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Mean-field theory of temperature cycling experiments in spin glasses
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We study analytically the effect of temperature cyclings in mean-field spin glasses. In accordance with real
experiments, we obtain a strong reinitialization of the dynamics on decreasing the temperature combined with
memory effects when the original high temperature is restored. The same calculation applied to mean-field
models of structural glasses shows no such reinitialization, again in accordance with experiments. In this
context, we derive some relations between experimentally accessible quantities and propose experimental
protocols. Finally, we briefly discuss the effect of field cyclings during isothermal aging.
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Glasses are characterized by having extremely slow re
ations and by the strong dependence of their behavior u
the ~‘‘waiting’’ ! time elapsed since their preparation. T
latter property is usually calledphysical aging.

A means to study the dynamics in the glassy phase
more detail consists in following the evolution of the samp
under a complicated temperature history. The protocols
have been more commonly used include temperature
clings within the low temperature phase.

The results for different types of glasses are qu
different.1–9Spin glasses show the puzzling phenomenon
reinitialization of aging following a decrease in temperatu
combined with the recall of the situation attained before
negative jump when the original high temperature
restored.2,4 Remarkably, when similar protocols were appli
to structural glasses, e.g., in dielectric constant measu
ments of glycerol by Leheny and Nagel,9 no substantial
reinitialization was observed.10

This difference in the effect of temperature changes
spin and structural glasses is a fact that any generic theo
glasses is expected to explain.

Different groups interpreted the behavior of spin glas
under temperature cyclings during aging as evidence for b
the droplet5,7 and the hierarchical6 pictures of the dynamics
~the former with some extra refinement7 with respect to the
original versions of the eighties11!.

The hierarchical dynamic picture12,6 is a heuristic way to
think about the results from positive and negative cyclin
inspired in the organization of equilibrium states in the Pa
solution of mean-field spin glasses, such as the Sherring
Kirkpatrick model. It is assumed that spin glasses hav
large number of metastable states that are organized
hierarchical fashion just like the equilibrium states. It is th
proposed that the system is composed of~independent! sub-
systems whose dynamics is given by the wandering in su
landscape. An average over subsystems has to be invok
order to obtain smooth results as observed in experimen

A concrete realization of a hierarchical dynamic syst
can be made with the trap models.13–15 These models have
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been solved analytically in isothermal conditions.15 Though a
full analytic description of their dynamics in the presence
temperature cyclings is not available yet, a careful discuss
of their effects yields very encouraging results.15

Surprisingly enough, the main features of the cycling e
periments have never been derived analytically from mic
scopic models, while the numerical evidence16–19 is incon-
clusive. In this paper we shall show analytically how the
effects arise in mean-field models of spin glasses, and w
they are absent in mean-field models of structural glas
One of the questions that will receive a clear answer is w
the effects should be hardly observable at very short tim
such as are inevitably involved in simulations.

We shall consider in detail the particular class of tempe
ture cycling experiments in which the thermoremanent m
netization ~TRM! is measured. Similar conclusions hav
been extracted from the out of phase susceptibility (x9) data
at fixed frequency.2,20

There is however a slight difference between TRM and
x9 measurements. In the former the TRMafter the cycling is
recorded and, since measurements are directly performe
the time domain, one has access to very large time sc
after tw . In the latter case thex9 is measuredduring and
after the cycling. This allows us, for example, to clearly s
the large reinitialization of the dynamics provoked by t
negative jump.2 The price to pay is that in ac measuremen
the frequencies are necessarily small compared to the inv
of the measuring time. One then has access to relativ
small time differences.

In the TRM experiments of Refregieret al.2 the system is
quenched to a subcritical temperature under a small field
is used as a probe, for which the linearity in the respons
checked within the same experiment.

In the negative temperature cycling experiment~see the
inset of Fig. 1!, the system is quenched att50 to a tempera-
tureT1. At a timet1 the temperature is dropped toT2 and at
a later timet2 the temperatureT1 is restored. The fraction o
time spent atT2 is rather large.
922 ©1999 The American Physical Society
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The resulting state of the sample after the tempera
cycling is investigated by cutting off the field at a timetw
soon aftert2 and by recording the subsequent decay of
TRM. The results for differentDT are shown in Fig. 1: The
TRM curves for eachDT can be superposed to the TR
curves obtained at constantT1 but with an effective waiting
time t11tw2t2<tw

EFF(DT,t1 ,t2 ,tw)<tw . Note that the first
inequality implies that the system remembers the evolu
performed at the higher temperatureT1 while the time spent
at the lower temperatureT2 is partially ~or even totally!
erased.

