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Quantum transport and momentum-conserving dephasing
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We study numerically the influence of momentum-conserving dephasing on transport in a disordered chain
of scatterers. Loss of phase memory is caused by coupling the transport channels to dephasing reservoirs. In
contrast to previously used models, the dephasing reservoirs are linked to the transport channels between the
scatterers, and momentum conserving dephasing can be investigated. Our setup provides a model for nano-
systems exhibiting conductance quantization at higher temperatures in spite of the presence of phononic
interaction. We are able to confirm numerically some theoretical predic{i604.63-18289)13625-7

I. INTRODUCTION Many approaches to dephasing are based on reservoirs
which destroy phase information in the same way as momen-
The recently discovered jumps in the conductance of metum information of passing electrons® therefore, corre-
tallic nanowires and nanocontattsave demonstrated im- sponding transport models are not suited for the investigation
pressively that quantum effects can dominate transport propf the above discussed transport regime.
erties of small structures even at ambient temperature. This is For the present study we have developed a model where
generally explained by the lateral confinement which inducegoherent and incoherent scattering processes are conceptu-
a rather large subband spacing of the transport modes of thgly separated. Coherent scattering is described by general
conductor’ Within a single transport mode, phononic back- g|astic  scatterers. We investigate single-mode transport

scattering is considerably reduced because of the 'argﬁrough a one-dimensional chain of scatterig. 1).
amount of momentum transfer q@f=274kg that has to be Dephasing is induced using a common approach employ-

provided by a phonon. However, there remains the questlo[hg virtual electron reservoirsWe have linked the reservoirs

whether_ the underlyllng picture of |Qeal conducto?s"‘.ﬁ to the transport channels between elastic scatterers, exploit-
appropriate to describe, e.g., metallic nanocontacts; if one

N ; A . : Ihg the fact that electrons in transport channels automatically
insisted in a description in terms of ideal waveguides, one

should account for the unavoidable imperfections of real Syspo_ssess definite momenta. Th|§ SEems Fo be the eaS|e§t way
tems like impurities or geometric deviations from the ideal-©© implement mqmentum-selectwe coupl!ng toa reservoir as
waveguides setup. The inclusion of coherent scattering cerl@S als0 been discussed by Dé&a:hemmal_potentlals of
ters in corresponding transport models leads, however, to tHHCh reservoirs thus correspond to occupation numbers of a
almost immediate loss of quantization of the conductance ifPcal momentum distribution function as it occurs in the
the absence Of some stab|||z|ng mechanism_ Boltzmann equation. Th|S Implles furthermore that emiSSion
An interesting question is whether dephasing, induced b§rom the reservoirs is uncorrelated with respect to the oppo-
phononic interaction, could provide such a mechanism: Insite direction of motion.
teraction with longitudinal phonons, although not causing As depicted in Fig. 1, electrons absorbed by one of the
momentum transfer, can well be at the origin of dephasindwo reservoirs between two scatterers are fed back incoher-
which counteracts the weak localization of coherent backently into either the same transport channel or into the adja-
scattering. In this way, temperature could be helpful to recent channel. In the latter case, they conserve their momen-
establish quantization in this specific situation. For an investum as in the case of coherent propagation, while having,
tigation of this question transport models are needed whiclhowever, lost their phase memory. This permits us to inves-
comprise elastic scattering as well as dephasing, while allowtigate continuously different degrees of momentum conser-

