
PHYSICAL REVIEW B 1 JULY 1999-IIVOLUME 60, NUMBER 2
Quantum transport and momentum-conserving dephasing

Ivo Knittel, Florian Gagel, and Michael Schreiber
Institut für Physik, Technische Universita¨t, D-09107 Chemnitz, Germany

~Received 28 September 1998!

We study numerically the influence of momentum-conserving dephasing on transport in a disordered chain
of scatterers. Loss of phase memory is caused by coupling the transport channels to dephasing reservoirs. In
contrast to previously used models, the dephasing reservoirs are linked to the transport channels between the
scatterers, and momentum conserving dephasing can be investigated. Our setup provides a model for nano-
systems exhibiting conductance quantization at higher temperatures in spite of the presence of phononic
interaction. We are able to confirm numerically some theoretical predictions.@S0163-1829~99!13625-7#
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I. INTRODUCTION

The recently discovered jumps in the conductance of m
tallic nanowires and nanocontacts1 have demonstrated im
pressively that quantum effects can dominate transport p
erties of small structures even at ambient temperature. Th
generally explained by the lateral confinement which indu
a rather large subband spacing of the transport modes o
conductor.2 Within a single transport mode, phononic bac
scattering is considerably reduced because of the la
amount of momentum transfer ofp52\kF that has to be
provided by a phonon. However, there remains the ques
whether the underlying picture of ‘‘ideal conductors’’3,4 is
appropriate to describe, e.g., metallic nanocontacts; if
insisted in a description in terms of ideal waveguides, o
should account for the unavoidable imperfections of real s
tems like impurities or geometric deviations from the ide
waveguides setup. The inclusion of coherent scattering c
ters in corresponding transport models leads, however, to
almost immediate loss of quantization of the conductanc
the absence of some stabilizing mechanism.

An interesting question is whether dephasing, induced
phononic interaction, could provide such a mechanism:
teraction with longitudinal phonons, although not caus
momentum transfer, can well be at the origin of dephas
which counteracts the weak localization of coherent ba
scattering. In this way, temperature could be helpful to
establish quantization in this specific situation. For an inv
tigation of this question transport models are needed wh
comprise elastic scattering as well as dephasing, while all
ing for vanishing momentum transfer.
PRB 600163-1829/99/60~2!/916~6!/$15.00
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Many approaches to dephasing are based on reser
which destroy phase information in the same way as mom
tum information of passing electrons;5–9 therefore, corre-
sponding transport models are not suited for the investiga
of the above discussed transport regime.

For the present study we have developed a model wh
coherent and incoherent scattering processes are conc
ally separated. Coherent scattering is described by gen
elastic scatterers. We investigate single-mode trans
through a one-dimensional chain of scatterers~Fig. 1!.

Dephasing is induced using a common approach emp
ing virtual electron reservoirs.5 We have linked the reservoir
to the transport channels between elastic scatterers, exp
ing the fact that electrons in transport channels automatic
possess definite momenta. This seems to be the easies
to implement momentum-selective coupling to a reservoir
has also been discussed by Datta.10 Chemical potentials of
such reservoirs thus correspond to occupation numbers
local momentum distribution function as it occurs in th
Boltzmann equation. This implies furthermore that emiss
from the reservoirs is uncorrelated with respect to the op
site direction of motion.

As depicted in Fig. 1, electrons absorbed by one of
two reservoirs between two scatterers are fed back inco
ently into either the same transport channel or into the a
cent channel. In the latter case, they conserve their mom
tum as in the case of coherent propagation, while hav
however, lost their phase memory. This permits us to inv
tigate continuously different degrees of momentum cons
vation, from the case of full momentum conservation to t
rons
oherently,
s

FIG. 1. A chain consisting ofN53 scatterersS1 , S2, andS3. Channels 1 and 6 link the system to the left and right contact. Elect
outgoing from the scatterers in inner channels 2–5 may travel coherently or incoherently between the scatterers. When traveling c
they acquire a phase shiftp ~indicated by arcs!. Alternatively, they may get absorbed~dotted arrows, probabilityg) between the scatterer
by reservoirs~wavy lines!. From the reservoir they are re-emitted~dashed arrows! either with same momentum~probability a) or inversed

momentum~probability ā512a).
916 ©1999 The American Physical Society
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case of momentum flip, independently from the dephas
strength itself.

Since only two scattering channels per scatterer are
volved, our model is also efficient for numerical calculatio
which is of practical interest in order to cope with ensemb
averaging. It can also be easily extended towards multim
transport.

