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Configurational free energy in order-disorder transitions
from Monte Carlo calculations for systems under external fields
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A procedure for calculating the configurational free energy with the Monte Carlo simulation is presented,
accounting for the case of the application of external fields. First, the free energy 1ot jlerdering systems
without any external fields has been evaluated for the various values of the second nearest-neighbor effective
interaction, and the feature of this method has been discussed from the viewpoint of the pair correlation. Next,
this method has been applied to the case of application of external fields, demonstrating the calculation of the
free energy under an external stress field forltlig phase that has a tetragonal distortion dependent on the
long-range order paramet¢50163-182@09)06037-3

. INTRODUCTION fields. The total free enerdyow(T.{X;}), which is the gen-

eralized Gibbs free energy under external fie[d§}, is
Evaluation of free energy is of importance in studies of?iven by

phase transformations. Recently, the effects of external
fields, such as the magnetic field and stress field, on phase
equilibrium and kinetics of transformation have been Frowl(T {X»})=(E—E X,yA) -TS
reported: 3 In order to discuss quantitatively such effects of fotal T S
external fields, the free energy of the system under external
fields should be evaluated.
We shall focus upon the calculation of the configurational RV Z XiYi, @
free energy in order-disorder transition. In general, there are
two kinds of the calculation methods: one is an analytic apyhere F(T{Y;}) is the Helmholtz free energy, and

proximation method such as the cluster-variation me[thOdF(T,{Yi}) and Fou(T,{X;}) are connected to each other

(CVM), and the other is a numerical method such as Montgy o gh the Legendre transformation. The derivative form of
Carlo (MC) simulation. The analytic CVM is known to de- the Helmholtz free energy is given bylF=-SdT

scribe the features of transitions correttfyand gives per- +3,x,dY;, which is derived from the thermodynamic rela-

spectives of the physical problem. On the other hand, th‘ﬁon dE=TdS+3,X,dY;. The Helmholtz free energy
MC simulation is a powerful method of calculating the phaseF(T v is exprelss:ed as
AR

equilibrium. Several studies on the evaluation of the configu-

rational free energy have been reported; the calculation is vx)

performed via the thermodynamic integration with the MC E(T LY (XY= E(T LY. (0)}) + f R x.dY. (2

simulations(TIMC method.*~*?However, there are few pa- (TLYiCOD=FT.LYi(0)h) Z vioy @

pers on the calculation of the free energy under external

fields. _ _ ~ whereY;(X;) is the extensive variable under the external
This paper deals with the calculation of the configura-fig|d X;. When the dependence df on X; is known at a

tional free energy of a system under external fields within tthmperatureF(T,{Yi}) can be calculated by E). This is

framework of the TIMC method. Since the uniaxial stressan ordinary treatment for calculating the Helmholtz free en-

has been reported to enhance significantly the formation ofrqy.

favorably oriented domains for the fdcl, transformations Here, another approach based on the TIMC method is

of FePd, CoPt, and AuCu alloys;the L 1, ordering systtm  presented. When the magnitudes of the figldg are fixed,

is adopted as the model case of the present calculationge  dx;=0 for all i, the following thermodynamic relation
First, the calculations are performed for the case withoukg|gs:

external fields; one of the advantages of the TIMC method in

the calculation of the free energy is described from the view-

point of the pair-correlation length. Next the configurational TdS=d( E-D XiYi)- 3
free energy under the external compressive stress is calcu- i

lated for the transition from fcc th1, structure, which has a

tetragonal distortion dependent on the long-range order parhe entropySunder constant fieldsX;} can be calculated by
rameter. the thermodynamic integration:

Il. FREE ENERGY OF A SYSTEM UNDER EXTERNAL E-sxY, 1
FIELDS szf o Td(E—E XY,
. . . . E.—ZiXY; i
Let us consider external fieldsX;} and their conjugate room '
extensive variablegY;}, wherei indicates the species of where the subscript indicates the reference state.

