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Theory of tunneling for thick junctions with rough interfaces
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~Received 30 April 1999!

A formally exact expression for the tunneling current, for its separation into specular and diffuse compo-
nents, and for its directionality, is given for a thick tunnel junction with rough interfaces in terms of the
properties of appropriately defined scattering amplitudes. An approximate evaluation yields the relative mag-
nitudes of the specular and diffuse components, and the angular dependence of the diffuse component, in terms
of certain statistical properties of the junction interfaces.@S0163-1829~99!09737-4#
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INTRODUCTION

The study of the quantum-mechanical tunneling of el
trons between two metallic electrodes separated by a
barrier is an important method for investigating conden
matter systems~e.g., see Ref. 1!. Although the vast majority
of tunneling experiments have been carried out on tun
junctions whose interfaces have a significant roughness
impressive theoretical literature1 treating the properties o
different types of tunnel barriers and tunneling mechanis
has almost without exception~see, however, Ref. 2! dis-
cussed only the case of flat tunnel junctions. This arti
presents a detailed theory of tunneling appropriate for tun
junctions with rough interfaces. The potential significance
such a development is apparent from one of our conclusi
namely that for junctions where the interface roughness fl
tuations exceed an electron wavelength in magnitude,
contribution of the diffuse transmission of electrons to t
tunneling current dominates the specular transmission th
usually calculated.

A central idea in the flat interface theory of tunneling
that for thick barriers the electrons which dominate the t
neling are those whose momenta are directed close to
forward direction.1,3–5 This ‘‘tunneling cone’’ effect is the
basis for attempts to determine the anisotropy of the su
conducting energy gap~see p. 126 of Ref. 1!, and has also
recently been invoked in the explanation of tunneling p
nomena in high-temperature superconductors6–8 where the
spectrum of quasiparticle excitation energies is highly an
tropic. The investigation carried out below of tunneling d
rectionality in the case of rough interfaces~where flat inter-
face tunneling cone ideas are not applicable! thus has
important implications for these studies.

The theory of wave scattering at rough surfaces is
highly developed subject9 with applications in many areas o
physics. Below, some established ideas from these stu
such as the use of certain scattering amplitudes and of
semble averages over the random variables describing
rough interfaces, are used to derive a formal expression
the tunneling current and to separate it into specular
diffuse components. This expression is then evaluated wi
the framework of two complementary classical approxim
tion schemes, a small perturbation method valid for rou
ness fluctuations smaller than the electron wavelength, a
quasiclassical approximation~implemented via the tangen
plane method! valid in the opposite limit. The approach o
PRB 600163-1829/99/60~13!/9283~4!/$15.00
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this article is thus quite different from a previous discuss
of diffuse scattering in tunneling2 which has no way to sepa
rate the specular from the diffuse scattering, to calculate t
relative magnitudes, or to investigate the factors influenc
directionality in the case of rough interfaces. The summ
and conclusions section at the end of the paper gives
overview of the main results.

FLAT TUNNEL JUNCTION INTERFACES
AND THE TUNNELING CONE

Consider an electron tunneling from one metal to anot
through an insulating barrier. In the prototypical problem1,4

the electron is described by the Schro¨dinger equation

~2\2/2m!¹2c1V~z!c5Ec. ~1!

The potentialV(z) is shown in Fig. 1. The energy of th
electronE lies between 0 andV0 so that the insulating slab i
a classically forbidden region.

The electron wave function in the insulating region h
the form

c I~R!5eik•r~Be2k Ikz1B8ek Ikz!, ~2!

k Ik5@k I
21k2#1/2, k I5@~2m/\2!~V02E!#1/2. ~3!

Throughout this article three-dimensional vectors are
noted by boldface uppercase letters and two-dimensio
vectors by boldface lowercase letters. Thus,R5(r ,z).

The current tunneling across a thick (k I t@1) barrier in
the presence of an applied voltageV is1

Jz5
2e

h E dE@ f ~E!2 f ~E2eV!#E d2k

~2p!2 D~E,k!, ~4!

FIG. 1. Barrier potential for anM-I-M8 ~metal-insulator-metal!
tunnel junction. The random height functions associated with in
faces atz52t andz50 areh1(r ) andh2(r ), respectively.
9283 ©1999 The American Physical Society
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D~E,k!5g~k!exp~22k I t !2p~DkI !
2PDkI

~k!, ~5!

PDkI
~k!5@2p~DkI !