ing for vanishing momentum transfer. vation, from the case of full momentum conservation to the
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FIG. 1. A chain consisting o =3 scatterers,, S,, andS;. Channels 1 and 6 link the system to the left and right contact. Electrons
outgoing from the scatterers in inner channels 2—5 may travel coherently or incoherently between the scatterers. When traveling coherently,
they acquire a phase shpt(indicated by arcs Alternatively, they may get absorbédotted arrows, probability) between the scatterers
by reservoirgwavy lineg. From the reservoir they are re-emitt@thshed arrowseither with same momentuiprobability «) or inversed
momentum(probability a=1— «).
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case of momentum flip, independently from the dephasingbility between the external channglandi. The transmis-
strength itself. sion matrix thus relates tuples @imensionlessoutgoing
Since only two scattering channels per scatterer are inand incoming currents,
volved, our model is also efficient for numerical calculations
which is of practical interest in order to cope with ensemble-
averaging. It can also be easily extended towards multimode l_=TIl,. (5)
transport.
In the following section, we briefly generalize a method
for the calculation of the scattering matrix of a composedThe associated incoming and outgoing currents are given by
systent! towards the inclusion of dephasing reservoirsthe squared moduli of the amplitudes in the external chan-
linked to “inner” channels. Section lll reviews the involved nels.
characteristic lengths for phase, momentum and coherent lo- To incorporate dephasing in this approach, we assign a
calization and their relationship to the parameters of oukjrtyal reservoir to each internal chanieand denote byy,

model. Numerical results for the metallic and insulating re-the probability of getting absorbed by such a reservoir. The
gime are presented in Sec. IV, and the influence of

X 10 deohaci X tis di %urrent into this reservoir is thus given ly|c(’|2. Current
momentum-conserving dephasing on transport IS diSCUSSE. yservation then demands a corresponding loss term being

accounted for also by the operat®ytherefore, the assigned

phase factor for coherent propagationo&‘) has now to be
We consider a one-dimensional chain consistingNof multiplied by y1—v,. For the considered chain it is given

scatterergsee Fig. 1 Each scatterer has two channels and ishy, e.g.,

described by its scattering matr which relates linearly

the outgoing to the incoming amplitudes at the scatterer. We

II. NUMERICAL APPROACH

have used the parametrization Pm=expipm) V1= , (6)
\/r—k iv1i— Mg
Sc= ix/l—_rk \/r_k ' (D wherem=1+1 for | even orl odd, respectivelyp,, denot-

ing the phase for coherent propagation. Speaking in terms of
wherer, denotes the reflection probability of the scattécer currents, only a fraction 4y, of the current outgoing in
k= 1,...N. A system of noninteracting scatterers would bechanne" is propagated Coherenﬂy while a fractiw is ab-
described by a RX2N scattering matriXx< containing the  sorbed by the reservoir. In the following, we assumje y
S on its diagonal. Denoting theNetuples of incoming and  throughout for all internal channelswhile we can formally
outgoing amplitudes by, andc_, respectively, we have assigny,=1 to external channels which are fully absorb-
c_=Kc, . For linked scatterers, we may distinguish be-ing; in this way, the virtual reservoirs are treated in the same
tweenexternaland internal channels; external channels are way as the external contacts.
connected to the outside, e.g., the left and the right contact in |n the presence of the virtual reservoirs, the dimension of
the present casgchannels 1 and19), while internal chan-  the transmission matriX has become larger and the matrix
nels are interconnected: Amplitudes outgoing into internaklements describing transmission from the virtual reservoirs
channels are propagated to incoming amplitudes in internajre also needed. They can be obtained by replacing in
channels, thus acquiring a phase shift expvhich may  gq. (2) with ¢, ;,/y wherec, i, is given by thelth unit
comprise either a simple geometric phaseqd for a wave  yector for virtual reservoit. The squared moduli af_ (mul-
vectorq and a distanc, or, generally also a magnetic phase tiplied by y for internal channel$) then yield the elements
JA-dsin presence of a vector potential This can be de- T, , i.e., columnl of T.
scribed by an operatd? which propagates internally outgo-  The virtual reservoirs can now be used to introduce
ing amplitudes while annihilating externally outgoing ampli- dephasing into the syste?rFor this purpose, electrons ab-
tudes, ¢, iy=Pc_. Using the decompositiort, =c. i  sorbed by the virtual reservoirs have to be re-emitted inco-
+C4 ext the relation herently. The motion of electrons inside the considered sys-
1 1 tem (see Fig. 1 can then be described as a Markovian
¢ =(K""=P)77Cy ext (2 procesgsee, e.g., Ref.)7 They are injected by the left con-

is readily obtained! The wanted scattering matr& of the  tact, pass through virtual reservoirs and finally get absorbed
composed system relates incoming to outgoing amplitudes iRy either the right or the left contact. Adopting this point of

external channels, i.e., view, we may renounce the notation of a chemical potenhtial
which is convenient since we are interested in the total trans-
Coext= Tt exts (3)  mission only. o _
o ] It is at the level of the transmission matrix where current
it is thus given by conservation is imposed. We describe momentum conserva-

