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Exact solution of a spin-ladder model
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An integrable spin-ladder model with nearest-neighbor exchanges and biquadratic interactions is proposed.
With the Bethe ansatz solutions of the model Hamiltonian, it is found that there are three possible phases in the
ground state, i.e., a rung-dimerized phase with a spin gap, and two massless phases. The possible fixed points
of the system and the quantum critical behavior at the critical pointJ5J1

c are discussed.
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Recently, there has been growing interest in the spin
ders for their relevance to some quasi-one-dimensional
terials, which under hole-doping may show sup
conductivity.1 It is well known that theS51/2 isotropic spin
ladders with even number of legs have a spin-liquid grou
state with an energy gap, while odd-legged ladders hav
gapless spin-liquid ground state. On the other hand, gen
ized ladders including other couplings beyond the near
neighbor exchanges, which can interpolate between a va
of systems, can show remarkably rich behavior.2–4 In a re-
cent paper,2 Nersesyan and Tsvelik predicted a new gap
phase for the two-leg spin ladders, i.e., the dimerized ph
driven by the four-spin interactions, which is essentially d
ferent from the well-known Haldane phase.5 This observa-
tion has been demonstrated in a generalized spin-la
model3 by constructing the exact ground state. Another
teresting phenomenon in the ladder systems is the quan
phase transition from the gaped phase to the gapless p
which has been studied experimentally in the Heisenb
ladder Cu2(C5H12N2)2Cl4.6

As is well known, the integrable models provided us w
very good understanding of the correlated many-body s
tems in one dimension. However, a satisfactory integra
ladder model, which may play a similar role of the Heise
berg chain,7 the one-dimensional~1D! Hubbard model,8 and
the supersymmetrict-J model,9 is still absent. The difficulty
to construct an integrable ladder model is almost the sam
we encountered in constructing a two-dimensional integra
model due to the strict conditions for the integrability. F
example, in a 1D model there is only one path connect
two different sites, while even for two coupled chains, w
have a large number of paths connecting two different si
We note that an integrable ladder model with artificial thre
spin interactions has been proposed recently10 and the inte-
grability of a generalized spin ladder without a fre
parameter11 was addressed. The latter is more interesting
still defies the Bethe-ansatz solution. In this paper, we st
a spin ladder with biquadratic interactions. By prope
choosing the four-spin coupling constants, we show that
model is exactly solvable via algebraic Bethe ansatz. T
model Hamiltonian we shall study reads
PRB 600163-1829/99/60~13!/9236~4!/$15.00
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3~sW j 11•tW j 11!, ~1!

where sW j and tW j are Pauli matrices acting on sitej of the
upper and lower legs, respectively;J1 and J2 are the cou-
pling constants along the legs and the rungs, respectiv
U1,2 are the biquadratic coupling constants andN denotes the
length of the ladder. Without the four-spin terms, Eq.~1!
represents the ordinary spin-ladder model. The new term
Eq. ~1! represent an interchain coupling and an interru
coupling, which can be either effectively mediated by sp
phonon interaction or in the doped phase generated by
conventional Coulomb repulsion between the holes mov
in the spin correlated background as discussed in Refs. 2
12. The importance of biquadratic exchange for some pr
erties of CuO2 plaquette has been pointed out13 and recent
experiments revealed that such multi-spin-exchange inte
tions are realized in the two-dimensional~2D! solid 3He,14

2D Wigner solid of electrons formed in a Si inversio
layer,15 and the bcc solid3He.16 On the other hand, the fou
spin terms have clear physical meaning in the spin-orb
model,17 where one leg~say,s) represents the spins and th
other leg~say,t) represents the orbital. Such interactions a
general in the transition-metal oxides and are recent hot
terest of research. We note that whenU250, Eq. ~1! is re-
duced to the model considered in Ref. 2. For general par
eters J1,2 and U1,2, the model ~1! is still nonintegrable.
However, as we shall show below, whenU15J1 , U250 or
U15J1 , U252J1/2, the model is exactly solvable. W
shall study these cases through this paper. Not loosing g
erality, we setJ15U151, J25J, andU25U in the follow-
ing text.

We study firstU50 case. This is the simplest integrab
case but shows the main physics of the system. The Ha
tonian ~1! for U50 can be rewritten as
9236 ©1999 The American Physical Society
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H5
1

4 (
j 51

N

~11sW j•sW j 11!~11tW j•tW j 11!1
1

2
J(

j 51

N

~sW j•tW j21!

1 1
2 ~J2 1

2 !N. ~2!

