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Plasmon polaritons of metallic nanowires for controlling submicron propagation of light
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We use the Green dyadic technique to study the propagation of a local excitation along metallic nanowires
of a subwavelength cross section. The metallic nanowires are elongated parallelepipeds deposited on a trans-
parent substrate. A tightly focused plane wave illuminates one end of the nanowires. The localized surface-
plasmon resonances of the nanowires propagate the local excitations over distances larger than the incident
wavelength. The properties of the electromagnetic eigenmodes of the nanowires are analyzed in terms of the
local density of states.@S0163-1829~99!02136-0#
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I. INTRODUCTION

The interaction of light with small metallic particles ha
been an intensive field of research for a long time.1 Small
metallic particles sustain electromagnetic modes known
localized surface plasmons~LSP’s! which account for most
of their optical properties. Up to the last decade, experim
tal studies of LSP’s were restricted to the analysis of far-fi
properties of large ensembles of particles. Recent impro
ments of the near-field optical microscopy techniques no
days allow the observation of LSP’s in the vicinity of ind
vidual particles.2,3 Near-field experiments have alread
demonstrated the possibility of probing the optical near-fi
generated by surface plasmons and, associated with loca
plasmons of nanoscopic particles, metallic particle LSP’s
suggested to be relevant to various technologies such
micro-optics4 and light guiding devices of subwaveleng
size.5 Recently, Quintenet al. theoretically investigated elec
tromagnetic energy transfer along chains of spherical si
clusters.6 On the basis of a model in which a plane elect
magnetic wave is scattered and absorbed by only the
particle of the chain, they found that dipole-dipole coupli
between the particles can be optimized to propagate this
cal excitation over a distance of several hundred nanome
Plasmon coupling between small gold particles aligned
form a long linear chain was recently observed using a p
ton scanning tunneling microscope.7

In this paper, we demonstrate electromagnetic ene
transport through metallic nanowires deposited on a die
tric substrate. The nanowires are metallic elongated para
epipeds. The two short axes of the finite-size wires are m
smaller than the incident wavelength, while the long axis
larger than this wavelength. We determine the propaga
conditions of a local excitation along the nanowires by co
puting the near-field distribution above the nanowire wh
one end is locally illuminated by a focused plane wave. S
tion II summarizes the Green dyadic method used to perf
such near-field calculations. The mathematical descriptio
PRB 600163-1829/99/60~12!/9061~8!/$15.00
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the electromagnetic field associated with a linearly polariz
focused plane wave are also given in this section. The re
nance conditions of a nanowire with fixed geometrical
mensions are presented in Sec. III. Section IV brings to
fore the usefulness of the concept of the electromagnetic
cal density of states~LDOS! to identify localized plasmon
resonance. Section V demonstrates how to use the gui
properties of nanowires to excite single metallic particles

II. THEORETICAL BACKGROUND

Most methods modeling the scattering of light by reson
metallic particles have a limited range of validity. For e
ample, the quasistatic treatment of the scattering is relia
only if the geometrical dimensions of the particles are mu
smaller than the incident wavelength.1 If the dimensions of
the particles are not negligible compared to the incid
wavelength, Mie’s theory can be applied, but only in the ca
of scattering by spherical particles or clusters of spher
particles.8 In our case, we consider an elongated nanow
with a long axis that is larger than the incident waveleng
To compute the field scattered by such a system, we u
rigorous Maxwell equations solver which accounts for t
phase retardation effects and for the rather low symmetry
the particle. Among several techniques well suited to so
Maxwell equations accurately, we choose the Green dya
method~GDM!, because it provides a direct link to the fo
mulation of the electromagnetic LDOS which will be use
below.

A. Green dyadic method

The technique has been already widely described p
nomena involving dielectric objects9–13 or metallic resonant
cluster aggregates.14 In this section, we just summarize th
main steps of the computational procedure.

