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Exact solution of a spin-ladder model
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An integrable spin-ladder model with nearest-neighbor exchanges and biquadratic interactions is proposed.
With the Bethe ansatz solutions of the model Hamiltonian, it is found that there are three possible phases in the
ground state, i.e., a rung-dimerized phase with a spin gap, and two massless phases. The possible fixed points
of the system and the quantum critical behavior at the critical pbind$ are discussed.
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Recently, there has been growing interest in the spin lad- 1 N o 1 N
ders for their relevance to some quasi-one-dimensional ma- H= ZJlE [0 Oj1t 7 T4l + 5322 O Tj
terials, which under hole-doping may show super- =1 =1
conductivity? It is well known that theS=1/2 isotropic spin N N
ladders with even number of legs have a spin-liquid ground +2Up > (070540 (7 140+ U2 D, (0-7)
state with an energy gap, while odd-legged ladders have a 4 4=
gapless spin-liquid ground state. On the other hand, general-
ized ladders including other couplings beyond the nearest-
neighbor exchanges, which can interpolate between a variety
of systems, can show remarkably rich beha¥idrin a re-

cent papef, Nersesyan and Tsvelik predicted a new gapfulupper and lower legs, respectively; and J, are the cou-

phase for the two-leg spin ladders, i.e., the dimerized phasgIing constants along the legs and the rungs, respectively;

;jnver; ;Jy th(tahfour-leE mterchtl%ns, Wh;:::sslés_hgssegtlally dif- U, , are the biquadratic coupling constants &hdenotes the
erent from the wefl-known Haldane p NS observa- length of the ladder. Without the four-spin terms, Ei)

tion has been demonstrated in a generalized Sp'n'l";“?k]l‘?épresents the ordinary spin-ladder model. The new terms in
modef by constructing _the exact ground state_. Another IN"Eq. (1) represent an interchain coupling and an interrung
teresting ph_e_nomenon in the ladder systems is the quantueg)up”ng which can be either effectively mediated by spin-
phase transition from the gaped phase to the gapless phaggonon interaction or in the doped phase generated by the
which has been studied experimentally in the Heisenbergonyentional Coulomb repulsion between the holes moving
ladder Cy(CsHy,N,),Cly.° in the spin correlated background as discussed in Refs. 2 and
As is well known, the integrable models provided us with 12, The importance of biquadratic exchange for some prop-
very good understanding of the correlated many-body syserties of CuQ plaquette has been pointed buand recent
tems in one dimension. However, a satisfactory integrablexperiments revealed that such multi-spin-exchange interac-
ladder model, which may play a similar role of the Heisen-tions are realized in the two-dimension@D) solid He}*
berg chairY, the one-dimensiondllD) Hubbard modef,and 2D Wigner solid of electrons formed in a Si inversion
the supersymmetrit-J model? is still absent. The difficulty layer!® and the bcc solidHe® On the other hand, the four
to construct an integrable ladder model is almost the same &pin terms have clear physical meaning in the spin-orbital
we encountered in constructing a two-dimensional integrabléodel;” where one ledsay,o) represents the spins and the
model due to the strict conditions for the integrability. For other leg(say, ) represents the orbital. Such interactions are
example, in a 1D model there is only one path connecting@eneral in the transition-metal oxides and are recent hot in-
two different sites, while even for two coupled chains, weterest of research. We note that whegp=0, Eq. (1) is re-
have a large number of paths connecting two different sitesduced to the model considered in Ref. 2. For general param-
We note that an integrable ladder model with artificial three-eters J; , and U, ,, the model(1) is still nonintegrable.
spin interactions has been proposed recéhtind the inte- However, as we shall show below, when=J;, U,=0 or
grability of a generalized spin ladder without a freeU;=J;, U,=—J,/2, the model is exactly solvable. We
parameteft was addressed. The latter is more interesting bushall study these cases through this paper. Not loosing gen-
still defies the Bethe-ansatz solution. In this paper, we studgrality, we setl;=U,=1, J,=J, andU,=U in the follow-
a spin ladder with biquadratic interactions. By properlying text.
choosing the four-spin coupling constants, we show that the We study firstU=0 case. This is the simplest integrable
model is exactly solvable via algebraic Bethe ansatz. Thease but shows the main physics of the system. The Hamil-
model Hamiltonian we shall study reads tonian(1) for U=0 can be rewritten as