In this form, the integrability of the model is still somewh
hidden. To show it clearly, we note that the first term in E
~2! can be rewritten as( j 51

N Pj , j 11, wherePj , j 11 is the per-
mutation operator between two nearest rungs. Therefore
first term of Eq.~2! is SU~4! invariant as showed for the
spin-orbital model.17 An obvious fact is thatPj , j 11 can be
expressed asPj , j 115(a,bXj

abXj 11
ba , where Xj

ab[ua j&^b j u
are the Hubbard operators and the Dirac statesua j& span the
Hilbert space of thej th rung and are orthogonal (^a j ub j&
5dab). For convenience, we chooseu0&51/A2(u↑,↓&
2u↓,↑&), u1&5u↑,↑&, u2&51/A2(u↑,↓&1u↓,↑&), and u3&
5u↓,↓&. The first state denotes a singlet rung and the la
three indicate the spin-triplet states of a rung. With the
notations, Eq.~2! can be rewritten as

H5(
j 51

N

(
a,b50

3

Xj
abXj 11

ba 22J(
j 51

N

Xj
001

1

2 S J2
1

2DN. ~3!

Obviously, the operatorsNa[( j 51
N Xj

aa , which denote the
numbers of thea rungs in the whole system, are conserv
quantities. The constant 2J in the last term of Eq.~3! indi-
cates a chemical potential applied onN0 and reduces the
global SU~4! symmetry of the Hamiltonian to U(1)
3SU(3). Now wehave reduced the Hamiltonian~1! to an
SU~4!-invariant spin chain@or equivalently an SU~4! t-J
model#, which can be solved by following the standa
method.9 There are three branches of flavor waves~general-
ized spin waves! in this system. If we choose the referen
state asuV&5u01& ^ u02& ^ •••^ u0N&, the Bethe state can b
constructed as

uC&5 (
$ j m ,am%

Ca1 , . . . ,aM1
~ j 1 , . . . ,j M1

!

3Xj 1

a10
•••X

j M1

aM1
0
uV&, ~4!

whereC is the wave function, the summation forj m runs
from 1 to N and that foram runs from 1 to 3. After some
manipulation,9 we obtain the Bethe-ansatz equatio
~BAE’s!:

S l j2 i /2

l j1 i /2D N

5)
lÞ j

M1 l j2l l2 i

l j2l l1 i )a51

M2 l j2ma1 i /2

l j2ma2 i /2
,

)
bÞa

M2 ma2mb2 i

ma2mb1 i
5)

j 51

M1 ma2l j2 i /2

ma2l j1 i /2)
d51

M3 ma2nd2 i /2

ma2nd1 i /2
, ~5!

)
gÞd

M3 nd2ng2 i

nd2ng1 i
5 )

a51

M2 nd2ma2 i /2

nd2ma1 i /2
,

whereM15N11N21N3 , M25N21N3, andM35N3 ; l j ,
ma , andnd represent the rapidities of the flavor waves. No
.

he

r
e

the periodic boundary conditionsXN11
ab 5X1

ab has been used
in deriving Eq.~5!. The eigenenergy of the Hamiltonian~3!
is given by

E52(
j 51

M1 S 1

l j
21 1

4

22JD 1
3

4
~122J!N. ~6!

Obviously, for 0,J,2, the ground state consists of reall j ,
ma , andnd closely packed around the origin. That means
have three ‘‘Fermi seas’’ and three branches of gapless
citations. ForJ.2, the reference state becomes the tr
ground state and any flavor excitation is gapful. The grou
state is a product of the singlet rungs, which indicates
dimerization along the rungs. The energy gap can be ea
deduced from Eq.~6! as D52(J22). J1

c 52 indicates a
quantum critical point at which the quantum phase transit
from the dimerized phase to the gapless phase occurs. At
critical point, all the three branches of flavor excitations a
marginal and the low-temperature thermodynamics of
system shows non-Fermi-liquid behavior as we shall disc
below. ForJ,0, the singlet rungs are unfavorable at lo
energy scales. For convenience, we chooseu11& ^ u12& ^ •••

^ u1N& as the reference state. The BAE’s are still given
Eq. ~5! but with M15N01N21N3 , M25N31N0, andM3
5N0. The eigenenergy is given by

E52(
j 51

M1 1

l j
21 1

4

22JN01
1

4
~312J!N. ~7!