2#21exp$2k2/@2~DkI !
2#%, ~6!

whereD is the transmission coefficient andPDkI
is a normal-

ized @i.e., *PDkI
(k)d2k51# two dimensional Gaussian func

tion of width DkI5@k I /(2t)#1/2. The factor exp(22kIt) in
Eq. ~5! comes from the exponential decay of the wave fu
tion in the insulating layer, whereas the Gaussian funct
reflects the fact that for thick barriers, only electrons wh
have momenta close to the forward direction contribute
the tunneling current.~This last property is often called th
‘‘tunneling cone’’ effect.! The prefactorg is a relatively
weakly varying function of momentum and energy of ord
of magnitude unity, and can usually be neglected in calcu
tions of the tunneling current~e.g., see the discussion on
21 of Ref. 1!. Below, g and its analogs will be put equal t
unity.

ROUGH TUNNEL JUNCTION INTERFACES—FORMAL
THEORY

Consider an electron which is incident on the tunnel ju
tion from the metalM in Fig. 1. The electron passes into th
classically forbidden region atz52t and then, after having
been attenuated by a factor exp(2kIkt), it arrives at thez
50 interface where it is finally transmitted into the me
M 8. Becausek Ik is given by Eq. ~3!, independently of
whether the interfaces are rough or not, it is primarily ele
trons with small parallel momentum componentsk that ar-
rive at the interfacez50. If the interface atz50 is rough,
however, it will impart a random parallel component of m
mentum to electrons entering the metalM 8. Thus the tunnel-
ing electrons will sample states inM 8 having a wide distri-
bution of parallel momentum components, in spite of t
tunneling cone effect in the insulator. The essential prob
is to find how the transmitted current from electrons of wa
vectork in the metalM is distributed over the various wav
vectorsk8 in metalM 8.

The calculations below use the methods described in R
9, adapted here to the problem of tunneling. Consider fir
general description of the transmission and reflection o
plane wave incident from medium 1 onto a rough interfa
separating media 1 and 2. The wave reflected back into
dium 1 is written as a linear combination of waves with
possible parallel momentum components, as is the w
transmitted into the medium 2. The wave functions in me
1 and 2 are thus

c1~R!5
eiK1•R

q1k
1/2 1E d2k8

~2p!2 S11~k8,k!
eiK18•R

q1k8
1/2 , ~7!

c2~R!5E d2k8

~2p!2 S21~k8,k!
eiK28•R

q2k8
1/2 . ~8!

Here Ka5(k,qak), a51,2 whereqak5 ik Ik if a refers to
the insulating region, andqak5(KM

2 2k2)1/2 with KM

5@(2m/\2)E#1/2 if a refers to a metallic region. The divi
sion by q1/2 in Eqs. ~7! and ~8! represents the convention
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normalization of the plane waves.9 The quantitiesS11 andS12
are called scattering amplitudes.

For the tunneling problem, the basic scattering amplitu
areSI ,M @i.e., 1[M and 2[I in Eq. ~8!# andSM8,I describ-
ing the transmission of an electron from the metalM to the
insulatorI , and from the insulatorI to the metalM 8, respec-
tively. An important simplification in the calculation ofSI ,M
is that for the thick junctions considered here, only the e
ponentially decaying waves need be considered in the in
lating region, and the exponentially increasing waves can
neglected~e.g., see Ref. 10!. It can be shown that in this
approximation the scattering amplitudeSM8,M describing the
transmission from metalM to metalM 8 is given by

SM8,M~k8,k!5E d2k9SM8,I~k8,k9!SI ,M~k9,k!ei (qIk92qMk)t.

~9!

The metal-insulator interfaces are given in terms of
random functionsha(r ), a51,2 by the equationsz52t
1h1(r ) andz5h2(r ). The ensemble average of eachha(r )
is taken to be zero, so that the average interfaces are flat.
boundary conditions satisfied by the wave function are t
both the wave function and its normal derivative are contin
ous on both interfaces.

The ensemble average of Eq.~8! must give an average
wave functionc2 corresponding to flat interfaces; the ave
age scattering amplitude thus has the formS̄21(k8,k)
5V̄21(k)d(k82k). The scattering amplitude is now writte
as the sum of its average value and a fluctuating part:

S21~k8,k!5V̄21~k!d~k82k!1DS21~k8,k!. ~10!

Furthermore the correlation function of the scattering am
tude fluctuations can be written in the form

DS21~k9,k!DS21~k8,k!5s21~k8,k!d~k92k8!. ~11!