In the following section, we briefly generalize a meth
for the calculation of the scattering matrix of a compos
system11 towards the inclusion of dephasing reservo
linked to ‘‘inner’’ channels. Section III reviews the involve
characteristic lengths for phase, momentum and coheren
calization and their relationship to the parameters of
model. Numerical results for the metallic and insulating
gime are presented in Sec. IV, and the influence
momentum-conserving dephasing on transport is discuss

II. NUMERICAL APPROACH

We consider a one-dimensional chain consisting ofN
scatterers~see Fig. 1!. Each scatterer has two channels and
described by its scattering matrixSk which relates linearly
the outgoing to the incoming amplitudes at the scatterer.
have used the parametrization

Sk5S Ar k iA12r k

iA12r k Ar k
D , ~1!

wherer k denotes the reflection probability of the scattererk,
k51, . . . ,N. A system of noninteracting scatterers would
described by a 2N32N scattering matrixK containing the
Sk on its diagonal. Denoting the 2N-tuples of incoming and
outgoing amplitudes byc1 and c2 , respectively, we have
c25Kc1 . For linked scatterers, we may distinguish b
tweenexternaland internal channels; external channels a
connected to the outside, e.g., the left and the right conta
the present case~channels 1 and 2N), while internal chan-
nels are interconnected: Amplitudes outgoing into inter
channels are propagated to incoming amplitudes in inte
channels, thus acquiring a phase shift exp(ip) which may
comprise either a simple geometric phasep5qd for a wave
vectorq and a distanced, or, generally also a magnetic pha
*A•ds in presence of a vector potentialA. This can be de-
scribed by an operatorP which propagates internally outgo
ing amplitudes while annihilating externally outgoing amp
tudes, c1, int5Pc2 . Using the decompositionc15c1, int
1c1,ext, the relation

c25~K212P!21c1,ext ~2!

is readily obtained.11 The wanted scattering matrixS of the
composed system relates incoming to outgoing amplitude
external channels, i.e.,

c2,ext5 Sc1,ext; ~3!

it is thus given by

S5~@~K212P!21# i , j !, ~4!

where the indicesi, j label only the external channels.
The scattering matrixS then yields the transmission ma

trix T according toTi j 5uSi j u2; Ti j is the transmission prob
g
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ability between the external channelsj and i. The transmis-
sion matrix thus relates tuples of~dimensionless! outgoing
and incoming currents,

I 2 5 TI 1 . ~5!

The associated incoming and outgoing currents are given
the squared moduli of the amplitudes in the external ch
nels.

To incorporate dephasing in this approach, we assig
virtual reservoir to each internal channell and denote byg l

the probability of getting absorbed by such a reservoir. T
current into this reservoir is thus given byg l uc2

( l )u2. Current
conservation then demands a corresponding loss term b
accounted for also by the operatorP; therefore, the assigne
phase factor for coherent propagation ofc2

( l ) has now to be
multiplied by A12g l . For the considered chain it is give
by, e.g.,

Pml5exp~ ipml!A12g l , ~6!

wherem5 l 61 for l even orl odd, respectively,pml denot-
ing the phase for coherent propagation. Speaking in term
currents, only a fraction 12g l of the current outgoing in
channell is propagated coherently while a fractiong l is ab-
sorbed by the reservoir. In the following, we assumeg l[g
throughout for all internal channelsl, while we can formally
assigngn51 to external channelsn which are fully absorb-
ing; in this way, the virtual reservoirs are treated in the sa
way as the external contacts.

In the presence of the virtual reservoirs, the dimension
the transmission matrixT has become larger and the matr
elements describing transmission from the virtual reserv
are also needed. They can be obtained by replacingc1,ext in
Eq. ~2! with c1, intAg wherec1, int is given by thelth unit
vector for virtual reservoirl. The squared moduli ofc2 ~mul-
tiplied by g for internal channelsi ) then yield the elements
Til , i.e., columnl of T.

The virtual reservoirs can now be used to introdu
dephasing into the system.5 For this purpose, electrons ab
sorbed by the virtual reservoirs have to be re-emitted in
herently. The motion of electrons inside the considered s
tem ~see Fig. 1! can then be described as a Markovi
process~see, e.g., Ref. 7!: They are injected by the left con
tact, pass through virtual reservoirs and finally get absor
by either the right or the left contact. Adopting this point
view, we may renounce the notation of a chemical potent5

which is convenient since we are interested in the total tra
mission only.