Once the negative cycle is over,its main effect is to slow
down the aging process. This result is very intuitive and will
hold for almost any system with slow dynamics activated
thermal noise.

The real surprise appears when a cycle of positive te
perature~inset of Fig. 2! is applied to spin glasses. Here th
procedure is the inverse: the system is quenched to a
peratureT2 up to a long timet1. This is followed by a short
period at temperatureT1 from t1 to t2, at whichT2 is re-
stored. As before, the field is cut off at a later timetw and the
subsequent decay of the TRM is recorded.

The result is shown in Fig. 2. The higher the upward pu
in temperature, the generally younger the system seems
unlike in the negative cycling case,the effect cannot be de
scribed with an effective waiting time.

Note that in the simplest cases of aging through activa
processes~as for example the coarsening of the random fi
Ising model! the effect would be the reverse: the temperat
pulse would quicken the activated processes and help ag
Refreshment would arise only if the temperature pulse
high enough to take the system above the transition.

Indeed, the solution for mean-field spin glasses discus
below involves anadditive separation of the TRM curve
MTRM5MREP1MF. In the positive temperature cycling th
‘‘slow’’ component MREP is not affected by the pulse whil
the ‘‘fast’’ componentMF is taken to its effective critica
temperature and is thus completely reinitialized. The am
tude of MF (MREP) is larger ~smaller! for higher ~lower!

FIG. 1. The TRM curves after a long negative cycle sketched
the inset. The temperature at which the relaxation is measure
T512 K50.72 Tg . The bold lines are reference curves corr
sponding to waiting at a constant temperature of 12 K duringtw

510, 30, 100, and 1000 min. The thin lines are obtained afte
temperature cycling of 1000 min and temperature jumpsDT50.1,
0.3, 0.5, and 1 K. The data is courtesy of Vincent, see Ref. 2.
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temperature pulses. In the negative temperature cycling
is essentially probing only the slow componentMREP that is
slowed down by the effect of the lower temperature exc
sion.

We shall show that the difference in the effects of posit
and negative temperature changes is present in the m
field version of spin-glass models while it is absent in t
models thought to be a mean-field caricature of structu
glasses. The relevant difference between these models
sides in their dynamic behavior below the transition. T
former decay in infinitely many time scales while the latt
do in only two. ~For an unambiguous definition of tim
scales in aging problems see Ref. 21.! The explanation we
give here is based on this difference. We choose to discus
detail the magnetization behavior although the susceptib
data, in particular the reinitialization after a negative jum
can also be understood within this framework.

Another common way to test the dynamics in the glas
phase is to apply magnetic field steps during aging at c
stant temperature. In these experiments no important dif
ence is obtained between switching on and switching off
dc field. We shall briefly discuss this result within the sam
analytic framework.

The organization of the paper is the following. In Sec
the main features of the analytic approach are described
Sec. II the temperature cycling experiments are explai
within this analytic approach. The results of field cyclin
experiments are confronted to this approach in Sec. III. S
tion IV is devoted to some experimental proposals and S
V to the conclusions.

I. THEORETICAL APPROACH

In order to understand the effect of temperature cyclin
on the relaxation of the TRM and out of phase susceptibi
of mean-field spin-glass models we have to understand
time dependence of the autocorrelation and response f
tions:

n
is

a

FIG. 2. The TRM curves after a short positive cycle sketched
the inset. The relaxation is obtained atT512 K50.72 Tg . The
bold lines are reference curves obtained after isothermal waitin
12 K for tw530 and 1000 min. The thin lines are the decay of t
TRM after a cycle of 5 min andDT50.25, 0.5, 0.75, 1, 1.5, and 2.
K. Data is courtesy of Vincent; see Ref. 2.
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C~ t,t8![
1

N (
i 51

N

^si~ t !si~ t8!&,

R~ t,t8![
1

N (
i 51

N
d^si~ t !&

dhi~ t8!
U

h50

. ~1.1!

For mean-field models, one obtains a set of coupled eq
tions that entirely determine the dynamics of these two-po
functions. The thermoremanent magnetizationMTRM(t,tw) at
time t, after cutting off a small field at timetw , is then
expressed in terms of the integrated susceptibilityx(t,tw):

x~ t,tw!5E
tw

t

dt R~ t,t!,

MTRM~ t,tw!5h@x~ t,0!2x~ t,tw!#, ~1.2!

with h the strength of the small dc field applied.