S=([(K =P ) @) tion by a parameterr ranging from O to 1; eIec.trons ab- .
L sorbed by a reservoir between two scatterers in the chain
where the indices, j label only the external channels. conserve their momentum with probabilitywhile their mo-
The scattering matrixs then yields the transmission ma- mentum gets flipped with probability=1— « (see Fig. 1L
trix T according toT;; = |3j|2; Tjj is the transmission prob- The total transmissioit is then given by
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contact with 0, 1, ... intermediate passages through virtual

reservoirs. This infinite series describing the random walk of L _
FIG. 2. Transmission of a chain &f coherently coupled scat-

the electrons can be summed analytically. We note That terers with backscattering probability=0.01. Each point is ob-

itself is symmetric due to time-reversal invariance. There-_. o ) o
. . . . - tained by logarithmically averaging 4Gealizations. The dashed
fore, it is no surprise that the virtual reservoirs flip the mo-

. . li Eql ith a localization | H,=99=(1
menta of absorbed electrons if the latter are fed back into the';\n f) /crorresponds to Ed10) with a localization lengt,=99=(

same channel; incoming and outgoing amplitudes in the

same channel correspond to opposite momenta. Thus, oyls ensemble-averaged transmission of purely coherent sys-
procedure of imposing current conservation only onto a Paifems ysing the quantum scaling law of Andersoial. (Ref.
of channels is well beyond the widely used description of; 5

Buttiker;® it is, however, covered by the more general ap-
proach of Dattd® p(N)=eNle—1, (10)

which differs from the well-known Landauer resuby a
factor of 2. Reference 12 predicts, assuming random phases
between the scatterers, a localization length of the ensemble,

The phase coherence lendthis given by the mean dis- measured in number of scatterers, as
tance that an electron travels coherently, i.e., the distance it

conserves its phase. In order to relate it to the absorption le=(t)/(r) (11
probability v, we consider the unperturbed systéwithout
disorder, i.e., vanishing elastic backscatteriagd obtainl 4,

in units of the number of passed dephasing regions betwe
the scatterers as

Ill. CHARACTERISTIC LENGTHS

with the ensemble averages of the reflection and transmis-
gilon probabilities andt=1-r of a single scatterer. For our
numerical investigation, we have employed a constant reflec-
tion probability r,=r and random phasespy. 1 x

w =P x+1€[0,27[ (indicated by arcs in Fig.)1

E n(1—y)" Performing numerical tests by logarithmically averaging

n=1 1 up to 1¢ realizations of a purely coherent system=(0)
lo=————= 5 (8) consisting of up toN=5x 10" scatterers, we have found

E (1—y)" quite a good agreement with Eq40), (11) (see Fig. 2 We

n=1

have also tried a random box distribution with average
) . instead of constant reflection probability; this neither had an
The mean free pathy, is the mean distance that an electronjyfyence on the validity of Eq(11), nor on the following

travels without being scattered, i.e., without momentumyegyits involving both coherent and incoherent processes.
change. In order to obtail, in the unperturbed system, we

consider thegiincoherenk reflection pr~oba_bility7 of a single IV. RESULTS
dephasing region which is given hy=avy. The resulting ) ) ) L
(dimensionlessresistance caused by a pair of corresponding ' Order to investigate thde InteréJIeLy between the m|(r:1ro-
reservoirs ispo=T/(1—T), which is additive for two inco- >coP.c P& rameters, y, and« and their counterparts, the
herently coupled scatterét&\e now show that '_P51 is a characteristic lengths, |4, andl,,, we distinguish between

