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Mean-field theory of temperature cycling experiments in spin glasses
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We study analytically the effect of temperature cyclings in mean-field spin glasses. In accordance with real
experiments, we obtain a strong reinitialization of the dynamics on decreasing the temperature combined with
memory effects when the original high temperature is restored. The same calculation applied to mean-field
models of structural glasses shows no such reinitialization, again in accordance with experiments. In this
context, we derive some relations between experimentally accessible quantities and propose experimental
protocols. Finally, we briefly discuss the effect of field cyclings during isothermal aging.
[S0163-182699)01325-9

Glasses are characterized by having extremely slow relaxbeen solved analytically in isothermal conditidig:hough a
ations and by the strong dependence of their behavior upofull analytic description of their dynamics in the presence of
the (“waiting” ) time elapsed since their preparation. Thetemperature cyclings is not available yet, a careful discussion
latter property is usually calleghysical aging of their effects yields very encouraging restfts.

A means to study the dynamics in the glassy phase in Surprisingly enough, the main features of the cycling ex-
more detail consists in following the evolution of the sampleperiments have never been derived analytically from micro-
under a complicated temperature history. The protocols thatcopic models, while the numerical evidetté® is incon-
have been more commonly used include temperature cyelusive. In this paper we shall show analytically how these
clings within the low temperature phase. effects arise in mean-field models of spin glasses, and why

The results for different types of glasses are quitethey are absent in mean-field models of structural glasses.
different!~°Spin glasses show the puzzling phenomenon ofone of the questions that will receive a clear answer is why
reinitialization of aging following a decrease in temperature the effects should be hardly observable at very short times,
combined _vvith the recall of the_ s.ituatiorj attained before thesuch as are inevitably involved in simulations.
negative jump when the original high temperature is \ye shall consider in detail the particular class of tempera-

4 LY .
restored?.* Remarkably, when similar protocols were applied ¢ cycling experiments in which the thermoremanent mag-
to structural glasses, e.g., in dielectric constant measure;

ts of dl | bv Loh d Nageh bstantial netization (TRM) is measured. Similar conclusions have
ments of glycerol by Leheny an ageno substantial - ae extracted from the out of phase susceptibilit}) (data
reinitialization was observelf.

at fixed frequency:?°

This difference in the effect of temperature changes on : : .
spin and structural glasses is a fact that any generic theory of, There is however a slight difference between TRM apd ac
measurements. In the former the TRifter the cycling is

glasses is expected to explain. X ) . :
Different groups interpreted the behavior of spin g|asse§ecorded and, since measurements are directly performed in

under temperature cyclings during aging as evidence for botH'€ time domain, one has access to very large time scales
the droplet’ and the hierarchiclpictures of the dynamics afterty. In the latter case thg” is measurediuring and
(the former with some extra refineméntith respect to the ~ after the cycling. This allows us, for example, to clearly see
original versions of the eightié¥. the large reinitialization of the dynamics provoked by the
The hierarchical dynamic pictufe®is a heuristic way to  negative jumg. The price to pay is that in ac measurements
think about the results from positive and negative cyclingghe frequencies are necessarily small compared to the inverse
inspired in the organization of equilibrium states in the Parisiof the measuring time. One then has access to relatively
solution of mean-field spin glasses, such as the Sherringtorsmall time differences.
Kirkpatrick model. It is assumed that spin glasses have a In the TRM experiments of Refregiet al? the system is
large number of metastable states that are organized in guenched to a subcritical temperature under a small field that
hierarchical fashion just like the equilibrium states. It is thenis used as a probe, for which the linearity in the response is
proposed that the system is composedindependentsub-  checked within the same experiment.
systems whose dynamics is given by the wandering in such a In the negative temperature cycling experimésege the
landscape. An average over subsystems has to be invokediitset of Fig. 3, the system is quenchedtat O to a tempera-
order to obtain smooth results as observed in experiments.tureT*. At a timet, the temperature is droppedTo and at
A concrete realization of a hierarchical dynamic systema later timet, the temperatur@ * is restored. The fraction of
can be made with the trap modéfs® These models have time spent afl ~ is rather large.
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FIG. 1. The TRM curves after a long negative cycle sketched in
the inset. The temperature at which the relaxation is measured is
T=12 K=0.72 T,. The bold lines are reference curves corre- FIG. 2. The TRM curves after a short positive cycle sketched in
=10, 30, 100, and 1000 min. The thin lines are obtained after &0ld lines are reference curves obtained after isothermal waiting at