A. The model

For definiteness let us consider the toy model consis
of N continuous spins with a spherical constraint( i

Nsi
2(t)

5N and a random energyV(s) correlated asV(s)V(s8)
5Nn(s•s8/N). The statics22 as well as the constant temper
ture dynamics of this model have been solved in all de
~see Refs. 23–25!. Two types of models with potential cor
relations such that 1/An9(C) is, for all 0<C<1, concave
~convex! yield very different statics22 ~one step replica sym
metry breaking versus full replica symmetry breaking! and
dynamics24 ~first order versus second order dynamical tra
sitions! and correspond to mean-field versions of structu
and spin glasses, respectively. Examples that have bee
tensively studied in the literature are the ‘‘p53 spherical
model’’ for glasses,23 with n(C)51/2C3 @and „n9(C)…21/2

concave# and the ‘‘p52 plus p54 model’’ for spin
glasses,26 with n(C)51/2(c1C21c2C4) and c1 andc2 two
constants such that„n9(C)…21/2 be convex.

The exact equations of motion forC and R at times t
.t8 are25

]C~ t,t8!

]t
52z~ t !C~ t,t8!1E

0

t8
dt D@C~ t,t!#R~ t8,t!

1E
0

t

dt S@C~ t,t!#C~t,t8!, ~1.3!

]R~ t,t8!

]t
52z~ t !R~ t,t8!1E

t8

t

dt S@C~ t,t!#R~t,t8!,

~1.4!

z~ t !5T~ t !1E
0

t

dt„D@C~ t,t!#R~ t,t!1S@C~ t,t!#C~ t,t!…,

~1.5!

with S(t,t)[D8@C(t,t)#R(t,t), D8@C#5]CD@C#, and
D@C#5n8(C). The functionz(t) is a Lagrange multiplier
that enforces the spherical constraint. We shall concent
on the spin-glass-like case that corresponds to a concave
dom energy correlation. We shall briefly discuss the str
a-
t

g

il

-
l

ex-

te
an-
-

tural glasslike case at the end of this section and explain w
it does not show large asymmetry effects. Let us recall
constant temperature solution for the mean-field spin-g
models.

One of the salient features of the relaxation of mean-fi
spin glasses below the dynamic critical temperatureTd is the
presence of infinitely many~two-time! scales organized in a
hierarchical way. In the low temperature phase the two-po
correlation and response depend on the two times involv
The form of the relaxation is usually analyzed by looking
these functions at fixed~but large! waiting time in terms of
the time differencet5t2tw . The correlation and respons
functions have a first fast stationary relaxation; for instan
the correlation rapidly decays from 1 toqEA , the Edwards-
Anderson parameter. This time-scale is usually called
FDT regime, for reasons that will become clear below. F
longer time differences the relaxation continues at a waiti
time dependent speed. Furthermore, if one imagines the
sequent decay of the correlation as taking place in infinite
mal steps, each step takes much longer than the prev
one. Indeed, in the limit of large waiting time each infinites
mal step implies a period of time that is infinitely longer th
the previous one and these time scales get completely s
rated. The same separation of time scales characterize
decay of the response.

The sharp separation of time scales allows us to split
correlations in a fast partCF(t,t8), going from one at equa
times toq0 at very distant times, and a slow partCq0

(t,t8),

going from Cq0
(t,t)5q0 and tending to zero at even mor

distant times. The point at which we split the correlationis
chosen arbitrarily provided it satisfiesq0<qEA . Corre-
spondingly we separate the response in a fast and a slow
We then have

C~ t,t8!5Cq0
~ t,t8!1CF~ t,t8!2q0 , ~1.6!

R~ t,t8!5Rq0
~ t,t8!1RF~ t,t8!. ~1.7!