+S, 4

0163-1829/99/6(13)/91984)/$15.00 PRB 60 9198 ©1999 The American Physical Society



PRB 60 BRIEF REPORTS 9199

Since the MC simulation gives the relation betwdeand L0 :
E—-Z=;X;Y;, Scan be obtained by performing the integration -0.05 G- | -030 (iii).
of Eg. (4), and the total free energy . (T,{X;}) and the \ '
Helmholtz free energy (T,{Y;}) can be calculated by Eq. 0.5 010 - 038
(2). 1415 35 36
- (i) =~ 0.2 (i) o= — 1
IIl. MODEL AND SIMULATION PROCEDURE % 00 \\ l —— ’

The model crystal is an array of 2@cc unit cells, i.e., the \ .
number of atoms\ =32 000, with periodic-boundary condi- 05 0.00\*1) NN N\
tions. The interaction energy between atdrasdj at thenth 005 \\\
nearest-neighbor sites is denotedef8, and the effective ' Ha=0
interaction energyv™ is defined asv(M=(e{})+ D)2 ) P
— €l wherev)>0 for ordering systems. The internal en- 05 10 15 20 25 30 35 49
ergy E of the system is assumed to be given by KT/v®

FIG. 1. Free energy versus temperature curvesfel0,—0.2,
E=— z V(n)qgn%_ Eo, (5) and — 1 obtained by the TIMC method for the fdcl, transition.

n

While the fccl 1, transition is typical first order for small
|a|, the transition is close to the second-order transition
when the second nearest-neighbor interaction is negatively
¥arge. Though the change in the character of the transition
agrees with the detailed analysis by the CVM, the difference
in the transition temperature between the MC simulation and
the CVM increases with increasirjg|.® This difference is
discussed in the next section.

whereq{{} is the number of thé\-B pairs at thenth nearest-
neighbor sites andk, is the internal energy of the perfect

external fields, the Hamiltoniad of the system equals to the
internal energy given by Eg5). [Note thatv(™ equals 2",
whereJ™ is the spin-spin interaction in the Ising spi; (
=+1) model defined by the HamiltonianH

= En{J(n)E(nNMSiSj}-]

We have performed canonical simulations for tHkg, al-
loy system at the stoichiometric composition using the stan-
dard Metropolis algorithm with an interchange probability
min[exp(—AH/bT),1]. The accuracy of the transition temperature in the CVM
with small-size cluster has been discussed from the view-
point of the correlation length forr=0.° Therefore, the
dependence of the correlation functigiength on « just
A. fce/L 1, transition without external fields above the transition temperature has been investigated.

The site-occupation variablg(R) is defined ass(R)
=2[n(R)—n], wheren is the average concentration and

First, we consider the case where no external field is apn(R)=1 or 0 when the sit® is occupied by A or by B atom,
plied to the systemX;=0. respectively. The pair-correlation functigifr) can be writ-

The MC simulations were performed to obtain the relationten asg(r)= 1INZg(s(R)-s(R+r)). The correlation func-
between internal energy and temperature. Appropriate angion g(r) has been calculated up te=16a (a is the lattice
lytic functions were fitted to the discrete results obtained byharameteralong the(100) directions by stef in the system
the simulations:v/kT was expressed as a function of with the size of 32 fcc unit cells, and has been normalized
E/Nv(®. According to Eq.(4), the entropyS(E)/Nk can be  tg be unity atr =0.
calculated by numerical integration ofV/kT with respect Figure 2 shows the average correlation functiggs) in
to E/Nv(®, where the reference state was taken as a pefkhe(100) directions just above the transition temperature for
fectly random solution at an infinitely high temperature. three values ofy; g(r) has a functional form of exp(r/é),
Since the vibrational entropy is not considered in the presenhere¢ is the correlation length. Clearly, the pair-correlation
simulations,S consists only of the configurational entropy. |ength ¢ increases with increasingr|. According to Mohri

Figure 1 shows the free energy versus temperature CUrves a|,8 the difference in the transition temperature between
for @=0, —0.2, and—1, wherea=v®/v(!). The transition  the CvM and the MC simulation increases with increasing
temperatures wer&T./v(¥~0.882, 1.47, and 3.57 for  |4|. The difference is considered to be due mainly to the
=0,-0.2, and—1, respectively, being in reasonable agree-jong correlation lengtt for large|a|.
ment with the results by previous calculatidis*® The bold
curves indicate the free energies of the equilibrium state,
while the ||ght lines indicate those of the SUper-COO|Ed disor- B. fcc/L 1, transition under uniaxial stress
dered state given bf}i(T) =Egs(To) — T Siis(To)- As seen
in insets(i), (ii) and(iii ), the difference of the derivatives of
the free energies af. between the ordered and the disor- The L1, ordered structure is tetragonat/@+1) in its
dered phases decreases gradually with incredsihg symmetry. The conditions adopted in this calculation are as