temperature cycling of 1000 min and temperature jumgs=0.1, 12 K fort,=30 and 1000 min. The thin lines are the decay of the
0.3, 0.5, and 1 K. The data is courtesy of Vincent, see Ref. 2.  TRM after a cycle of 5 min and T=0.25, 0.5, 0.75, 1, 1.5, and 2.5

K. Data is courtesy of Vincent; see Ref. 2.

The resulting state of the sample after the temperature ) _
cycling is investigated by cutting off the field at a timg  temperature pulse.s. In the negative temperature cyclmg one
soon aftert, and by recording the subsequent decay of thdS €ssentially probing only the slow compon@ff=" that is
TRM. The results for differenA T are shown in Fig. 1: The Slowed down by the effect of the lower temperature excur-
TRM curves for eachAT can be superposed to the TRM SION. _ _ -
curves obtained at constafit but with an effective waiting We shall show that the difference in the effects of positive
timet1+tw—t2$t\,EvFF(AT,t1,tz,tw)gtw. Note that the first and negative temperature changes is present in the mean-

inequality implies that the system remembers the evolutior§IGId version of spin-glass models while it is absent in the

performed at the higher temperataré while the time spent models thought to be a mean-field caricature of structural
at the lower temperaturd ~ is partially (or even totally glasses. The relevant difference between these models re-

erased sides in their dynamic behavior below the transition. The
Once the negative cycle is ovets main effect is to slow former decay in infinitely many time scales while the latter

down the aging proces3his result is very intuitive and will 40 in only two. (For an unambiguous definition of time

hold for almost any system with slow dynamics activated bys_cales In-aging problems see Ref.)ZIhe explanatlor] we
thermal noise. give here is based on this difference. We choose to discuss in

The real surprise appears when a cycle of positive temgetall the magnetization behavior although the susceptibility

perature(inset of Fig. 2 is applied to spin glasses. Here the data, in particular the rein.itie.llizat_ion after a negative jump,
procedure is the inverse: the system is quenched to a terﬁgg\alsiﬁ be understood V‘;'tht'n tthtlﬁ frgmewqu. in the dl
peraturel ~ up to a long tim& ;. This is followed by a short hother common way 1o test the dynamics in the giassy
period at temperatur@* from t, to t,, at whichT~ is re- phase is to apply magnetic field stEpS durln_g aging at con-
stored. As before, the field is cut off at a later titgeand the stant temperature. In these experiments no Important differ-
' ence is obtained between switching on and switching off the

subsequent decay of the TRM is recorded. . : ; 4 L
The result is shown in Fig. 2. The higher the upward pulsedc f|el_d. We shall briefly discuss this result within the same
alytic framework.

. n
in temperature, the generally younger the system seems blﬁ’ The organization of the paper is the following. In Sec. |

uniike in the negative cycling caste effect cannot be de- the main features of the analytic approach are described. In

scribed with an effective waiting time ec. Il the temperature cycling experiments are explained
Note that in the simplest cases of aging through activate(§ : P ycling exp P

. - within this analytic approach. The results of field cycling
processegas for example the coarsening of the random f'eldexperiments are confronted to this approach in Sec. lll. Sec-

Ising mode] the effect would be the reverse: the temperatur ion IV is devoted to some experimental proposals and Sec
pulse would quicken the activated processes and help agir?@ o the conclusions P prop '

Refreshment would arise only if the temperature pulse is

high enough to take the system above the transition.
Indeed, the solution for mean-field spin glasses discussed |. THEORETICAL APPROACH

below involves anadditive separation of the TRM curve

MTRM=MREPL MF. In the positive temperature cycling the  In order to understand the effect of temperature cyclings

“slow” component MREP is not affected by the pulse while on the relaxation of the TRM and out of phase susceptibility

the “fast” componentMF is taken to its effective critical of mean-field spin-glass models we have to understand the

temperature and is thus completely reinitialized. The amplitime dependence of the autocorrelation and response func-

tude of MF (MRER) is larger (smalley for higher (lower)  tions:
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tural glasslike case at the end of this section and explain why
it does not show large asymmetry effects. Let us recall the
constant temperature solution for the mean-field spin-glass
models.