SinceCq0
(Rq0

) is infinitely slower thanCF (RF) their time
evolution can be characterized as follows: for all times su
thatCF changesCq0

is just constant and equal toq0. Instead,

in the time regime in whichCq0
variesCF has achieved its

asymptotic valueq0 and does not further evolve.
Note that the time-scale separation is achievedonly in the

large waiting-time limit. This is the crucial ingredient for th
argument we shall use to show that Eqs.~1.3!–~1.5! capture
the phenomenology of temperature cyclings. We believe
the effects disussed in the Introduction have not been cle
observed numerically because the times explored were in
tably very short and the time scales could not be sufficien
separated.16–18

As we shall show, the change in time dependence of
fast and slow parts ofC andR under a temperature jump ar
very different. The slow partsCq0

and Rq0
are modified

through a smooth time reparametrization. The fast partsCF

andRF behave as the correlation and response of an effec
model with a critical temperature precisely equal toT1. The
temperature jumps have a strong effect on the fast parts
this effect is very different depending on the sign of t
change.
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The other salient feature of the low-temperature dynam
of mean-field spin glasses is the violation of the fluctuatio
dissipation theorem~FDT! and, most importantly, the gene
alized form that the relation between correlation and
sponse takes.

A very useful way to quantify the fluctuation-dissipatio
relation that holds out of equilibrium is given by the relatio
between the integrated responsex(t,tw) and the correlation
C(t,tw).21 At fixed and largetw , one constructs a plot o
x(t,tw) vs C(t,tw) using t as a parameter. This is shown
Fig. 3 for two temperaturesT1 and T2. For each tempera
ture thex vs C curve consists of two parts.

A straight line of slope minus the inverse temperatu
This corresponds to the fast time regime where the F
holds andC decays from 1 toqEA . We call this time regime
the FDT regime.

A curve given by

f ~C!5
1

An9~C!
. ~1.8!

This corresponds to the slower time regimes where the F
is violated andC decays fromqEA to 0 in a waiting-time
dependent manner.

For temperatureT1 the x vs C plot follows the straight
line of gradient21/T1 from (1,0) to (q0 ,x0) and then the
curve f (C) up to (0,x`). For temperatureT2 it is given by
the straight line of gradient21/T2 from (1,0) to (q1 ,x1)
and then the curvef (C) up to (0,x`). The Edwards-
Anderson parameters areq1 and q0, respectively. The two
extreme cases areT50 andT5Tc ~the critical temperature!.
The former corresponds to a vertical line starting at (1
that matches the curvef (C) at C51 and then follows it up

FIG. 3. Sketch of thex vs C plot. The two straight lines have
slopes21/T1 and 21/T2 and correspond to the FDT result. Th
curve is temperature independent and it is given by@n9(C)#21/2.
The bold segment is the part erased~created! when decreasing~in-
creasing! the temperature. See text for more details.
s
-

-

.
T

T

)

to (0,x`). Thex vs C plot for the critical temperature is jus
a straight line linking (1,0) and (0,x`) with a slope
21/Tc .

The remarkable fact of this family of models is that th
curved segment from (q0 ,x0) to (0,x`) is the same for the
temperatures belowT1. This is not a general property o
mean-field spin-glass models. It holds exactly for the fam
of models here considered but only approximately for
Sherrington-Kirpatrick model. In the static replica approa
the corresponding property of the functionx(q) is called the
‘‘Parisi-Toulouse approximation.’’27 The numerical evidence
seems to show that this approximation works very well
finite dimensional spin glasses,28 at least within numerically
accessible times.

The analytic argument we shall develop below can
most easily pictured by considering Fig. 3. The range
correlation and response values in which the system has
ing dynamics is given by the curved part of the plot.On
changing the temperature, the straight line corresponding
the fast relaxation moves clockwise and anticlockwise lik
windshield-wiper, creating and destroying the bold segm
(q0 ,x0)→(q1 ,x1), thus restarting and erasing the agin
scales corresponding to this interval.

B. Analysis

In the limit of large waiting times we can separate t
different time regimes as follows. The equations for thefast
parts of the decay are

]CF~ t,t8!

]t
52„zF~ t !1 z̄~ t !…CF~ t,t8!

1E
0

t8
dt D@CF~ t,t!#RF~ t8,t!

1E
0

t

dt D8@CF~ t,t!#RF~ t,t!CF~t,t8!1 z̄~ t !,

~1.9!

]RF~ t,t8!

]t
52„zF~ t !1 z̄~ t !…RF~ t,t8!

1E
t8

t

dt D8@CF~ t,t!#RF~ t,t!RF~t,t8!,

~1.10!

zF~ t !5T~ t !1E
0

t

dt„D@CF~ t,t!#

1D8@CF~ t,t!#CF~ t,t!…RF~ t,t!. ~1.11!

The equations for theslow partsof the decay are
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small52S zF~ t !1 z̄~ t !