A hidden fact is that there is another critical valueJ2
c . For

J,J2
c , no singlet rung exists in the ground-state configu

tion and the excitations consisting of singlet rungs are g
ful. In this case, there are only two branches of gapless fla
waves and the effective low-energy Hamiltonian is equiv
lent to that of the SU~3!-invariant spin chain. The ground
state consists of two ‘‘Fermi seas’’~for l andm) with M1
52N/3, M25N/3, andM350. We denote the distribution
of l andm in the ground state asr1(l) andr2(m), respec-
tively. A singlet excitation can be constructed by introduci
a n mode and am hole mh in the BAE’s. We denote further
the changes ofr1(l) andr2(m) via then mode and them
hole asdr1(l) and dr2(m), respectively. From the BAE’s
~5! we can easily obtain

dr̃1~v!5
1

4 cosh2 ~v/2! 21
@e2 inv2e2(1/2)uvue2 imhv#,

~8!

where dr̃1(v) is the Fourier transformation ofdr1(l).
Combining Eq.~7! and Eq.~8!, we derive the minimum en-
ergy ~corresponding ton→0, mh→`) to excite an mode
from the ground state as

emin52
1

2E dr̃1~v!e2(1/2)uvudv22J

52uJu2 p/2A3 1 ln A3. ~9!

The critical valueJ2
c is thus derived fromemin50 as J2

c

52p/(4A3)1( ln3)/4. ForJ2
c ,J,0, the system behave

as for 0,J,2. Exactly at the critical pointJ5J2
c , one
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branch of the flavor excitations~the singlet one! is marginal.
Therefore, we have three quantum phases in these syst
A rung-dimerized phase whenJ.J1

c , a gapless phase wit
three branches of gapless flavor excitations whenJ1

c .J
.J2

c , and another gapless phase with two branches of g
less flavor excitations whenJ,J2

c . We note that the dimer
ized phase shows a long-range order

^VuXi
00Xj

00uV&51, ~10!

which indicates the condensation of the singlet rungs. Un
hole doping, the system behaves as at-J ladder and the
singlet rungs serve as Cooper pairs. The mobility of the s
glet rungs under hole doping may drive the system to sh
superconductivity. Based on the above observations, we
clude thatJ6

c represents two unstable fixed points of t
system. In addition, the stable fixed points of the system
be conjectured. ForJ.J1

c , the transverse exchange dom
nates over the exchange along the legs and the system s
flow to a fixed pointJ* 51`. For J2

c ,J,J1
c , the two

unstable fixed pointsJ6
c indicate an intermediate stable fixe

point J2
c ,J* ,J1

c . For J,J2
c , the singlet excitations are

eliminated at low-energy scales and the system should
to a fixed pointJ* 52`, which is equivalent to an SU~3!-
invariant spin chain. The gapless modes in the latter phas
mainly due to the high symmetry. Any small perturbations
J1 or U1 breaking this symmetry may drive it to the Halda
phase as in the SU~3!-invariant spin-1 chain.

Based on the BAE’s, the thermodynamics of the pres
model can also be derived by following the standa
method.18,19 In the gapless phases, the system behaves
Luttinger liquid20 and nothing is anomalous. However, at t
quantum critical points, the system may show non-Fer
liquid behavior due to the marginal excitations. We consi
first the zero-temperature magnetic susceptibility forJ5J1

c .
Without the external field, the ground state is a condensat
singlet rungs. If we apply a very weak external field on t
system, some triplet rungs withSz51 appear in the ground
state configuration, whileN2 and N3 still keep to be zero
since the levels of these two types of rungs are either lif
(u3&) or unchanged (u2&). The energy density of the groun
state in an external magnetic field (H.0) reads

E/N5E
2L

L S 42
1

l21 1
4

2H D r1~l!dl, ~11!

wherer1(l) satisfies

r1~l!1E
2L

L

a2~l2l8!r1~l8!dl85a1~l!, ~12!

with an(l)5n/2p@l21(n/2)2# and L251/(42H)21/4.
For a smallH!1, we haveL'AH/4 and Eq.~12! can be
solved up toO(H3/2,l2) as

r1~l!5 2/p 2 ~1/p2!AH1O~H3/2,l2!. ~13!