One of the salient features of the relaxation of mean-field
spin glasses below the dynamic critical temperafyés the
presence of infinitely mangtwo-time) scales organized in a

For mean-field models, one obtains a set of coupled equdderarchical way. In the low temperature phase the two-point
tions that entirely determine the dynamics of these two-poingorrelation and response depend on the two times involved.

functions. The thermoremanent magnetizatibiitM(t,t,,) at
time t, after cutting off a small field at time¢,,, is then
expressed in terms of the integrated susceptibjlity;t,,):

x(t,t,)= ftt drR(t,7),

MTRM(t,t,) =h[ (1,00~ x(t,ty)],
with h the strength of the small dc field applied.

(1.2

A. The model

For definiteness let us consider the toy model consistin

of N continuous spins with a spherical constraifts?(t)
=N and a random energy/(s) correlated asv(s)V(s')

=Nu(s-s'/N). The static& as well as the constant tempera-

The form of the relaxation is usually analyzed by looking at
these functions at fixetbut large waiting time in terms of

the time differencer=t—t,,. The correlation and response
functions have a first fast stationary relaxation; for instance,
the correlation rapidly decays from 1 tg, the Edwards-
Anderson parameter. This time-scale is usually called the
FDT regime, for reasons that will become clear below. For
longer time differences the relaxation continues at a waiting-
time dependent speed. Furthermore, if one imagines the sub-
sequent decay of the correlation as taking place in infinitesi-
mal steps, each step takes much longer than the previous
one. Indeed, in the limit of large waiting time each infinitesi-
mal step implies a period of time that is infinitely longer than

%he previous one and these time scales get completely sepa-

rated. The same separation of time scales characterizes the
decay of the response.
The sharp separation of time scales allows us to split the

ture dynamics of this model have been solved in all detailgre|ations in a fast pa@F(t,t’), going from one at equal

(see Refs. 23-25Two types of models with potential cor-

relations such that ¥#"(C) is, for all 0<C=<1, concave

(conven yield very different static® (one step replica sym-

metry breaking versus full replica symmetry breakirgd

dynamic$* (first order versus second order dynamical tran-
sition and correspond to mean-field versions of structuraf

times toqg at very distant times, and a slow pﬂgo(t,t’),
going from qu(t,t)=qo and tending to zero at even more

distant times. The point at which we split the correlatisn
chosen arbitrarily provided it satisfiesqo<qgs. Corre-
pondingly we separate the response in a fast and a slow part.

and spin glasses, respectively. Examples that have been eX€ then have

tensively studied in the literature are th@=3 spherical
model” for glasse$® with »(C)=1/2C? [and (+"(C)) 7
concavgé and the ‘p=2 plus p=4 model” for spin
glasseg® with »(C)=1/2(c,C?+c,C* andc; andc, two
constants such th&v”(C))~ 2 be convex.

The exact equations of motion f&€ and R at timest
>t" aré®

aC(t,t") t/
—=—Z(t)C(t,t’)+f d7D[C(t,7)]R(t’',7)
at o
t
+f dr3[C(t,7)]C(r,t"), 1.3
0
IR(t,t") t
=—Z(t)R(t,t')+f dr3[C(t,n)]R(7,t"),
ot t!

(1.9

zZ(t)=T(t)+ foth(D[C(t,T)]R(t,T)+E[C(t,7’)]C(t,T)),
(1.5

with 3 (t,7)=D’'[C(t,7)]R(t,7), D'[C]=d:D[C], and
D[C]=v'(C). The functionz(t) is a Lagrange multiplier

C(t,t")=Cq (t,t')+C(t,t') — 0o, (1.6)

.7

SinceCq, (Ry,) is infinitely slower thanC* (RF) their time
evolution can be characterized as follows: for all times such
thatCF changei:qo is just constant and equal tp. Instead,

in the time regime in WhiCK:qO variesCF has achieved its

asymptotic valueyy and does not further evolve.