2E
0

t

dt D8@CF~ t,t!#RF~ t,t! DCq0
~ t,t8!

1xF~ t8!D@Cq0
~ t,t8!#

1E
0

t8
dt D@Cq0

~ t,t!#Rq0
~ t8,t!

1E
0

t

dt D8@Cq0
~ t,t!#Rq0

~ t,t!Cq0
~t,t8!,

~1.12!

small52S zF~ t !1 z̄~ t !2D8@Cq0
~ t,t8!#xF~ t8!

2E
0

t

dt D8@CF~ t,t!#RF~ t,t! DRq0
~ t,t8!

1E
t8

t

dt D8@Cq0
~ t,t!#Rq0

~ t,t!Rq0
~t,t8!,

~1.13!

z̄~ t !5E
0

t

dt„D@Cq0
~ t,t!#1D8@Cq0

~ t,t!#Cq0
~ t,t!…Rq0

~ t,t!.

~1.14!

The input of the slow scale on the fast one is given by
one-time quantityz̄(t). The fast scale influences the slow o
through three factors:zF(t) defined in Eq.~1.11!, xF(t) and
x̃F(t) defined as

xF~ t !5E
0

t

dt RF~ t,t!,

x̃F~ t !5E
t

`

dtRF~t,t !, ~1.15!

and the last term in the parentheses of Eqs.~1.12! and~1.13!.
One can eliminate the dependence on this last factor by u
the relation

small;2S zF~ t !1 z̄~ t !2E
0

t

dt D8@CF~ t,t!#RF~ t,t! D q0

1xF~ t !D@q0#1 z̄~ t ! ~1.16!

that follows from Eq.~1.12! evaluated at

t8→t ⇒ Cq0
~ t,t8!→q0 . ~1.17!

After inserting the relation~1.16! in Eqs. ~1.12! and ~1.13!
one has the following set of slow equations:
e

ng

small52
1

q0
„z̄~ t !1xF~ t !D@q0#…Cq0

~ t,t8!

1E
0

t8
dt D@Cq0

~ t,t!#Rq0
~ t8,t!

1xF~ t8!D@Cq0
~ t,t8!#

1E
0

t

dt D8@Cq0
~ t,t!#Rq0

~ t,t!Cq0
~t,t8!,

~1.18!

small52
1

q0
„z̄~ t !1xF~ t !D@q0#…Rq0

~ t,t8!

1x̃F~ t8!D8@Cq0
~ t,t8!#Rq0

~ t,t8!

1E
t8

t

dt D8@Cq0
~ t,t!#Rq0

~ t,t!Rq0
~t,t8!,

~1.19!

together with Eq.~1.14! for z̄(t). The effect of the fast scale
on the slow one is then only given byzF(t), xF(t), and
x̃F(t).

At constant temperature the quantitiesz̄(t), xF(t), and
x̃F(t) tend to the following limits:

z̄~ t !→ z̄`, xF~ t !→x0 , x̃F~ t !→x0 . ~1.20!

As a consequence of the independence of temperatur
x(C) if C,qEA , see Fig. 3,neither z̄` nor x0 depend on the
temperature.

Consider now the temperature cycling experiment. W
consider the effect on the slow and fast parts separately
denote the correlation after the cycle

CCYCLE~ t,t8!5Cq0

REP~ t,t8!1ĈF~ t,t8!. ~1.21!

The first term is the slow part while the second is the f
part. Similarly, for the TRM:

MCYCLE~ t,t8!5Mq0

REP~ t,t8!1M̂F~ t,t8!. ~1.22!

Under the assumption that in the presence of the cyc
Cq0

andRq0
are still slower thanCF andRF and are affected

at most by time-reparametrizations, an assumption wh
consistency has to be checked,z̄(t) remains constant and
equal toz̄` throughout the cycle. The functionxF(t) stabi-
lizes to the temperature-independent valuex0 soon after each
temperature change on a time scale that is very short c
pared to any aging times since it is the relaxation of a o
time quantity.29 Apart from a short pulse, proportional t
x(t)2x0, the slow equation feels the effect of the tempe
ture cyclingonly through the small matching terms, that we
collected on the left-hand side of Eqs.~1.12! and ~1.13! un-
der the name of ‘‘small.’’ These affect only
reparametrizations,25 consistently with the initial assumptio
in the discussion.
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PRB 60 927MEAN-FIELD THEORY OF TEMPERATURE CYCLING . . .
Hence, theslow partsof the correlation and response a
modified by the cycling through a smooth change in
speed of evolution, i.e., atime-reparametrization. This is
more precisely stated by studying the change of the s
parts in each time scale. With this purpose, let us den