Combining Eq.~13! and Eq.~11! we readily obtain the sus
ceptibility as

x52 ]2~E/N!/]H2 5 ~1/2p! H21/21O~H1/2!. ~14!
ms:
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The low-temperature susceptibility and the specific heat
also be derived from the so-called thermal Bethe ansatz.18,19

Via low-temperature expansion of the thermal BAE’s~Refs.
21–23! we obtain

C;T1/2, x;T21/2, ~15!

which indicate a typical quantum critical behavior. The
results can also be predicted by a simple flavor-wave the
with the dispersion relatione(k);k2. We note in the gaped
phase, the magnetic field can also drive a quantum ph
transition. At the quantum critical pointHc52(J22), simi-
lar quantum critical behavior can be obtained. Another int
esting quantity is the order parameter^sW i•tW i&54(N11N2

1N3)23. When J2
c ,J,2, it takes the value of23. Its

quantum critical behavior forJ→2102 can be derived by
following the same method for the magnetization. The o
difference is to putJ22 as an effective field~note that the
spin triplet is isotropic relative to this field!. The result reads

^sW i•tW i&13;(J22)1/2.
Now we turn to theU521/2 case. The last term in Eq

~1! can be rewritten as2( j@2Xj
00Xj 11

00 2Xj
0011/4#. Up to an

irrelevant constant, we rewrite Eq.~1! as

H5(
j 51

N F (
a51

3

~Xj
a0Xj 11

0a 1Xj
0aXj 11

a0 !1 (
a,b51

3

Xj
abXj 11

ba

2Xj
00Xj 11

00 G1~122J!(
j 51

N

Xj
00. ~16!

The above Hamiltonian has the same algebraic structur
that of an SU~1u3! supersymmetrict-J model, which still
allows Bethe-ansatz solution. We choose stilluV& as the ref-
erence state. The BAE’s read

S l j2 i /2

l j1 i /2D N

5 )
a51

M2 l j2ma2 i /2

l j2ma1 i /2
,

)
bÞa

M2 ma2mb2 i

ma2mb1 i
5)

j 51

M1 ma2l j2 i /2

ma2l j1 i /2)
d51

M3 ma2nd2 i /2

ma2nd1 i /2
,

~17!

)
gÞd

M3 nd2ng2 i

nd2ng1 i
5 )

a51

M2 nd2ma2 i /2

nd2ma1 i /2
.

The eigenenergy of the Hamiltonian~16! is given by

E5(
j 51

M1 S 1

l j
21 1

4

12J21D 22JN. ~18!

The situation is very similar to that ofU151, U50 case.
There are still three phases, i.e., a rung-dimerized phase
two gapless phases. ForJ2

c ,J,1/2, some triplet rungs are
allowed in the ground state. The ground-state configura
is described by closely packed realn modes and the corre
spondingl23 strings andm22 strings:

ld
n5nd1 i ~22n!, n51,2,3, md

65nd6 i /2 . ~19!

For J.J1
c 51/2, we get again a dimerized ground sta

Comparing to the SU~4! case, we findJ1
c is remarkably re-
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duced by a negativeU. Notice that a negativeU indicates the
attraction between two nearest singlet rungs. This attrac
enhances the dimerization along the rung direction.

For small positiveJ or negativeJ, the triplet rungs are
more stable than the singlet ones. For convenience,
chooseu11& ^ •••^ u1N& as the reference state. The BAE
~Ref. 24! read

S l j2 i /2

l j1 i /2D N

5)
lÞ j

M1 l j2l l2 i

l j2l l1 i )
a51

M2 l j2ma1 i /2

l j2ma2 i /2
,

)
bÞa

M2 ma2mb2 i

ma2mb1 i
5)

j 51

M1 ma2l j2 i /2

ma2l j1 i /2 )
d51

M3 ma2nd2 i /2

ma2nd1 i /2
,

~20!

)
a51

M2 nd2ma2 i /2

nd2ma1 i /2
51,

whereM15N21N31N0 , M25N31N0, andM35N0. The
eigenenergy takes the same form of Eq.~7! but with J→J
21/2. J2

c can be easily derived from Eq.~20! as J2
c 5 1

2

2p/4A31 1
4 ln 3. Interestingly,J2

c takes a positive value in
n

e

this case. The space of the phase with three branche
massless excitations is remarkably depressed by the at
tive rung-rung interaction. This observation strongly ind
cates that there is a critical pointU5Uc . WhenU,Uc , J6

c

coincide each other and the intermediate fixed point will
eliminated, implying only two phases can exist in the syste
In fact, the model~1! is exactly solvable in the sectorsN0
50,1 for arbitraryU. Following the same procedure dis
cussed below Eq.~7! we can easily obtain the energy diffe
ence between the ground states of sectorN051 and sector
N050 as de522(J1U)2p/(2A3)1(ln 3)/4. de50
gives a phase boundary of theJ-U phase diagram and whe
J5J1

c 51/2, we deriveUc521/22p/(4A3)1(ln 3)/8.
In conclusion, we propose an integrable spin-ladd

model that exhibits rich physics. This model may play
similar role in the spin-ladder systems as the supersymme
t-J model does in the one-dimensional correlated elect
systems.
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