Note that the time-scale separation is achievely in the
large waiting-time limit. This is the crucial ingredient for the
argument we shall use to show that E(k3)—(1.5 capture
the phenomenology of temperature cyclings. We believe that
the effects disussed in the Introduction have not been clearly
observed numerically because the times explored were inevi-
tably very short and the time scales could not be sufficiently
separated®18

As we shall show, the change in time dependence of the
fast and slow parts of andR under a temperature jump are
very different. The slow partCq and Ry, are modified

through a smooth time reparametrization. The fast pafts
andR" behave as the correlation and response of an effective
model with a critical temperature precisely equallto. The

R(t,t) =R (t,t")+ R(t,t).

that enforces the spherical constraint. We shall concentratemperature jumps have a strong effect on the fast parts and
on the spin-glass-like case that corresponds to a concave ratiis effect is very different depending on the sign of the
dom energy correlation. We shall briefly discuss the strucchange.
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| ! to (0x*). The x vs C plot for the critical temperature is just
X;Z — a straight line linking (1,0) and (R7) with a slope
T T —=1/T..

The remarkable fact of this family of models is that the
curved segment fromgg, xo) to (0x*) is the same for the
temperatures belowWw *. This is not a general property of
mean-field spin-glass models. It holds exactly for the family
of models here considered but only approximately for the
Sherrington-Kirpatrick model. In the static replica approach,
-1/T the corresponding property of the functig(q) is called the
“Parisi-Toulouse approximation?’ The numerical evidence
seems to show that this approximation works very well in
finite dimensional spin glassé$at least within numerically
accessible times.

The analytic argument we shall develop below can be
most easily pictured by considering Fig. 3. The range of
0 qo Q 1 correlation and response values in which the system has ag-

C(t,ty) ing dynamics is given by the curved part of the plGmn
changing the temperature, the straight line corresponding to
the fast relaxation moves clockwise and anticlockwise like a
windshield-wiper, creating and destroying the bold segment
(do,x0)—(q1,x1), thus restarting and erasing the aging
scales corresponding to this interval

X1 f=e-e-----

x(t, ty)
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FIG. 3. Sketch of they vs C plot. The two straight lines have
slopes—1/T* and —1/T~ and correspond to the FDT result. The
curve is temperature independent and it is given b§(C)] Y2
The bold segment is the part erageceated when decreasingn-
creasing the temperature. See text for more details.

The other salient feature of the low-temperature dynamics B. Analysis
of mean-field spin glasses is the violation of the fluctuation- |n the limit of large waiting times we can separate the

dissipation theorent=DT) and, most importantly, the gener- gjfferent time regimes as follows. The equations for thet
alized form that the relation between correlation and reparts of the decay are

sponse takes.

A very useful way to quantify the fluctuation-dissipation
relation that holds out of equilibrium is given by the relation Ereovr
between the integrated respongi,t,,) and the correlation w
C(t,t,).%* At fixed and larget,,, one constructs a plot of ot
x(t,ty,) vs C(t,t,) usingt as a parameter. This is shown in
Fig. 3 for two temperature$* and T~. For each tempera-
ture they vs C curve consists of two parts.

A straight line of slope minus the inverse temperature.

=—(ZF (1) +z(1))CF(t,t")

+JtldTD[CF(t,T)]RF(t',T)
0

This corresponds to the fast time regime where the FDT t o . =
holds andC decays from 1 taz,. We call this time regime + fodTD [CT(t, 1) R (t, ) CT(7,t") + (1),
the FDT regime.