Ca
T1

(t,t8) and Ra
T1

(t,t8) the correlation and response fun
tion in the time-scale labeleda for a system aging at con
stant temperatureT1. In the presence of a temperature cyc
betweent1 and t2 each of these is modified according to

Ca
CYCLE~ t,t8!5Ca

T1
„ha~ t !,ha~ t8!…,

Ra
CYCLE~ t,t8!5] t8ha~ t8!Ra

T1
„ha~ t !,ha~ t8!….

Though the calculation ofha(t) is beyond our analytica
means, we know that it has three distinct behaviors depe
ing on the relation betweent8,t and t1 ,t2. Obviously,h(t)
5t if t,t1 ; ha(t) has inflections aroundt1 and t2; and we
expect ] tha(t);1 for t@t2 when the system forgot th
cycle, in accordance with theweak long-term memory
property.23,25 Furthermore, we expect that during the peri
t1,t,t2 the dynamics slows down,] tha(t),1, if we cool
down the sample, while the dynamics accelerates,] tha(t)
.1, if we heat the sample. In Eq.~1.21! we have generically
denoted the reparametrized slow partCq0

REP.

The fast equations~1.9!–~1.11! decouple from the slow
equation and correspond to an effective model in a cons
field, since one can check that the~essentially constant! term
z̄(t) that appears in the fast equation can be looked upo
the effect of an effective magnetic field. In fact,T1 is the
critical temperature of the model in the presence of suc
field.

The temperature of the effective fast model is cycled f
lowing any of the two experimental protocols between
subcritical temperatureT2 and its critical temperatureT1.
This is why the effect of the temperature change is stron
on the fast part of the correlations and heavily depends
the sign of the change.

The structural-glass models in which (n9(c))21/2 is con-
cave have a quite simpler isothermal dynamic behavior
low its transition. They decay in only two two-time scal
with a first stationary decay towardsqEA and a subsequen
slower nonstationary decay towards zero. For these mo
we are not allowed to separate the correlation and resp
in the additive way proposed in Eq.~1.7! for any q0 and all
the analysis presented in this section simply does not ap

II. COMPARISON WITH THE EXPERIMENTAL RESULTS

Let us now discuss the experimental TRM curves in
light of these results.

A. Negative temperature cycling

The straight line in thex vs C curve presented in Fig. 3
moves clockwise and then anticlockwise to its original po
tion. At the end of the cycle the bold part of the curve d
appeared from thex vs C plot. At t50 the fast model is
quenched down to its critical temperatureT1, and rapidly
equilibrates. At timet1 it is further quenched to its subcriti
cal temperatureT2 and starts aging with the effective wai
e
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ing time tw
EFF5tw2t1. Finally, at timet2 the fast model is

brought again to the critical temperatureT1, and it rapidly
reequilibrates. The fast part has only made an excursion
its glassy phase through its quench toT2 but, since it has
been taken back to its critical temperatureT1, it has quickly
forgotten it.30

One concludes that there is then an effective waiting ti
tw
EFF

t11tw2t2<tw
EFF~DT,t1 ,t2 ,tw!<tw ~2.1!

that characterizes the evolution of the whole system, with
time spent in the lower temperature partially contributing
tw
EFF(DT,t1 ,t2 ,tw).

Since the effects of negative cooling cycles are small,
fraction of time spent atT2 needs to be rather large to ob
serve them. Figure 1 displays a set of curves measured
performing negative temperature cyclings of different ma
nitude ~thin lines! and compares them to four isotherm
curves associated to smaller waiting times. It is clear fr
the figure that the curves associated to each temperature
cling can be completely superposed to a reference isothe
curve ~compare, for example, the curve forDT5T22T1

520.3 K, t1515 min, t251015 min, andtw51030 min
with the isothermal curve fortw5100 min). The system kep
a memoryof the evolution duringt1 when the temperature i
raised back to its original valueT1. The time spent at the
low temperature has a partial effect. There is an effect
waiting time tw

EFF for the full system that verifies Eq.~2.1!.
The effective waiting timetw

EFF decreases when one coo
down the system to a lower temperature until the effect
the time spent at the lower temperature becomes comple
negligible. In the experimental curves this happens forDT
521 K. In this case, the effective aging time is simp
tw
EFF5t11tw2t2530 min.

