interface=0. If the interface az=0 is rough,
however, it will impart a random parallel component of mo-
mentum to electrons entering the me&l. Thus the tunnel-
ing electrons will sample states M’ having a wide distri-
butlon_ of parallel momentum components, in spite of thetude fluctuations can be written in the form
tunneling cone effect in the insulator. The essential problem
is to find how the transmitted current from electrons of wave
vectork in the metalM is distributed over the various wave AS; (K" K)ASyy(K' k) = 021(K" ,K) S(K"=K").  (11)
vectorsk’ in metalM’.

The calculations below use the methods described in Ref. Given that the ensemble average of the current density
9, adapted here to the problem of tunneling. Consider first aormal to junction in the meta¥l’ can be calculated using
general description of the transmission and reflection of g formulad, = (%/m)Im(y/%,,dyay: /d2), the transmission co-
plane wave incident from medium 1 onto a rough 'nterfaceefficient D(E,k) appearing in Eq(4) can now be found

separating media 1 and 2. The wave reflected back into m%’sing Eqgs(8), (10), and(11), with the result that
dium 1 is written as a linear combination of waves with all Y ' ’

possible parallel momentum components, as is the wave
transmitted into the medium 2. The wave functions in media D(E,k)=|vnv|f M(k)|2+f owr m(k' KAk, (12)
1 and 2 are thus ' '

Sar(K' K)=Vay(K) 8(K' —K) +ASy(k' k). (10)

Furthermore the correlation function of the scattering ampli-

iK1 R a2k’ oK} R where the integration is restricted t&’'| <K, . From Eq.
1 (R)=—2 +f B )2311(k',k)T. (7) (12 itis clear that the fraction of the incoming cu_rrtzenth
A1k ™ Ay with parallel wave vectok transmitted into states id“k’ is
o m(K’,k)d?k’ whereas the fraction transmitted without
d2k’ elK3 R change in the parallel component of momentum is
Pa(R)= f (27)2821“(,1'()?2_- ®)  |Vyurm(k)|? In terms of quantities characterizing the two
2k’

junction interfaces, one finds

Here K= (K,q.), @=1,2 whereq =ik if « refers to

the insulating region, andy.=(K2—k?)Y2 with Ky Vi m(K) 2= Vs (K w(K)[2 (13)
=[(2m/%?)E]Y? if « refers to a metallic region. The divi-

sion by g'? in Egs.(7) and (8) represents the conventional and
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aM,M(k’,k)=aM,|(k’,k)|V|,M(k)|2e‘2"'kt Grezen’s function Go(R’' —R) satisfies the equationVE
+K35)Go(R'—R)=68(R’—R) and can be represented as

i J exd —ik-r+iqylz|] ,
8m G2k

+|VM',|(|<')|20'|M(k'1|<)972K”<'t

Go(R)= k. (16

+J dzk”O'Mq(k,,k”)e_z’(lk”t(ﬂM(k",k).
(14) The next step is to find the electron wave function,
¥»(R"), at pointsz=h(r) on the interface. This is done in
The diffuse contribution to the tunneling current, Ed4), the tangent plane approximation by considering a given point
contains contributions in which the transmission is diffuse aon the interface, constructing a tangent plane there, and then
one interface and specular at the other, as well as a contreonsidering the reflection and transmission of the incoming
bution (the last term which is diffuse at both interfaces. plane wavewhich is taken to be the first term in E(/)] at
this tangent plane. This giveg,(R’) in terms of the ampli-
tude and phase of the incoming plane wave, and this result
can be combined with Eq$8), (15), and(16) to yield
The small perturbation method works when the flat sur-

face problenfi.e., the problem foh,(r)=0] is a good first Py — Y p _
approximation. The corrections are calculated by expanding i(k 'k)_f X —i(k" k)T (Gzc— Auh(n)]
in powers ofh,(r). The quantitieh (r) appear in the cal- 17

culations because expressions such as Eqsand (8) are  pere 5 complicated function of the wave vectors of order

evaluated at the interfaces- —t+h4(r) andz=h,(r) when unity, and analogous to the prefactiin Eq. (5), has been
applying the boundary conditions. Thbg(r) appears in ex-  gmitted.

pressions such as dxpxyh,(r)] and expiguh,(r)], and
expansions in powers df,(r) will be expansions in powers
of the parameterfx,h,(r)] and[qukh.(r)]. The quanti-

ties guk and ki afe of the ordgr of magnitude of7&\ carrying out the necessary ensemble averages the function
where the electron’s wavelengthis expected to be compa- . .
h(r) is assumed to be Gaussian, and the theoegp(—h)

rable in magnitude to the lattice constant. The small pertur- = ) _ _ o
bation approach will therefore be valid only when the root-=€xp(~h72) (valid for any Gaussian variable havilig=0)
mean-square fluctuations m,(r) are smaller than a lattice is used. The results are
constant, i.e., for atomically flat interfaces. Since the results — )
of the section on flat interfaces are already a good first ap- [V m(K)[2=FB1B82P s, (K) (18)
proximation when the small perturbation method is appli-

. L ) . and
cable, no further results of this approximation will be given.