A curve given by (1.9

f(C)=—— as B gz
= . . —=—(z z ,
VV'(C) at
t

This corresponds to the slower time regimes where the FDT + ft,dTD’[CF(LT)]RF(LT)RF(T:V):
is violated andC decays fromgg, to O in a waiting-time
dependent manner. (1.10

For temperaturd* the y vs C plot follows the straight
line of gradient—1/T* from (1,0) to @g,xo) and then the
curvef(C) up to (0x™). For temperaturd ~ it is given by ¢
the straight line of gradient-1/T~ from (1,0) to @1.,x1) zF(t)=T(t)+f dr(D[CF(t,7)]
and then the curvef(C) up to (0x™). The Edwards- 0
Anderson parameters arg and qq, respectively. The two
extreme cases afe=0 andT=T, (the critical temperatuje
The former corresponds to a vertical line starting at (1,0)
that matches the curviC) at C=1 and then follows it up The equations for thelow partsof the decay are

+D'[CF(t,7)]CF(t, 7)RF(t, 7). (1.1D
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small=— ( ZF(t)+z(t)

- JOthD’[CF(t,T)]RF(t,T) Cq,(t,t")

+x7(t")D[Cqy(t,t")]

t/
+ fo d7D[Cq (t,7)Rq (1", 7)

t
+ fodrD’[qu(t,T)]Rqo(t,T)CqO(T,t’),

(1.12
small= — ( Z°(t) +2(t) = D[ Cq (t,") IXF(1)
- fothD’[CF(t,T)]RF(t,T) Ry, (t:t")

t
+ ﬁ;dTD’[qu(t’T)]Rqo(t’T)RqO( mt'),

(1.13

_ t
z(t)=deT(D[cqo(t,TmD'[cqo(t,T)]cqo(t,f))Rqo(t,T).
(1.14

PRB 60
1
Small=—q—(Z(t)+XF(t)D[0|o])qu(t,t’)
0

t/
+ fo d7D[Cq (t,7)JRq (L, 7)
+x"(t")D[Cq(t,t")]

t
+ fodrD'[qu(t,r)]Rqo(t,T)qu( 7t'),

(1.18

small=— qi(?(t)+XF(t)D[qO])RqO(t,t’)
0
+XF(t")D/[Cq (t,t) IR (1,t)

t
+ ft,dTD'[qu(t,T)]Rqo(t,T)Rqo(T,t’),
(1.19

together with Eq(1.14 for?(t). The effect of the fast scales
on the slow one is then only given f(t), x7(t), and

x().
At constant temperature the quantitie), x"(t), and
X" (t) tend to the following limits:

(1.20

As a consequence of the independence of temperature of

2()—7Z", x"(OD—x0. Xx(V)—xo-

The input of the slow scale on the fast one is given by theX(C) if C<qea, See Fig. 3neither Z nor y, depend on the
one-time quantity(t). The fast scale influences the slow one temperature

through three factor (t) defined in Eq(1.11), x"(t) and
YF(t) defined as

t
xH(t)= J drR7(t, 7),
0

XT(H= F drR(7,t), (119
t

and the last term in the parentheses of Efjsl2) and(1.13.

Consider now the temperature cycling experiment. We
consider the effect on the slow and fast parts separately and
denote the correlation after the cycle

CCYCLE(t,tr):Cpr(t,t')-l—éF(t,t’)- (1.2

q
The first term is the slow part while the second is the fast
part. Similarly, for the TRM:

MCYCLE(t t7) = Mgfp(t,t’)Jr MF(t,t).

(1.22

One can eliminate the dependence on this last factor by using Under the assumption that in the presence of the cycling

the relation

small~—(zF(t)+?(t)—fter’[CF(t,r)]RF(t,r) o
0

+ X (1)D[gp] + (1) (1.16
that follows from Eq.(1.12 evaluated at
t'—t = Cq (t,t')—0o. (1.17)

After inserting the relation(1.16 in Egs.(1.12 and (1.13
one has the following set of slow equations:

Cq, andRy, are still slower tharC™ andR" and are affected
at most by time-reparametrizations, an assumption whose
consistency has to be checkex{t) remains constant and

equal toz” throughout the cycle. The functiop™(t) stabi-
lizes to the temperature-independent vajgesoon after each
temperature change on a time scale that is very short com-
pared to any aging times since it is the relaxation of a one
time quantity?® Apart from a short pulse, proportional to
x(t) — xo, the slow equation feels the effect of the tempera-
ture cyclingonly through the small matching terrhat we
collected on the left-hand side of Eq4.12 and (1.13 un-

der the name of “small.” These affect only
reparametrization® consistently with the initial assumption
in the discussion.