\ mi=

useful definition for the mean free path: For a chainNof the “conducting” regimel, <l and the "insulating” re

. T ) . gime wherel <l .
Se_pmﬁ'{]g:r:za%:;fuiflgif (Sleﬁ?rl;;q-prc;b?oiz?;?:;;i(s)f Two representative results are shown in Figle§t and
- m ] - - ’ -

; right, respectively, where the computed ensemble-averaged
sion of total transmission is plotted as a function of the number of
scatterers for dephasing which conserves, randomizes, and
T= 1 ) flips momenta &¢=1, 0.5, and 0, respectivelyTransmission
1+N/l,’ of the fully coherent systemy(=0) is similar to Fig. 2(but
not exactly the same due to the smaller number of averaged
Equation(9) describes an Ohmic length dependence of theealizations.
transmission; a section of length, contributes a resistance  The “conductor” can be thought of being composed of
unit to the total resistancg. phase-coherent units which are linked incoherently, resulting
The effect of the coherent disorder can be described byjn an Ohmic length dependence of transmission. Since
the localization length, . We are extracting this length from dephasing destroys localization, dephasing with full momen-
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FIG. 3. Transmission as function of the number of scatterers for three different degrees of momentum conservetierelastic
backscattering probability is=0.01 corresponding to a localization lendghk=99. The left diagram is calculated for dephasing probability
v=0.05, the right diagram fory=0.005. Each point is obtained by logarithmically averaging 1000 realizations. Also indicated is the
transmission of the coherent system=0). The dashed and dotted lines indicate solutions of Ek.and (11), respectively.

tum conservation 4=1) always enhances transmission T=1(1+N/ln+N/lg). (12
when compared to a fully coherent system=0 in Fig. 3.

The widely discussed case of simultaneous phase and m&or «=0.5 anda =0, transmission passes through a certain
mentum randomizationcorresponds tar=0.5; here, with maximum which has already been found for the case
increasing number of scatterers, transmission first drops dug 0.5 in Ref. 5; beyond this maximum, the additional resis-
to incoherent backscattering, but there is always a certaitance of the dephasing reservoirs causes a rapid decline.
length N such that the enhancement of transmission due to In the following, we compare our numerical resulisgs.
suppression of coherent localization outperforms the inelas3 and 4 to a formula which has been proposed by Band
tic backscattering for systems larger thhin The absolute et al'® on the basis of ensemble-averaged guantities. The
value of the transmission, however, already has become vegjashed lines in Figs. 3 and 4 have been calculated using a
small. Therefore, enhanced conductance due to dephasis§ghtly modified version of this formula.
can only be expected for a large degree of momentum con- In this approach, the transmission is given as
servationa.

In the insulating regime, the dephasing rate, but also the _ 1
backscattering rate are much smaller than in the above dis- T= 1+N/1y+pa(N, gl g)
cussed, “conducting” case. With.<l4, conduction prop-
erties are dominated by localization effects and cannot bvith py being the resistance due to disorder for the case of
understood in terms of incoherently coupled phase-coheremtfinite | ,,. Equation(13) can be seen as a generalization of
units. Dephasing supports transmission significantly only fofEg. (9) towards the inclusion of disorder. The validity of
system sizes larger thag when a deviation from the expo- Mathiessen’s law is assumed in the sense that the two pro-
nential dependendelescribed by Eq(11)] in the right dia- cesses which cause momentum change, namely momentum
gram of Fig. 3 can be noticed. Finally, one would also expecflip by the reservoirs and coherent reflection by the scatter-
an Ohmic behavior for very large system sid&s |, . Some  ers, give independent contributions to the resistance. Note
enhancement of transmission in the insulating regime com-
pared to the conducting regime appears but onlyderl 0 T T T T
(which can be seen comparing the two plots in Fig.This
is not unphysical: A largés means small dephasing, which
leads to a suppression of the quantum localization of the
coherent system and thus increases transmission. For even
larger dephasindapproaching the conducting regiimeve
get an increasing additional Ohmic resistance which finally
causes the transmission to drop agdor a<<1). _ZT_ ee e T « Q4
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In the insulator, the relative enhancement of the transmis-
sion for «=1 compared tax=0.5 or«=0 is much smaller
than for the case of the conductor, momentum conservation -4 -3 -2 -1
has less influence in this regime. log;0(7)