THE SMALL PERTURBATION METHOD

2
(2m)?%

The quantities\7M,YM and oy v necessary for an evalu-
ation of the transmission coefficieBt(E,k) [Eq. (12)] can
now be evaluated by combining Eq®)—(11) and (17). In

omr m(K' K)=FB1P s (K = K)Pyy (K)

+FBoPak (K )Py (K —K)

THE TANGENT PLANE APPROXIMATION

This section evaluates the transmission coefficient

D(E,k) occurring in Eq.(4) for the tunneling current within oim D .

the framework of the tangent plane approximatidrhis ap- +Ff dk PAkz(k —k )PAk.(k )
proximation works best when the spatial scale of the rough-

ness is larger than the electron wavelength, and is thus X Pk, (K"=K), (19

complementary to the small perturbation approach outlined h
in the previous section. where
Consider first the general case of the transmission of a

ok Kz_z 2
plane wave from medium 1 to medium 2 across the random F=2m(Ak))%e™ 2 te? i (Mtha), (20
interfacez=h(r), which is described in terms of Eqé7) S
and(8). The method begins with a mathematical formulation B,=e Kitkwh,, (21)
of Huygens’ principle in which the wave function of the
electron in the medium 2 is given in terms of its value and (Ak,)?=(k?+ Kf,,)g. (22)
the value of its normal derivative on the interfaze h(r),
namely, The Pak,'s are the normalized Gaussian functions defined by
Eq. (6) with widths Ak, given by Eg. (22 whereg
,,9Go(R"—R) =(oh,/9x)°=(oh,/dy)? is the mean-square slope of the
lﬁz(R)——f Y2(R) ——5——dS roughness.
+ f %GO(R’ ~R)dS. (15) SUMMARY AND CONCLUSIONS
n

The approach to tunneling theory introduced above allows
Here S’ is the surfacez=h(r), R’ is on this surface, and a calculation of the consequences of rough tunnel junction
dlon’ is a normal derivative into medium 2. Also, the interfaces on the tunneling current and on its directionality.
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The general formula for the tunneling current is given bythe roughness slope, the closer to the forward direction is the
Egs. (4) and (12—(14). Equation(12) shows the separation momentum of electrons contributing to the tunneling current,
of the current into specular and diffuse parts, and the scaboth for incoming and outgoing electrons.

tering cross sectiory .\, gives the directional dependence It is of interest to examine the physical reasons for the
of the diffuse part. Equationd3) and(14) reduce the prob- dominance of the diffuse component of the tunneling current
lem to the determination of the transmission properties of thén the case of rough junctions. As for flat junctions, the tun-
individual junction interfaces. These expressions give a forneling current is reduced by the factor exj@xt) depending
mally exact theory of tunneling for thick rough tunnel junc- exponentially on the average thicknessf the junction[see
tions, and can be evaluated using any appropriate approxiq. (20)]. This effect is reduced by the interface height fluc-
mation scheme. tuations, which give regions where the potential barrier has a

The small perturbation method treats the roughness assmaller than average thickness. Hence the factor
perturbation of a flat interface model, and shows that f|abxp(2;<,2(h_§+h_§)) in Eq. (20). The reduction of the attenu-
interface models represent a good first approximation whegtion due to barrier thickness fluctuations is not as great for
ﬂ?e ?mplitudelof t?@vrr](_)ur?hness l{luctuat_ions itS |e_35”thffilntthﬂ1e specular component of the transmission, as indicated by
electron wavelen ich normally requires atomically fla 22y -
interface$. The regsults obtained in){he?angent plane a);/)proxi—the factor eXpezK'—zh") l.n Ba: The othgr fagtor contributing

to B,, exp(—Kyh), gives the reduction in the specularly

mation show that for rough tunnel junction interfadgs., transmitted component of transmission due to destructive in
surface height fluctuations significantly greater than the elec ansmitted component of transmission dué fo destructive in-

tron wavelengththe transmitted current is nearly totally dif- fterference of waves with the different phase lags due to hav-

fuse. To see this recall that the functidRoccurring in Egs. ing traveled different distances in the insulator. These two

(18 and (19) are normalized Gaussians. Thus the reIativefaCtorS combine to make the specular component of the tun-

weights of the different contributions in Eq4.8) and(19) to gl(ael:%g r:?)g"%'ti)lnetgﬁggse tglégfl d”{ﬂiﬁe‘fﬂmaﬁgsft EL:tu Z'C
the tunneling current are determined by the faci®ss This ountyfor ?he rou hneés of tl)J/;meI 'unc?ions ir>1/ order 1o
means that for root-mean-square fluctuations in the h(aighgorrectl describe gche dominant diffu]se contribution to the
functions h(r) much greater than an electron wavelength, hod

. : tunneling current.

l.e., such that the factorg,, are small, the purely diffuse This article has given a formally exact expression for the
contribution, namely that last term in E(L9), dominates. 9 y b

Now examine the directionality in the rough junction Casetunnellng current valid for thick, rough tunnel junctions, has

where the tunneling current is dominated by the last term inShOWn that for rough tunnel junctions the diffuse component

Eqg. (19. For sufficiently thick tunnel junctions, the factor of the tunneling current dominates the specular_ component,
P, (k")=8(k") and the integration ove¢” is easily carried and has also shown that even when the tunneling current is
Ak . i g 2 entirely diffuse, a tunneling cone effect can exist if the root-
out. The incoming and outgoing electrons contributing to th%ean-square roughness slope is sufficiently small.

tunneling current thus have their parallel moment compo-

nents withinAk; and Ak, [see Eq.(22)] of zero, respec-
tively. For root-mean-squarérms) roughness slopes,
which are of order unity or not too much smaller, there is no | wish to thank M. Aprili, J. P. Carbotte, and J. R. Kirtley
significant directionality of the tunneling. On the other hand,for stimulating discussions, and the Natural Sciences and En-
for rms roughness slopes much less than unity, the smallggineering Research Council of Canada for support.
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