PRB 60 MEAN-FIELD THEORY OF TEMPERATURE CYCLING . .. 927

Hence, theslow partsof the correlation and response are jng time t\',EVFF: t,—ty. Finally, at timet, the fast model is

modified by the cycling through a smooth change in theprought again to the critical temperatufe, and it rapidly
speed of evolution, i.e., #me-reparametrizationThis is  reequilibrates. The fast part has only made an excursion into
more precisely stated by studying the change of the slowts glassy phase through its quenchTo but, since it has
parts in each time scale. With this purpose, let us denotgeen taken back to its critical temperatiré, it has quickly
Cl'(t,t') andR] (t,t") the correlation and response func- forgotten it>
tion in the time-scale labeled for a system aging at con- One concludes that there is then an effective waiting time
stant temperatur@*. In the presence of a temperature cyclet="
betweent, andt, each of these is modified according to
_+ —+EFF -

CSYCLE(t,t,)=CZ+(ha(t),ha(t')), t+Hty— =t (ATt t5,t,)<t,, 2.1
CYCLE. « +r T , that characterizes the evolution of the whole system, with the
Ry () =duh, (1R, (ha(t),hy(t")). time spent in the lower temperature partially contributing to
tEFFRAT b5, 1).
d- Since the effects of negative cooling cycles are small, the
fraction of time spent al~ needs to be rather large to ob-
serve them. Figure 1 displays a set of curves measured after

expect ;h,(t)~1 for t>t, when the system forgot the p_erformin_g n_egative temperature cyclings of diff_erent mag-
cycle, in Lélccordance with theveak long-term memory nitude (thin lineg and compares them to four isothermal
11,2325 Furthermore, we expect that during the period CUrVeS associated to smaller waiting times. It is clear from

roperty: ; ;
propefty the figure that the curves associated to each temperature cy-

ti<t<t, the dynamics slows dowrg;h,(t)=1, if we cool cling can be completely superposed to a reference isothermal
down the sample, while the dynamics acceleratgs,,(t
b y (1) curve (compare, for example, the curve f&T=T —T"

>1, if we heat the sample. In E{L.21) we have genericall . . .
P .29 g y =-0.3 K, t;=15 min, t,=1015 min, andt,,=1030 min

denoted the reparametrized slow paft=". . . .
P ) p@@o with the isothermal curve fdr,= 100 min). The system kept
Thg fast equation$1.9)—(1.11) deco_uple from.the slow a memoryof the evolution during,; when the temperature is
equation and correspond to an effective model in a constankiseq hack to its original valug*. The time spent at the
field, since one can check that ttessentially constahterm | temperature has a partial effect. There is an effective

z(t) that appears in the fast equation can be looked upon agajting timet5 for the full system that verifies Eq2.1).

the effect of an effective magnetic field. In fadt is the  The effective waiting timetE™ decreases when one cools

critical temperature of the model in the presence of such gown the system to a lower temperature until the effect of

field. . . the time spent at the lower temperature becomes completely
The temperature of the effective fast model is cycled fo"negligible. In the experimental curves this happensAdr

lowing any of the two experimental protocols between its_ ~ 1"k |4 this case, the effective aging time is simply

subcritical temperaturd@ ~ and its critical temperatur@ ™. tEFF_t +t. —t.=30 min

This is why the effect of the temperature change is stronger” 1w 2 '

on the fast part of the correlations and heavily depends on

the sign of the change. B. Positive temperature cycling
The structural-glass models in whick’(c)) ,1/2 IS con- In this case the straight line in Fig. 3 moves first anti-

cave have a quite simpler isothermal dynamic behavior bez|ockwise and then clockwise, exposing at the end of the

low its transition. They decay in only two two-time scales

. X ) cycle the bold segment of the curve.
with a first stationary decay towardf, and a subsequent ~ ag aiready discussed, the slow part of the correlation is

slower nonstationary decay towards zero. For these mode[;my modified by a time reparametrization and, since the

we are not allowed to separate the correlation and responggmperature excursion has a short duration, it is hardly af-
in the additive way proposed in E(L.7) for anyqo and all  tocted at all.