B. Positive temperature cycling

In this case the straight line in Fig. 3 moves first an
clockwise and then clockwise, exposing at the end of
cycle the bold segment of the curve.

As already discussed, the slow part of the correlation
only modified by a time reparametrization and, since
temperature excursion has a short duration, it is hardly
fected at all.

The protocol is, from the point of view of the fast mode
as follows: at timet50 it is quenched to a subcritical tem
peratureT2 and let age untilt1. At this time it is taken to its
critical temperatureT1 until time t2, fully reinitializing its
age. Finally, it is quenched again into its glassy phase at t
t2 and it starts aging again. It is then clear that the fast mo
has an agetw

EFF5tw2t2,tw .
The observed TRM curves are then a superposition o

slow part, which is essentially unaffected by the temperat
cycle, plus a fast part that is completely reinitialized. T
relative magnitude of fast and slow parts depends upon
height of the positive excursion. Thus, for givenT2, the
largerT1 the faster the total decay of the TRM as shown
Fig. 2 where the TRM curves for temperature cyclings of t
same duration but different heights are displayed.



ion
at
n
M

r

e
M

-
th

e-
th

ny

ol

fo

el
lit

ri
d
nt

th

f

re
.
g

E
le

st
vo-

he

g

e
no
ely

erm

tion
the
ng
an
g

tion
-

eld

and
s
ore
re-
the

e
-

-
f

c-

928 PRB 60LETICIA F. CUGLIANDOLO AND JORGE KURCHAN
Having the whole decay of the TRM curves as a funct
of the time differencet2tw one can discuss them in gre
detail. One easily notices from the curves in Fig. 2 that o
cannot associate an effective waiting time to the full TR
decay after the cycling, consistently with theadditive solu-
tion obtained analytically for the rejuvenation process.

Within the analytic framework, the larger the temperatu
T1, the smaller theq0 andCq0

, implying that the fast part of
the correlation and response that is completely refreshed~and
hence the total rejuvenation! is larger, as we see in Fig. 2.

It has been stressed6 that the TRM curve after a positiv
temperature cycle at first coincides with the isothermal TR
curve of waiting timetw;t2t2, the difference only becom
ing manifest after rather long times. If one compares
TRM curves in Fig. 2 for several values ofT1 with the
isothermal curve fortw530 min, one observes that the d
parture from this reference curve is achieved later for
largerT1s.

This is precisely what we would expect from the ma
scales picture:Two protocols with the sameT2 and slightly
different high temperaturesT1 andT18 ~associated withq0

andq08) will differ in the refreshment of the scales ofC and
M with q0,C,q08 , and these are slower the smallerq0.
Hence, the difference in TRM between the two protoc
will only show up at long times, the higherT1.

This effect should become more and more marked
longer experiments.

III. FIELD CYCLINGS

Field cyclings at constant temperature are known to yi
rather large reinitializations in the out of phase susceptibi
both on increasingandon decreasing the field.31,32Although
we have not done a full analysis for the field cycling expe
ments, we may hint the reason why the arguments we use
justify a large asymmetry in temperature jump experime
do not carry through unaltered to the field cycling case.

The effect of a time-dependent fieldh(t) on the dynamic
equations is to add a term

A~ t,t8!5h~ t !E
0

t8
dt h~t!R~ t8,t! ~3.1!

to Eq. ~1.3!, and a termA(t,t) to Eq. ~1.5!. In the constant
field situation, these terms have the effect of eliminating
slowestscales. Thex vs C plot of Fig. 3 for a constant field
h coincides with the one forh50 but terminates at an
h-dependent point (q0 ,x0). The most outstanding effect o
switching on~switching off! a field is then to erase~create!
the slowest scales between (0,x`) and (q0 ,x0). Note that
this is already very different from the effect of temperatu
changes that mainly affect thefastestscales in the problem

One could then ask if a system that has been evolvin
zero field and is suddenly taken to finiteh does preserve the
fast partsCF andRF without reinitialization~just the mirror
image of what anincreaseof temperature does!. In fact, we
can propose that such a solution exists, and see where
argument takes us. We hence assume a separation into
and slow parts of the correlation and response just as in
~1.7! with the valueq0 chosen to be the smallest possib
correlation for a fieldh.
e

e

e

e

-

s

r

d
y

-
to
s

e

at

the
fast
q.