X((;'j+1';j+1)7 1)

where o; and r; are Pauli matrices acting on sifeof the
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1 N o o 1 N the periodic boundary condition§’? , = X has been used
H= 2 Z (1+0j- o))+ 7741 + E‘]Z (oj-7—1) in deriving Eq.(5). The eigenenergy of the Hamiltoni&8)
= =t is given by
+3(3- DN, @) v, 3
. . - L E=—-2 —2J|+=(1-2J)N. (6)
In this form, the integrability of the model is still somewhat =1 )\].2+ z 4

hidden. To show it clearly, we note that the first term in Eq. ) )
(2) can be rewritten a§}\':1Pj,j+1, whereP; ;1 is the per- Obviously, for 0<J<2, the ground state consists of raa|,

mutation operator between two nearest rungs. Therefore, thfe» aNdv; closely packed around the origin. That means we

first term of Eq.(2) is SUA4) invariant as showed for the nave three “Fermi seas” and three branches of gapless ex-

spin-orbital model’” An obvious fact is thaP; ;. can be citations. ForJ>2, the reference state becomes the true
- i,

expressed aﬁ’j,j+1=2a,ﬂxfﬂxjﬁf1, where X@ Ela'j><ﬁj| ground state and any flavor excitation is gapful. The ground

are the Hubbard operators and the Dirac staies span the state is a product of the singlet rungs, which indicates the
Hilbert space of thejth rung and are orthogonal &;;) dimerization along the rungs. The energy gap can be easily

_ : = deduced from Eq(6) as A=2(J—2). J$=2 indicates a
: ﬁ“‘%’) F|01r> :ﬁn\{?an;;i,llvEGTcrlc;cjrsﬁ»T_})l/\/aErf(lei:lsi quantum c_riticgl point at which the quantum phase transition_
:|l,l> ,The first ’sta’te denotes a éinglet r,ung, and the Iattefrom the dimerized phase to the gapless phase occurs. At this
A S : Eritical point, all the three branches of flavor excitations are
three_ indicate the spln-trlplep states of a rung. With theseh’larginal and the low-temperature thermodynamics of the
notations, Eq(2) can be rewritten as system shows non-Fermi-liquid behavior as we shall discuss
below. ForJ<O0, the singlet rungs are unfavorable at low
energy scales. For convenience, we chddsg®|1,)® - - -
®|1y) as the reference state. The BAE's are still given by
Eq. (5) but with M;=Ng+N5+N3, M>,=N3+Ny, andM,
=N,. The eigenenergy is given by

3 N

1

H=2, > XX -202, X%+ 5
=1

=1 ajB=0

1
J—§>N. 3)

Obviously, the operatorslaEEJ!\'zle““, which denote the
numbers of thex rungs in the whole system, are conserved

guantities. The constant)2in the last term of Eq(3) indi- M1 1
cates a chemical potential applied dly and reduces the E= _121 N2+ 1 —2INo+ Z(3+2‘J)N' @
i 4

global SU4) symmetry of the Hamiltonian to U(1)
X SU(3). Now wehave reduced the Hamiltonigd) to an
SU(4)-invariant spin chainfor equivalently an Sy t-J

A hidden fact is that there is another critical vallfe. For
J<J°, no singlet rung exists in the ground-state configura-

model, which can be solved by following the standard tjon and the excitations consisting of singlet rungs are gap-
method? There are three branches of flavor wavgsneral-  fyl. n this case, there are only two branches of gapless flavor
ized spin wavesin this system. If we choose the reference waves and the effective low-energy Hamiltonian is equiva-
state ag())=[0,)®[0,)® - - - ®|0y), the Bethe state can be |ent to that of the S(B)-invariant spin chain. The ground

constructed as

|\P>: E }‘Pal ..... anl(jli"'

dmy)
{im.am Ma

XXX ),
M

1

(4)

where W is the wave function, the summation fpg, runs
from 1 to N and that fore,, runs from 1 to 3. After some

manipulation”? we obtain the Bethe-ansatz equations

(BAE’s):

N—il2
NERTE

N_ M1 )\J_)\|_| M2 )\J_/La+|/2
i/2’

ey N—=Nt+ia=1 Nj—p,—

M2 Mo—Nj— 112 M3 Ho—Vs— 112

S My

Mo— Mg

—_—= - —, (5
pra Mo MpTi ]1:[1 ,U,a—)\j+|/2(£[1 o= Vst il2 ®

M . M .
P vy~ v, —i B 2 ps——il2

yES Vg_V,y'i‘i a=1 Vﬁ—,u,a-i-ilz,

WhereM1:N1+N2+ N3, M2:N2+ N3, andM3:N3; )\J,

state consists of two “Fermi seagffor A and u) with M,
=2N/3, M,=N/3, andM;=0. We denote the distributions
of A and u in the ground state gs;(\) andp,(u), respec-
tively. A singlet excitation can be constructed by introducing
a v mode and a hole uy, in the BAE’s. We denote further
the changes op;(\) andp,(u) via the v mode and theu
hole asép,(\) and ép,(u), respectively. From the BAE'’s
(5) we can easily obtain