the analysis presented in this section simply does not apply. Tne protocol is, from the point of view of the fast model,

as follows: at timet=0 it is quenched to a subcritical tem-
Il. COMPARISON WITH THE EXPERIMENTAL RESULTS peratureT ~ and let age untit,. At this time it is taken to its

Let us now discuss the experimental TRM curves in thecritical.tempergtureT* unti timg t?’ fu'IIy reinitializing its .
light of these results. age. Fllnally, itis quenchgd again into its glassy phase at time
t, and it starts aging again. It is then clear that the fast model

has an agef =t,—t,<t,,.

The observed TRM curves are then a superposition of a

The straight line in they vs C curve presented in Fig. 3 slow part, which is essentially unaffected by the temperature
moves clockwise and then anticlockwise to its original posi-cycle, plus a fast part that is completely reinitialized. The
tion. At the end of the cycle the bold part of the curve dis-relative magnitude of fast and slow parts depends upon the
appeared from thege vs C plot. At t=0 the fast model is height of the positive excursion. Thus, for givan, the
quenched down to its critical temperatufé, and rapidly largerT™ the faster the total decay of the TRM as shown in
equilibrates. At timed, it is further quenched to its subcriti- Fig. 2 where the TRM curves for temperature cyclings of the
cal temperaturd ~ and starts aging with the effective wait- same duration but different heights are displayed.

Though the calculation oh,(t) is beyond our analytical
means, we know that it has three distinct behaviors depen
ing on the relation betweeti,t andt,,t,. Obviously,h(t)

=t if t<ty; h,(t) has inflections arount} andt,; and we

A. Negative temperature cycling
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Having the whole decay of the TRM curves as a function If we now assume that on turning on the field the fast
of the time differenca —t,, one can discuss them in great evolution remains essentially unaltered, while the slow evo-
detail. One easily notices from the curves in Fig. 2 that ondution in qu remains slow and finally tends 1, (as in a
cannot associate an effective waiting time to the full TRMconstant field cagewe can separate out the fast part. The
decay after the cycling, consistently with tadditive solu- {5t equations so obtained are just like H4s9)—(1.11) with
tion obtained analytically for the rejuvenation process. additional terms whichjust as in the temperature cycling

Within the analytic framework, the Iarger the temperaturecase happened for the slow parwe constant up to, and
T", the smaller thej, andC, , implying that the fast part of |ong after the field jump. The difference is that now the
the correlation and response that is completely refregluiedi  “bump” in this otherwise constant factors and terms is no
hence the total rejuvenatipis larger, as we see in Fig. 2. longer short-lasted with respect to the fast times, precisely

It has been stressBthat the TRM curve after a positive because it comes from the slow equation and from the term
temperature cycle at first coincides with the isothermal TRM(3.1), which has waiting time effects itself.
curve of waiting timet,,~t—t,, the difference only becom- Hence, the initial assumption that a decoupled equation
ing manifest after rather long times. If one compares thdor the fast part could be found does not hold, at least in the
TRM curves in Fig. 2 for several values @ with the  manner it did for the slow parts in the temperature cycling
isothermal curve fot,,= 30 min, one observes that the de- case. The fast parts must be altered by the field cycling in an
parture from this reference curve is achieved later for thémportant way implying no big difference between switching
largerT*s. on and off the field.

This is precisely what we would expect from the many-
scales pictureTwo protocols with the samé&™ and slightly  IV. PROPOSAL FOR EXPERIMENTAL MEASUREMENTS

different high temperatures* andT*' (associated witfy,
andqp) will differ in the refreshment of the scales 6fand to perform independent measurements of the time correlation

M with gy<C<qp, and these are slower the small.  f the magnetization nois€(t,t,) and the integrated re-
Hence, the difference in TRM between the two pmtoco'SsponseX(t,tW) at a given temperature and field. One @an