If we now assume that on turning on the field the fa
evolution remains essentially unaltered, while the slow e
lution in Cq0

remains slow and finally tends toq0 ~as in a
constant field case!, we can separate out the fast part. T
fast equations so obtained are just like Eqs.~1.9!–~1.11! with
additional terms which~just as in the temperature cyclin
case happened for the slow parts! are constant up to, and
long after the field jump. The difference is that now th
‘‘bump’’ in this otherwise constant factors and terms is
longer short-lasted with respect to the fast times, precis
because it comes from the slow equation and from the t
~3.1!, which has waiting time effects itself.

Hence, the initial assumption that a decoupled equa
for the fast part could be found does not hold, at least in
manner it did for the slow parts in the temperature cycli
case. The fast parts must be altered by the field cycling in
important way implying no big difference between switchin
on and off the field.

IV. PROPOSAL FOR EXPERIMENTAL MEASUREMENTS

The obvious direct way of constructing thex vs C plot is
to perform independent measurements of the time correla
of the magnetization noiseC(t,tw) and the integrated re
sponsex(t,tw) at a given temperature and field. One cana
posteriori check the independence on temperature and fi
of these curves.

If the assumption of independence of temperature
field of the x vs C curve in its aging part holds true, thi
curve can be simply obtained in a manner that is much m
simple experimentally as it does not involve noise measu
ments and only ac susceptibilities. Indeed, let us define
quantityy(T,h) as follows:

y~T,h![ lim
v→0

lim
tw→`

x8~v,tw!5
qd2qEA~T!

T
. ~4.1!

The Edwards-Anderson parameterqEA(T) would be then in-
dependent of the fieldh below the de Almeida–Thouless lin
~or ‘‘pseudo de Almeida–Thouless line’’ if it is only a dy
namic crossover! and

y~T,h!5y~T!. ~4.2!

The parameterqd corresponds to

qd[ lim
T→0

qEA~T!. ~4.3!

Equation~4.2! can be easily checked experimentally.
Another related test is to measure the dc susceptibility

x`~T,h!5 lim
tw→`

lim
t→`

x~ t,tw! ~4.4!

at constant fieldh, presumably obtainable from the field
cooled experimental data,33 and check if it is independent o
temperature everywhere below the~pseudo! de Almeida–
Thouless line. There is quite a bit of evidence in this dire
tion in the literature.34

One can then extract the curved part of thex vs C plot of
Fig. 3, that we calledf (C) from the set of equations

C5qd2Ty~T!,



,
s
n
e
e

t
-
r

a
n
t

d

the
em-
spin
lar

al

he

h,
the
lyti-
hin
for
nd
ust

n-
ery

PRB 60 929MEAN-FIELD THEORY OF TEMPERATURE CYCLING . . .
f ~C!5y~T!, ~4.5!

usingT as a parameter.
Once~and if! the validity of the approximation is verified

one can use thex vs C plot so obtained to check the consi
tency of the present reasoning for the cycling experime
For example, in the positive cycling experiments the diff
ence in TRM between the isothermal and the cycled exp
ment just after the cycle should be equal to the difference
height in thex vs C plot of the intersection of the straigh
lines corresponding toT2 andT1 ~this is best seen by look
ing at Fig. 3!. This nontrivial relation can be checked expe
mentally.

V. CONCLUSIONS

While it is gratifying to be able to reproduce the qualit
tive experimental features analytically, we believe o
should not hasten to declare that this is evidence for
mean-field scenario holding strictly. Thus,infinitely sepa-
rated time scales could in real life be justvery separated
scales, the de Almeida–Thouless line could be just a
namic crossover, etc.
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The derivation in this paper, on one hand, captures
main features of the experiments and on the other hand d
onstrates the difference in the behavior of glasses and
glasses. Although our calculation has relied on a particu
model, we believe that it will carry through to all classic
mean-field spin-glass models.

There is, however, a problem. A satisfying scaling of t
~isothermal! experimental susceptibility and TRM datasi-
multaneouslywas presented in Ref. 20. Surprisingly enoug
this scaling has only two time regimes as opposed to
many time scales that we here invoked to reproduce ana
cally the experimental results for temperature cyclings wit
mean field. If the scaling used in Ref. 20 turns out to hold
all times then the hierarchical scenario would not apply a
some drastic modification of the present understanding m
be envisaged.
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