1
4 cosif (w/2) —1

[e—ivw_ e—(1/2)|w\e—i,uhw]'

)

where 8p;(w) is the Fourier transformation ofp(\).
Combining Eq.(7) and Eq.(8), we derive the minimum en-
ergy (corresponding tav—0, up—) to excite av mode
from the ground state as

Sp1(w)=

11 ~
€min=— EJ 5p1(w)e_(1/2)“"|dw— 2]

=2|J|— 7/2\/3 +In /3. 9

The critical valueJ® is thus derived frome,=0 asJ®
=—7/(4/3)+(In3)/4. ForJ® <J<O0, the system behaves

., andvs represent the rapidities of the flavor waves. Noteas for 0<J<2. Exactly at the critical poind=J°, one



9238 BRIEF REPORTS PRB 60

branch of the flavor excitationghe singlet ongis marginal.  The low-temperature susceptibility and the specific heat can
Therefore, we have three quantum phases in these systenadso be derived from the so-called thermal Bethe an€dtz.

A rung-dimerized phase wheh>J¢ , a gapless phase with Via low-temperature expansion of the thermal BAERefs.
three branches of gapless flavor excitations widén>J 21-23 we obtain
>J° , and another gapless phase with two branches of gap-

112 —1/2
less flavor excitations wheh<J® . We note that the dimer- C~T5 x=T 7% (15)
ized phase shows a long-range order which indicate a typical quantum critical behavior. These
results can also be predicted by a simple flavor-wave theory
QXXM 0)=1, (100 with the dispersion relatioa(k) ~ k2. We note in the gaped

L ) _ phase, the magnetic field can also drive a quantum phase
which indicates the condensation of the singlet rungs. Undef4qsition. At the quantum critical poitd .= 2(J—2), simi-

hole doping, the system behaves as-& ladder and the |5 quantum critical behavior can be obtained. Another inter-
singlet rungs serve as Cooper pairs. The mobility of the sin-

glet rungs under hole doping may drive the system to shovzs’t\'lng q3ua\r/1\t/|rt]y |3ctf1<eJo<rger_tptafme§1eri ' Til>:4(f|813+ lTltz
superconductivity. Based on the above observations, we con- 3) = 3. . e? behavi folﬂ azeso_ € vagje do . .dsb
clude thatJS represents two unstable fixed points of theqlflam”m fr:'t'ca N av;ﬁrd fﬂth+ cant_ et' erlvTeh y |
system. In addition, the stable fixed points of the system caﬁq owing the same method for the magnetization. 1he only
be conjectured. Fod>J% , the transverse exchange domi- |fferepce IS FO putJ'—2 as an effet;ﬂvg fieldnote that the
nates over the exchangg é\long the legs and the system shoSRin triplet is isotropic relative to this fieldThe result reads
> __(1_o\12

flow to a fixed pointd*=+c. For J°<J<J%, the two <‘TiNTi>+3 (J=2) el —1/2 The | o E
unstable fixed pointdS indicate an intermediate stable fixed ow we turn to thet) = o %%se. Ooe ast term in Eq.

; - . - (1) can be rewritten as- 2;[ 2X: X5 ,— Xi +1/4]. Up to an
point J¢ <J*<J% . For J<J¢, the singlet excitations are ] il 7 P

) &
eliminated at low-energy scales and the system should ﬂovl\;relevant constant, we rewrite E() as

to a fixed pointJ* = —, which is equivalent to an S3)- N T 3 3

invariant spin chain. The gapless modes in the latter phase is H= E > (X]-"‘Ox?fjﬁ X?“Xf‘fl)Jr > X;’BXJﬁfl

mainly due to the high symmetry. Any small perturbations of j=1]a=1 ap=1

J; or U, breaking this symmetry may drive it to the Haldane N

phase as in the SB)-invariant spin-1 chain. — X000 |1 (1-23)S X0 (16)
Based on the BAE's, the thermodynamics of the present 17 =

model can also be derived by following the standard

18,19
method.™ "In the gapless phases, the system behaves 3SRt of an SW1/3) supersymmetrid-J model, which still

Luttinger liquic?® and nothing is anomalous. However, at the .

quantum critical points, the system may show non—Fermi-aHOWS Bethe-ansatz so,lutlon. We choose i) as the ref-
e ) ] e . _erence state. The BAE’s read
liquid behavior due to the marginal excitations. We consider
first the zero-temperature magnetic susceptibilityFerJS .