The obvious direct way of constructing thevs C plot is

. . S,
will only show up at long times, the highdr". posteriori check the independence on temperature and field
This effect should become more and more marked fokyf these curves.
longer experiments. If the assumption of independence of temperature and
field of the y vs C curve in its aging part holds true, this
lll. FIELD CYCLINGS curve can be simply obtained in a manner that is much more

dsimple experimentally as it does not involve noise measure-
ents and only ac susceptibilities. Indeed, let us define the
antityy(T,h) as follows:

Field cyclings at constant temperature are known to yiel
rather large reinitializations in the out of phase susceptibilit)/nu
both on increasingnd on decreasing the fief}:32Although 9

we have not done a full analysis for the field cycling experi- Ug—9ea(T)
ments, we may hint the reason why the arguments we used to y(T,h)=lim lim X'(w,tw)zf- 4.7
justify a large asymmetry in temperature jump experiments 0—0 ty—o

do not carry through unaltered to the field cycling case.
The effect of a time-dependent fiehqt) on the dynamic
equations is to add a term

The Edwards-Anderson parametgia(T) would be then in-
dependent of the field below the de Almeida—Thouless line
(or “pseudo de Almeida—Thouless line” if it is only a dy-
namic crossoverand

y(T,h)=y(T). 4.2

to Eq.(1.3), and a termA(t,t) to Eqg. (1.5). In the constant The parameteqy corresponds to

field situation, these terms have the effect of eliminating the )

slowestscales. They vs C plot of Fig. 3 for a constant field qa= lim gea(T). 4.3
h coincides with the one foh=0 but terminates at an 0

h-dependent pointd, xo). The most outstanding effect of Equation(4.2) can be easily checked experimentally.

A(t,t’)=h(t)fot,drh(T)R(t’,T) 3.1)

switching on(switching off) a field is then to eraséreate Another related test is to measure the dc susceptibility
the slowest scales between x0) and (g, o). Note that

this is already very different from the effect of temperature X“(T,h)= lim lim x(t,t,) (4.9
changes that mainly affect tHastestscales in the problem. tw—oe 1=

One could then ask if a system that has been evolving &t constant fielch, presumably obtainable from the field-
zero field and is suddenly taken to finltedoes preserve the cooled experimental dafd,and check if it is independent of
fast partSCF and RF without reinitialization(just the mirror temperature everywhere below tr(]pseuda de Almeida—
image of what anncreaseof temperature dogsin fact, we  Thouless line. There is quite a bit of evidence in this direc-
can propose that such a solution exists, and see where thign in the literature®
argument takes us. We hence assume a separation into fastone can then extract the curved part of ghes C plot of

and slow parts of the correlation and response just as in Egrig. 3, that we called(C) from the set of equations
(1.7 with the valueqq, chosen to be the smallest possible

correlation for a fieldh. C=qq—Ty(T),
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f(C)=y(T), (4.5 The derivation in this paper, on one hand, captures the
, main features of the experiments and on the other hand dem-
usingT as a parameter. L B onstrates the difference in the behavior of glasses and spin
Once(and if) the validity of the approximation is verified, ga5ses. Although our calculation has relied on a particular
one can use thg vs C plot so obtained to check the consis- naqe| we believe that it will carry through to all classical
tency of the present reasoning for the cycling experimentSyean-field spin-glass models.
For example, in the positive cycling experiments the differ-  1,ore is, however, a problem. A satisfying scaling of the
ence in TRM between the isothermal and the cycled eXperi(isotherma] experimental susceptibility and TRM dagi
ment just after the cycle should be equal to the difference "?nultaneouslwvas presented in Ref. 20. Surprisingly enough,
height in they vs C plot of the intgrsgction of the straight {pis scaling has only two time regimes as opposed to the
lines corresponding t& andT " (this is best seen by look- many time scales that we here invoked to reproduce analyti-
ing at Fig. 3. This nontrivial relation can be checked experi- ¢4y the experimental results for temperature cyclings within
mentally. mean field. If the scaling used in Ref. 20 turns out to hold for
all times then the hierarchical scenario would not apply and
V. CONCLUSIONS some drastic modification of the present understanding must

While it is gratifying to be able to reproduce the qualita- be envisaged.
tive experimental features analytically, we believe one
should not hasten to declare that this is evidence for the
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