It is at the level of the transmission matrix where curre
conservation is imposed. We describe momentum conse
tion by a parametera ranging from 0 to 1; electrons ab
sorbed by a reservoir between two scatterers in the ch
conserve their momentum with probabilitya while their mo-
mentum gets flipped with probabilityā512a ~see Fig. 1!.
The total transmissionT is then given by
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T5T2N,11 (
l 51

N21

@~T2N,2l 11a1T2N,2l ā !T2l ,1

1~T2N,2la1T2N,2l 11ā !T2l 11,1#1 (
l ,l 851

N21

~••• !1•••

~7!

as sum of transmission probabilities from the left to the rig
contact with 0, 1, . . . intermediate passages through vir
reservoirs. This infinite series describing the random walk
the electrons can be summed analytically. We note thaT
itself is symmetric due to time-reversal invariance. The
fore, it is no surprise that the virtual reservoirs flip the m
menta of absorbed electrons if the latter are fed back into
same channel; incoming and outgoing amplitudes in
same channel correspond to opposite momenta. Thus,
procedure of imposing current conservation only onto a p
of channels is well beyond the widely used description
Büttiker;5 it is, however, covered by the more general a
proach of Datta.10

III. CHARACTERISTIC LENGTHS

The phase coherence lengthl F is given by the mean dis
tance that an electron travels coherently, i.e., the distan
conserves its phase. In order to relate it to the absorp
probability g, we consider the unperturbed system~without
disorder, i.e., vanishing elastic backscattering! and obtainl F

in units of the number of passed dephasing regions betw
the scatterers as

l F5

(
n51

`

n~12g!n

(
n51

`

~12g!n

5
1

g
. ~8!

The mean free pathl m is the mean distance that an electr
travels without being scattered, i.e., without moment
change. In order to obtainl m in the unperturbed system, w
consider the~incoherent! reflection probabilityr̃ of a single
dephasing region which is given byr̃ 5āg. The resulting
~dimensionless! resistance caused by a pair of correspond
reservoirs isr05 r̃ /(12 r̃ ), which is additive for two inco-
herently coupled scatterers.5 We now show thatl mªr0

21 is a
useful definition for the mean free path: For a chain ofN
dephasing areas, this yields a serial~four-probe! resistance of
r5 Nlm

21 , and, because ofr5(12T)/T, a total transmis-
sion of

T5
1

11N/ l m
. ~9!

Equation~9! describes an Ohmic length dependence of
transmission; a section of lengthl m contributes a resistanc
unit to the total resistance.10

The effect of the coherent disorder can be described
the localization lengthl j . We are extracting this length from
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the ensemble-averaged transmission of purely coherent
tems, using the quantum scaling law of Andersonet al. ~Ref.
12!,

r~N!5eN/ l j21, ~10!

which differs from the well-known Landauer result3 by a
factor of 2. Reference 12 predicts, assuming random ph
between the scatterers, a localization length of the ensem
measured in number of scatterers, as

l j5^t&/^r & ~11!

with the ensemble averages of the reflection and transm
sion probabilitiesr andt512r of a single scatterer. For ou
numerical investigation, we have employed a constant refl
tion probability r k[r and random phasesp2k11,2k
5p2k,2k11P@0,2p@ ~indicated by arcs in Fig. 1!.

Performing numerical tests by logarithmically averagi
up to 104 realizations of a purely coherent system (g50)
consisting of up toN553104 scatterers, we have foun
quite a good agreement with Eqs.~10!, ~11! ~see Fig. 2!. We
have also tried a random box distribution with averager
instead of constant reflection probability; this neither had
influence on the validity of Eq.~11!, nor on the following
results involving both coherent and incoherent processes

IV. RESULTS

In order to investigate the interplay between the ‘‘micr
scopic’’ parametersr, g, and a and their counterparts, th
characteristic lengthsl j , l F , andl m , we distinguish between
the ‘‘conducting’’ regimel F, l j and the ‘‘insulating’’ re-
gime wherel j, l F .

Two representative results are shown in Fig. 3~left and
right, respectively!, where the computed ensemble-averag
total transmission is plotted as a function of the number
scatterers for dephasing which conserves, randomizes,
flips momenta (a51, 0.5, and 0, respectively!. Transmission
of the fully coherent system (g50) is similar to Fig. 2~but
not exactly the same due to the smaller number of avera
realizations!.