Given that the ensemble average of the current den
normal to junction in the metalM 8 can be calculated using
the formulaJz5(\/m)Im(cM8

* dcM8 /dz), the transmission co-
efficient D(E,k) appearing in Eq.~4! can now be found
using Eqs.~8!, ~10!, and~11!, with the result that

D~E,k!5uV̄M8,M~k!u21E sM8,M~k8,k!d2k8, ~12!

where the integration is restricted touk8u,KM . From Eq.
~12! it is clear that the fraction of the incoming current inM
with parallel wave vectork transmitted into states ind2k8 is
sM8,M(k8,k)d2k8 whereas the fraction transmitted witho
change in the parallel component of momentum
uV̄M8,M(k)u2. In terms of quantities characterizing the tw
junction interfaces, one finds

uV̄M8,M~k!u25uV̄M8,I~k!V̄I ,M~k!u2 ~13!

and
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sM8M~k8,k!5sM8I~k8,k!uV̄I ,M~k!u2e22k Ikt

1uV̄M8,I~k8!u2s IM ~k8,k!e22k Ik8t

1E d2k9sM8I~k8,k9!e22k Ik9ts IM ~k9,k!.

~14!

The diffuse contribution to the tunneling current, Eq.~14!,
contains contributions in which the transmission is diffuse
one interface and specular at the other, as well as a co
bution ~the last term! which is diffuse at both interfaces.

THE SMALL PERTURBATION METHOD

The small perturbation method works when the flat s
face problem@i.e., the problem forha(r )50# is a good first
approximation. The corrections are calculated by expand
in powers ofha(r ). The quantitiesha(r ) appear in the cal-
culations because expressions such as Eqs.~7! and ~8! are
evaluated at the interfacesz52t1h1(r ) andz5h2(r ) when
applying the boundary conditions. Thusha(r ) appears in ex-
pressions such as exp@2kIkha(r )# and exp@iqMkha(r )#, and
expansions in powers ofha(r ) will be expansions in powers
of the parameters@k Ikha(r )# and @qMkha(r )#. The quanti-
ties qMk and k Ik are of the order of magnitude of 2p/l
where the electron’s wavelengthl is expected to be compa
rable in magnitude to the lattice constant. The small per
bation approach will therefore be valid only when the ro
mean-square fluctuations inha(r ) are smaller than a lattice
constant, i.e., for atomically flat interfaces. Since the res
of the section on flat interfaces are already a good first
proximation when the small perturbation method is app
cable, no further results of this approximation will be give

THE TANGENT PLANE APPROXIMATION

This section evaluates the transmission coeffici
D(E,k) occurring in Eq.~4! for the tunneling current within
the framework of the tangent plane approximation.9 This ap-
proximation works best when the spatial scale of the rou
ness is larger than the electron wavelength, and is t
complementary to the small perturbation approach outli
in the previous section.

Consider first the general case of the transmission o
plane wave from medium 1 to medium 2 across the rand
interfacez5h(r ), which is described in terms of Eqs.~7!
and~8!. The method begins with a mathematical formulati
of Huygens’ principle in which the wave function of th
electron in the medium 2 is given in terms of its value a
the value of its normal derivative on the interfacez5h(r ),
namely,

c2~R!52E c2~R8!
]G0~R82R!

]n8
dS8

1E ]c2~R8!

]n8
G0~R82R!dS8. ~15!

Here S8 is the surfacez5h(r ), R8 is on this surface, and
]/]n8 is a normal derivative into medium 2. Also, th
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Green’s function G0(R82R) satisfies the equation (¹2

1K2
2)G0(R82R)5d(R82R) and can be represented as

G0~R!52
i

8p2 E exp@2 ik•r1 iq2kuzu#
q2k

d2k. ~16!

The next step is to find the electron wave functio
c2(R8), at pointsz5h(r ) on the interface. This is done in
the tangent plane approximation by considering a given p
on the interface, constructing a tangent plane there, and
considering the reflection and transmission of the incom
plane wave@which is taken to be the first term in Eq.~7!# at
this tangent plane. This givesc2(R8) in terms of the ampli-
tude and phase of the incoming plane wave, and this re
can be combined with Eqs.~8!, ~15!, and~16! to yield

S21~k8,k!5E exp@2 i ~k82k!•r1 i ~q2k2q1k!h~r !#
d2r

~2p!2 .

~17!

Here, a complicated function of the wave vectors of ord
unity, and analogous to the prefactorg in Eq. ~5!, has been
omitted.

The quantitiesV̄M8,M andsM8,M necessary for an evalu
ation of the transmission coefficientD(E,k) @Eq. ~12!# can
now be evaluated by combining Eqs.~9!–~11! and ~17!. In
carrying out the necessary ensemble averages the fun
h(r ) is assumed to be Gaussian, and the theoremexp(2h)
5exp(2h2/2) ~valid for any Gaussian variable havingh̄50!
is used. The results are

uV̄M8,M~k!u25Fb1b2PDkI
~k! ~18!

and

sM8,M~k8,k!5Fb1PDk2
~k82k!PDkI

~k!