Without the external field, the ground state is a condensate of

The above Hamiltonian has the same algebraic structure as

Nj— i/Z)N_ N 1

singlet rungs. If we apply a very weak external field on the AjFil2 a=1 N~ pat 112
system, some triplet rungs with,= 1 appear in the ground- M, YA My .
state configuration, whil&, and N5 still keep to be zero Pa=Hp—i 11 Ha” N2 po—vs— 112
since the levels of these two types of rungs are either lifted g7, w,—upgti =1 pa—Nj+ 1125510 pa—vstil2’
(13 or unchanged|@)). Thg energy density of the ground (17)
state in an external magnetic fieltl &0) reads
M3 vs— v, —i M2 Vs— My— 112
A 1 — o= — - .
ein- | (4_ 7] ‘H>Pl<x>dx, (1 vR VoVl Aty voT a2

- A+ The eigenenergy of the Hamiltonidh6) is given by
wherep(\) satisfies My

N E=zl()\2+l+2J—1)—2JN. (18)

p1(>\)+f Aaz(k—k’)pl(k’)dh’=a1(>\), (12) ’ it

The situation is very similar to that df,;=1, U=0 case.
with a,(\)=n/27[\?+(n/2)?] and A?=1/(4—H)—1/4.  There are still three phases, i.e., a rung-dimerized phase and
For a smallH<1, we haveA~H/4 and Eq.(12) can be two gapless phases. Faf <J<1/2, some triplet rungs are
solved up toO(H%?\?) as allowed in the ground state. The ground-state configuration
is described by closely packed realmodes and the corre-
p1(\)=2/m — (172 VH+O(H3¥2\2). (13)  sponding\ — 3 strings andu— 2 strings:

Combining Eq.(13) and Eq.(11) we readily obtain the sus- B=vst+i(2—n), n=123, uz=vs*il2. (19
ceptibility as
For J>J%=1/2, we get again a dimerized ground state.
x=— d*(EIN)/gH? = (1/2m) H Y2+ O(HY?). (14  Comparing to the SW) case, we find) is remarkably re-
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this case. The space of the phase with three branches of

attraction between two nearest singlet rungs. This attractiomassless excitations is remarkably depressed by the attrac-

enhances the dimerization along the rung direction.
For small positiveJ or negativeJ, the triplet rungs are

tive rung-rung interaction. This observation strongly indi-
cates that there is a critical poibt=U.. WhenU<U_, J%

more stable than the singlet ones. For convenience, weoincide each other and the intermediate fixed point will be
choose|1;)® - - - ®|1y) as the reference state. The BAE’s eliminated, implying only two phases can exist in the system.

(Ref. 29 read

N2\ TN SN =i TN tif2
Nj+i/2 4] Nj= N+ =1 Nj—p,—i/2°
M2 Moo= pp—I { o= Nj—1/2 Ms Ho—Vs— 112
B+a Ma_MB+i i=1 ,ua—)\j+i/2 5=1 ,u,a—V5+i/2’

(20

M2 Vs— Moy— 112

=1 Vg_/.La+i/2: '
WhereMl:N2+N3+No, M2:N3+No, andM3:No The
eigenenergy takes the same form of Eg). but with J—J

—1/2. J° can be easily derived from Eq20) as J® =3
— 7/4\/3+ %In 3. Interestingly,J° takes a positive value in

In fact, the model1) is exactly solvable in the sectohé,
=0,1 for arbitraryU. Following the same procedure dis-
cussed below E(.7) we can easily obtain the energy differ-
ence between the ground states of sebigr1 and sector
No=0 as de=—2(J+U)—=/(2y/3)+(In3)/4. 5e=0
gives a phase boundary of tdeU phase diagram and when
J=J%=1/2, we deriveU = —1/2— 7/(4/3)+ (In 3)/8.

In conclusion, we propose an integrable spin-ladder
model that exhibits rich physics. This model may play a
similar role in the spin-ladder systems as the supersymmetric
t-J model does in the one-dimensional correlated electron
systems.
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