The ‘‘conductor’’ can be thought of being composed
phase-coherent units which are linked incoherently, resul
in an Ohmic length dependence of transmission. Si
dephasing destroys localization, dephasing with full mom

FIG. 2. Transmission of a chain ofN coherently coupled scat
terers with backscattering probabilityr 50.01. Each point is ob-
tained by logarithmically averaging 104 realizations. The dashed
line corresponds to Eq.~10! with a localization lengthl j5995(1
2r )/r .
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FIG. 3. Transmission as function of the number of scatterers for three different degrees of momentum conservationa. The elastic
backscattering probability isr 50.01 corresponding to a localization lengthl j599. The left diagram is calculated for dephasing probabi
g50.05, the right diagram forg50.005. Each point is obtained by logarithmically averaging 1000 realizations. Also indicated i
transmission of the coherent system (g50). The dashed and dotted lines indicate solutions of Eqs.~13! and ~11!, respectively.
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tum conservation (a51) always enhances transmissio
when compared to a fully coherent system (g50 in Fig. 3!.

The widely discussed case of simultaneous phase and
mentum randomization5 corresponds toa50.5; here, with
increasing number of scatterers, transmission first drops
to incoherent backscattering, but there is always a cer
length N such that the enhancement of transmission due
suppression of coherent localization outperforms the ine
tic backscattering for systems larger thanN. The absolute
value of the transmission, however, already has become
small. Therefore, enhanced conductance due to depha
can only be expected for a large degree of momentum c
servationa.

In the insulating regime, the dephasing rate, but also
backscattering rate are much smaller than in the above
cussed, ‘‘conducting’’ case. Withl j, l F , conduction prop-
erties are dominated by localization effects and cannot
understood in terms of incoherently coupled phase-cohe
units. Dephasing supports transmission significantly only
system sizes larger thanl F when a deviation from the expo
nential dependence@described by Eq.~11!# in the right dia-
gram of Fig. 3 can be noticed. Finally, one would also exp
an Ohmic behavior for very large system sizesN@ l F . Some
enhancement of transmission in the insulating regime c
pared to the conducting regime appears but only fora,1
~which can be seen comparing the two plots in Fig. 3!. This
is not unphysical: A largel F means small dephasing, whic
leads to a suppression of the quantum localization of
coherent system and thus increases transmission. For
larger dephasing~approaching the conducting regime!, we
get an increasing additional Ohmic resistance which fina
causes the transmission to drop again~for a,1).

In the insulator, the relative enhancement of the transm
sion for a51 compared toa50.5 ora50 is much smaller
than for the case of the conductor, momentum conserva
has less influence in this regime.

The importance of momentum conservation is best see
Fig. 4 where the dependence of the transmission on
dephasing rateg is plotted. Only fora51, transmission in-
creases monotonously with increasingg. In the incoherent
limit g51, an Ohmic transport regime is reached with ea
single scatterer contributing the resistancel j

21 @see Eqs.~9!,
~11!#, resulting in a transmission
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T51/~11N/ l m1N/ l j!. ~12!

For a50.5 anda50, transmission passes through a cert
maximum which has already been found for the casea
50.5 in Ref. 5; beyond this maximum, the additional res
tance of the dephasing reservoirs causes a rapid decline

In the following, we compare our numerical results~Figs.
3 and 4! to a formula which has been proposed by Ba
et al.13 on the basis of ensemble-averaged quantities.
dashed lines in Figs. 3 and 4 have been calculated usin
slightly modified version of this formula.

In this approach, the transmission is given as

T5
1

11N/ l m1rd~N ,l j ,l F!
~13!

with rd being the resistance due to disorder for the case
infinite l m . Equation~13! can be seen as a generalization
Eq. ~9! towards the inclusion of disorder. The validity o
Mathiessen’s law is assumed in the sense that the two
cesses which cause momentum change, namely mome
flip by the reservoirs and coherent reflection by the scat
ers, give independent contributions to the resistance. N

FIG. 4. Total transmission for a chain ofN5500 scatterers as a
function of the dephasing parameterg for three different degrees o
momentum conservationa. The elastic backscattering probability
r 50.01 corresponding to a localization lengthl j599; each point is
obtained by logarithmically averaging 1000 realizations. The lin
are obtained from Eq.~13! which is applicable forg.1/N ~indi-
cated by the arrow!.
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that they do not depend onl j and a, respectively. Surely,
quantum resistance is generally not additive. However,
range of validity of the approach of Ref. 13 is surprising
large~see Fig. 4!. Our numerical verification of the result o
Band et al. shows excellent agreement. A prerequisite
this is our dephasing model, which allows for momentu
conservation.