The importance of momentum conservation is best seen in FIG. 4. Total transmission for a chain bf=500 scatterers as a

Fig. 4 yvhere th_e dependence of the transmls_su_)n Ql’l thﬁmction of the dephasing parametefor three different degrees of
dephasing rate is plotted. Only fora=1, transmission in- 1,5 mentum conservation. The elastic backscattering probability is
creases monotonously with increasing In the incoherent  —¢ 01 corresponding to a localization lenggh99; each point is
limit y=1, an Ohmic transport regime is reached with eactyptained by logarithmically averaging 1000 realizations. The lines
single scatterer contributing the resistamgé [see Eqgs(9), are obtained from Eq(13) which is applicable fory>1/N (indi-
(11)], resulting in a transmission cated by the arrow
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that they do not depend dnp and «, respectively. Surely, V. CONCLUSIONS
guantum resistance is generally not additive. However, the

range of validity of the approach of Ref. 13 is surprisingly I i i h ha di
large (see Fig. 4. Our numerical verification of the result of allows us to investigate quantum transport through a disor-

Band et al. shows excellent agreement. A prerequisite fordered system in the presence of dephasing with a tunable
this is our dephasing model, which allows for momentumdegree of momentum conservation. We obtained the rather

conservation. obvious result that momentum conservation is essential if

In the presence of dephasitifpr finite 13%), py can be dephasing is to enhance tran_smission. From Fig. 3, it is eyi-
built up recursively from the resistance of the purely coher-dent that support for a quantized conductance by dephasing
ent casep(x;| ) =e'«— 1, and from the probability density C€an be expected in the regimg<N~I,.

P(x;N,l;,l) for an electron to travel coherently a distance ~ Our numerical results have been compared to a general
x within the disordered wire and to lose phase information abut heuristic picture developed in Ref. 13 which is based on
position x by a dephasing event. Bottp(x;l;) and the validity of Mathiessen’s rule and ad hocassumption
P(x;N,I;,14) are ensemble averages. In the cagecN, for a probability densityP(x;N,I¢,l); it is not derived from
Bandet al. obtain a microscopic theory, but gained its plausibility from its va-
lidity in various limiting cases. Furthermore, it is not evident
N s .
N | POGNI L) pe(xil)dx that average quantltlgs as(x) and P(x,N,Ig,I(D). can be'
0 employed in a recursive formula for the transmission, since
Pd(Nl ¢ 1) = N - (14 sample averaging is not a simple commutative operation and
J XP(X;N, I ¢,l5)dx since there are different types of averaging procedures which
often proved intuition wrong in the past.Therefore, it is
Since both localization and dephasing processes lead to aather surprising that Eq13) gives a good fit of our data,
exponential length decay of the probability, except for the strongly insulating regime=<|s<N.
_ 1l _NI However, while the previously discussed approach by

PN I¢ lg) =1 e e Tha(x=N), xe[ON] Band et al. yields a good agreement for the ensemble-

(15 averaged transmission, it cannot predict fluctuations. For the
is a plausible choice, with a disorder modified phase coherinvestigation of conductance quantization effects, it is highly
ence lengthl,(l,,l4). In their original work, Bandetal. — desirable to describe a single system or at least the applica-
have proposed bility of results for ensemble averages to a particular realiza-