1Fb2PDkI
~k8!PDk1

~k82k!

1FE d2k9PDk2
~k82k9!PDkI

~k9!

3PDk1
~k92k!, ~19!

where

F52p~DkI !
2e22k I te2k I

2
~h1

2
1h2

2
!, ~20!

ba5e2~k I
2
1KM

2
!ha

2
, ~21!

~Dka!25~k I
21KM

2 !sa
2. ~22!

ThePDka
’s are the normalized Gaussian functions defined

Eq. ~6! with widths Dka given by Eq. ~22! where sa
2

5(]ha /]x)25(]ha /]y)2 is the mean-square slope of th
roughness.

SUMMARY AND CONCLUSIONS

The approach to tunneling theory introduced above allo
a calculation of the consequences of rough tunnel junc
interfaces on the tunneling current and on its directional



by
n
ca
e

th
fo
c-
o

as
fla
he
th

t
x

le
f-

iv

ig
th

se
i

r

th
po

n
d

al

the
nt,

the
ent
n-

c-
s a
tor

-
for
by

ly
in-
av-
wo
tun-
fi-
c-
to
he

he
as
ent
ent,
t is

ot-

y
En-

9286 PRB 60BRIEF REPORTS
The general formula for the tunneling current is given
Eqs. ~4! and ~12!–~14!. Equation~12! shows the separatio
of the current into specular and diffuse parts, and the s
tering cross sectionsM8M gives the directional dependenc
of the diffuse part. Equations~13! and~14! reduce the prob-
lem to the determination of the transmission properties of
individual junction interfaces. These expressions give a
mally exact theory of tunneling for thick rough tunnel jun
tions, and can be evaluated using any appropriate appr
mation scheme.

The small perturbation method treats the roughness
perturbation of a flat interface model, and shows that
interface models represent a good first approximation w
the amplitude of the roughness fluctuations is less than
electron wavelength~which normally requires atomically fla
interfaces!. The results obtained in the tangent plane appro
mation show that for rough tunnel junction interfaces~i.e.,
surface height fluctuations significantly greater than the e
tron wavelength! the transmitted current is nearly totally di
fuse. To see this recall that the functionsP occurring in Eqs.
~18! and ~19! are normalized Gaussians. Thus the relat
weights of the different contributions in Eqs.~18! and~19! to
the tunneling current are determined by the factorsba . This
means that for root-mean-square fluctuations in the he
functions h(r ) much greater than an electron waveleng
i.e., such that the factorsba are small, the purely diffuse
contribution, namely that last term in Eq.~19!, dominates.

Now examine the directionality in the rough junction ca
where the tunneling current is dominated by the last term
Eq. ~19!. For sufficiently thick tunnel junctions, the facto
PDkI

(k9)5d(k9) and the integration overk9 is easily carried
out. The incoming and outgoing electrons contributing to
tunneling current thus have their parallel moment com
nents withinDk1 and Dk2 @see Eq.~22!# of zero, respec-
tively. For root-mean-square~rms! roughness slopessa
which are of order unity or not too much smaller, there is
significant directionality of the tunneling. On the other han
for rms roughness slopes much less than unity, the sm
s.
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the roughness slope, the closer to the forward direction is
momentum of electrons contributing to the tunneling curre
both for incoming and outgoing electrons.

It is of interest to examine the physical reasons for
dominance of the diffuse component of the tunneling curr
in the case of rough junctions. As for flat junctions, the tu
neling current is reduced by the factor exp(22kIt) depending
exponentially on the average thicknesst of the junction@see
Eq. ~20!#. This effect is reduced by the interface height flu
tuations, which give regions where the potential barrier ha
smaller than average thickness. Hence the fac
exp„2k I

2(h1
21h2

2)… in Eq. ~20!. The reduction of the attenu
ation due to barrier thickness fluctuations is not as great
the specular component of the transmission, as indicated
the factor exp(2kI

2ha
2) in ba . The other factor contributing

to ba , exp(2KM
2 ha

2), gives the reduction in the specular
transmitted component of transmission due to destructive
terference of waves with the different phase lags due to h
ing traveled different distances in the insulator. These t
factors combine to make the specular component of the
neling negligible relative to the diffuse component for suf
ciently rough interfaces. Clearly, tunneling theory must a
count for the roughness of tunnel junctions in order
correctly describe the dominant diffuse contribution to t
tunneling current.

This article has given a formally exact expression for t
tunneling current valid for thick, rough tunnel junctions, h
shown that for rough tunnel junctions the diffuse compon
of the tunneling current dominates the specular compon
and has also shown that even when the tunneling curren
entirely diffuse, a tunneling cone effect can exist if the ro
mean-square roughness slope is sufficiently small.
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