In the presence of dephasing~for finite l F
21), rd can be

built up recursively from the resistance of the purely coh
ent case,rc(x; l j)5ex/ l j21, and from the probability density
P(x;N,l j ,l F) for an electron to travel coherently a distan
x within the disordered wire and to lose phase information
position x by a dephasing event. Bothrc(x; l j) and
P(x;N,l j ,l F) are ensemble averages. In the casel F,N,
Bandet al. obtain

rd~N,l j ,l F!5

NE
0

N

P~x;N,l j ,l F!rc~x; l j!dx

E
0

N

xP~x;N,l j ,l F!dx

. ~14!

Since both localization and dephasing processes lead t
exponential length decay of the probability,

P~x;N,l j ,l F!5 l l
21e2x/ l l1e2N/ l ld~x2N!, xP@0,N#

~15!

is a plausible choice, with a disorder modified phase coh
ence lengthl l( l j ,l F). In their original work, Bandet al.
have proposed

l l
215 l F

2112l j
21 ; ~16!

however, in more recent work,14,15 a phase coherence leng
in a disordered quantum wire is defined in a similar cont
as

l l
215 l F

211 l j
21 . ~17!

Our numerical results are better described using Eq.~17!.
Equation~13! has been employed for Figs. 3 and 4. Th

gives a rather good agreement, except for the casel F. l j

~right diagram of Fig. 3! where the contribution of inelasti
backscattering (a50) to the resistance is slightly underes
mated; Mathiessen’s law may thus not be valid in this
gime.

For the interesting case of enhanced dephasing rates
~13! can be used to estimate the achievable change of tr
mission compared to purely coherent transmission. T
maximum enhancementDT is obtained forl F50, l m5`;
using Eqs.~10! and ~12!, we obtain withxªN/ l j

DT51/~11x!2e2x. ~18!

This yields a maximumDTmax'0.20 forxmax'2.51.
e
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V. CONCLUSIONS

We have presented a model of general scatterers w
allows us to investigate quantum transport through a dis
dered system in the presence of dephasing with a tun
degree of momentum conservation. We obtained the ra
obvious result that momentum conservation is essentia
dephasing is to enhance transmission. From Fig. 3, it is
dent that support for a quantized conductance by depha
can be expected in the regimel F,N' l j .

Our numerical results have been compared to a gen
but heuristic picture developed in Ref. 13 which is based
the validity of Mathiessen’s rule and anad hocassumption
for a probability densityP(x;N,l j ,l F); it is not derived from
a microscopic theory, but gained its plausibility from its v
lidity in various limiting cases. Furthermore, it is not evide
that average quantities asrc(x) and P(x;N,l j ,l F) can be
employed in a recursive formula for the transmission, sin
sample averaging is not a simple commutative operation
since there are different types of averaging procedures w
often proved intuition wrong in the past.12 Therefore, it is
rather surprising that Eq.~13! gives a good fit of our data
except for the strongly insulating regime,l j! l F!N.

However, while the previously discussed approach
Band et al. yields a good agreement for the ensemb
averaged transmission, it cannot predict fluctuations. For
investigation of conductance quantization effects, it is hig
desirable to describe a single system or at least the app
bility of results for ensemble averages to a particular reali
tion. Here, our general quasimicroscopic model provide
helpful tool. In nanosystems exhibiting conductance qua
zation, elastic backscattering is reduced~but not absent! be-
cause of the larger subband spacing which is itself indu
through the geometrical confinement. At higher tempe
tures, one has to account for phononic interaction, nota
with longitudinal phonons, leading to dephasing but not
elastic backscattering. As mentioned in the Introduction, o
can describe this situation by momentum-conserving dep
ing which was not included in previous models. While w
found an excellent agreement with the approach of Ref.
over a wide range, the domain of applicability
~quasi-!quantization in nanosystems would be forN< l F

, l j . Work along these lines is in progress. An advanta
compared to a heuristic approach is that we are able to
vestigate also fluctuations and single realizations.

Note added in proof.After submitting the manuscript, two
related papers were brought to our attention. The cond
tance for a double barrier with two types of reservoirs w
and without momentum conservation was compared
Büttiker.16 The role of dephasing for the shot noise for t
case of momentum preserving reservoirs was investigate
Büttiker.17
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