1 . tion. Here, our general quasimicroscopic model provides a
Iy "=l +21,7; (16)  helpful tool. In nanosystems exhibiting conductance quanti-
however, in more recent wof#:!°a phase coherence length zation, elastic backscattering is redudedt not absentbe-

in a disordered quantum wire is defined in a similar context@use Of the larger subband spacing which is itself induced
through the geometrical confinement. At higher tempera-

We have presented a model of general scatterers which

0

as e .
tures, one has to account for phononic interaction, notably
I t=lgt+1t. (17)  with longitudinal phonons, leading to dephasing but not in-
3 . . ) . .
) ) ) elastic backscattering. As mentioned in the Introduction, one
Our numerical results are better described using(g. can describe this situation by momentum-conserving dephas-

_ Equation(13) has been employed for Figs. 3 and 4. Thising which was not included in previous models. While we
gives a rather good agreement, except for the ¢gsel;  found an excellent agreement with the approach of Ref. 13
(right diagram of Fig. Bwhere the contribution of inelastic gyer a wide range, the domain of applicability to
backscattering4=0) to the resistance is slightly underesti- (quasijquantization in nanosystems would be fr<I
mated; Mathiessen’s law may thus not be valid in this re-<|, - work along these lines is in progress. An advantage

gime. , _ _ compared to a heuristic approach is that we are able to in-
For the interesting case of enhanced dephasing rates, Egagiigate also fluctuations and single realizations.

(1_3) can be used to estimate the achievable changg of trans- Note added in proofAfter submitting the manuscript, two
mission compared to purely coherent transmission. Thgg|ated papers were brought to our attention. The conduc-
maximum enhancemeniT is obtained forle=0,1n==;  tance for a double barrier with two types of reservoirs with
using Egs(10) and(12), we obtain withy:=N/I, and without momentum conservation was compared by
AT=1/(14y)—eX, (18 Buttiker.X® The role of dephasing for the shot noise for the
case of momentum preserving reservoirs was investigated by
This yields a maximum T .~ 0.20 for xma=2.51. Buttiker.!

13. L. Costa-Kraer, N. Gara, and H. Olin, Phys. Rev. Letf8, 4R. Landauer, Z. Phys. B8, 217(1987; J. Phys.: Condens. Mat-
4990 (1997; J. L. Costa-Kfmer, N. Gara, P. Gar@a- ter 1, 8099(1989.
Mochales, and P. A. Serena, Surf. Sci. L8#2 1.1144(1995. 5M. Bittiker, Phys. Rev. B33, 3020(1986.
2H. van Houten and C. Beenakker, Phys. Today), 22 (1996. 6J. L. D’Amato and H. M. Pastawski, Phys. Rev. A, 7411
3R. Landauer, Philos. Ma@1, 863(1970. (1990.



PRB 60 QUANTUM TRANSPORT AND MOMENTUM-CONSERVING . . . 921

"H. M. Pastawski, Phys. Rev. B4, 6329(199). 1488(1992.
8M. J. McLennan, Y. Lee, and S. Datta, Phys. Revd® 13846  *K. Maschke and M. Schreiber, Phys. Rev4B 2295 (1994).
(1992). 15R. Hey, K. Maschke, and M. Schreiber, Phys. Rev5B 8184
9G. Burmeister, K. Maschke, and M. Schreiber, Phys. Red.7B (1995.
7095 (1993. 16\ Bittiker, in Resonant Tunneling in Semiconductors: Physics
105, Datta, Electronic Transport in Mesoscopic Systert@am- and Applicationsedited by L. L. Change, E. E. Mendez, and C.
bridge University Press, Cambridge, 1993 Tejedor(Plenum, New York, 1991 p. 213.
1. Gagel and K. Maschke, Phys. Rev4B, 17 170(1994. 7M. Blttiker, in Proceedings of the 13th International Conference
12p_W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, on Noise in Physical Systems and 1/f-Fluctuatiardited by V.
Phys. Rev. B22, 3519(1980. Bareikis and R. KatiliugWorld Scientific, Singapore, 1995p.

3y, B. Band, H. U. Baranger, and Y. Avishai, Phys. Rev4Bg 35.