2. Dependence of pair-correlation length and transition
temperature ona

IV. RESULTS OF CALCULATION

1. Free-energy calculation

1. Model system and Hamiltonian
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follows: (i) the straine;; is given byej; 7°, wheree;; is the

tetragonal distortion in the perfect ordered state and the KT/v®

long-range order(LRO) parar_nete?fs’” and when the tet- FIG. 3. The LRO parameter, the total free energy and the Helm-
ragonality appearg(ji) the lattice volume remains constant, po|tz free energy under an uniaxial compressive st@68 MPa
and (iii) the effective interaction energies do not change. gptained by the TIMC method for the fdcl, transition. The
In this caseX; andY; in Eq. (1) are replaced by and  Helmholtz free energy under zero stress are also displayed for com-
Ve, respectively, wherer,, is the external stress tensor, parison.
and V is the volume of the systemd{/=0). Then, the
HamiltonianH of the system can be written, using the inter-  Though the free energy can be calculated also using Eq.
nal energyE given by Eq.(5), as (2), the calculation via the thermodynamic integration using
Eqg. (4) is more convenient, since it does not require the
calculation of the free energy for zero external field.
H:E_% 0'k|V€k| y (6)

] ] V. CONCLUSIONS AND REMARKS
hereafter 2, 0 (Vey) is expressed asVe briefly. _

We used the following parameters corresponding to the The procedure of calculating the free energy of a system
equiatomic FePd alloy: the lattice parameter is 3.81 A, theinder external fields has been presented within the frame-
transition temperature is 923 K far=0 and the tetragonal Work of the thermodynamic integration with MC simulation
strain components;; are e7;= €3,=0.01, e3;=—0.02, and (TIMC method. _
€ =0 fori+]. Only the first nearest-neighbor interaction is The configurational free energy can be estimated accu-
consideredv()=923/0.882. Note that the change of the rately with this method, if the model system is large enough

free energy of the high-temperature fcc phase is negligiblén comparison to the correlation length; the TIMC method is

for a stress of small magnitudes, because the tetragonal straﬂ'f'tabIe for .handlmg the weakly f|rst-order or the secondf
induced by the stress is quite small. order transitions where the correlation length tends to be di-

vergent at the critical point. In evaluating the configurational
entropy by the integration, the state at an infinitely high tem-
perature can be chosen as the reference state, also for the
Canonical simulations are started from the perfectly orcase of the off-stoichiometry and multicomponent systems.
dered state under an external compressive stress along itS  The calculation of the free energy under external fields
axis. The transition temperature increases with increasing thgas been demonstrated, applying this method to Lthg
magnitude of the uniaxial compressive stress;ltig phase  phase with a tetragonal distortion under an external stress.
is stabilized under the compressive stress. As an examplgyith the presented method, one can deal with also the case

the configurational free energieS,y, andF, under a stress  of the external magnetic field and the magnetization.
of 200 MPa is presented. For this case, the transition tem-

perature has been determined to be about 93% K. vV
~0.894).

Figure 3 shows the temperature dependence of the LRO The authors wish to thank Professor T. Mohri of Hok-
parametery, the total free energy¥ wa(T,o) (bold curve kaido University and Professor S. Matsumura of Kyusyu
and the Helmholtz free enerdy(T,e) (solid curve for o33 University for helpful suggestions and comments. They are
= —200 MPa; those(dashed curvgsfor o=0 are also also grateful to T. Ikeda and T. Ujihara of Kyoto University
shown. Since the degree of order of th&, phase is raised for valuable discussions. This work was partly supported by
by the compressive stress, the Helmholtz free energy is als® Grant-in-Aid for Scientific Research on the Priority Area
raised. However, the total free energy, which includes thédnvestigation of Microscopic Mechanisms of Phase Transfor-
stress effect- o Ve, is lowered, leading to the higher transi- mations for the Structure Control of Materials from the Min-
tion temperature. istry of Education, Science, Sports, and Culture, Japan.

2. Calculation of free energy under stress
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