The situation we consider is shown in Fig. 1. A nanow
with a volumeV and a dielectric function«2 is deposited on
the interface that separates two semi-infinite dielectric me
9061 ©1999 The American Physical Society
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9062 PRB 60WEEBER, DEREUX, GIRARD, KRENN, AND GOUDONNET
described by their dielectric constants«1 and«3. The system
is illuminated by an incident beam, with an arbitrary spa
distribution and a harmonic time dependence of the fo
exp(2 ivt). The electric field satisfies the vector wave equ
tion

2¹W 3¹W 3EW ~rW,v!1«~rW,v!
v2

c2
EW ~rW,v!50, ~1!

whererW5(x,y,z) is the vector position and where the fun
tion «(rW,v) is defined as

«~rW,v!5«2 if rWPV,

«~rW,v!5« re f~z! if rWP” V. ~2!

The dielectric function« re f(z) that described the referenc
system, i.e., the flat interface separating the substrate«1 and
the external medium«3, can be expressed as

« re f~z!5«31Q~2z!~«12«3!, ~3!

whereQ(z) denotes the Heaviside function. Using this de
nition, Eq. ~1! can be rewritten as

2¹W 3¹W 3EW ~rW,v!1« re f~z!
v2

c2
EW ~rW,v!

5
v2

c2
@« re f~z!2«~rW,v!#EW ~rW,v!. ~4!

If the right-hand side of Eq.~4! is interpreted as a sourc
term, the general solution of Eq.~4! can be expressed as a th
sum of the incident fieldEW 0(rW,v) and the fieldEW s(rW,v) scat-
tered by the nanowire:

EW ~rW,v!5EW 0~rW,v!1EW s~rW,v!. ~5!

The fieldEW 0(rW,v) is the solution of Eq.~4! when its right-
hand side is zero. It thus corresponds to the field refracte
the flat interface.

FIG. 1. Side view of the computational situation.
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In order to determineEW s(rW,v), one has to consider th
Green dyadicGJ re f(rW,rW8,v) associated with the bare inte
face, which is defined by

2¹W 3¹W 3GJ re f~rW,rW8,v!1« re f~z!
v2

c2
GJ re f~rW,rW8,v!

51Id~rW2rW8!. ~6!

Taking the posterior scalar product of both sides of Eq.~6!

with the vector (v2/c2)@« re f(z)2«(rW,v)#EW (rW,v), and inte-
grating over the whole space with respect torW8, leads to

EW s~rW,v!5
v2

c2 EV
drW8GJ re f~rW,rW8,v!

3@« re f~zs!2«~rW8,v!#EW ~rW8,v!. ~7!

Introducing Eq.~7! into Eq. ~5!, one obtains an implicit
Lippmann-Schwinger equation

EW ~rW,v!5EW 0~rW,v!1
v2

c2 EV
drW8GJ re f~rW,rW8,v!

3@« re f~zs!2«~rW8,v!#EW ~rW8,v!. ~8!

This Lippman-Schwinger equation~LSE! allows the calcula-
tion of the electric field anywhere in the space if the fie
inside the scatterer is known. However, the Green dyadic
to be derived first.

The tensorGJ re f(rW,rW8,v) describes the electric field at th
observation pointrW induced by a point source located atrW8.
In our situation, each point inside the volumeV of the wire
is a point source. Since we are interested in the field scatt
in the upper medium, the field emitted atrW8 can reachrW after
a direct propagation through the homogeneous upper
dium or after reflection on the interface. As a consequen
the Green dyadic is expressed as a sum of two contributi

GJ re f~rW,rW8,v!5GJ h~rW,rW8,v!1GJ sur f~rW,rW8,v!, ~9!

whereGJ h is the tensor associated with a homogeneous
dium with a dielectric constant equal to«3, and whereGJ sur f
accounts for the interaction of the field radiated by the po
source with the interface. The detailed calculation proced
of each contributionGJ h andGJ sur f can be found respectively
in Refs. 15 and 16.

To compute the field inside the particle numerically, it
first necessary to discretize the scatterer as an arrangeme
N cells. If rW i denotes the center position of thei th cell, the
LSE reduces to a linear system that can be written in
matrix form
S EW ~rW1 ,v!

A

EW ~rWN ,v!
D 5S 1J2VGJ re f~rW1 ,rW1! . . . VGJ re f~rW1 ,rWN!

A A

VGJ re f~rWN ,rW1! . . . 1J2VGJ re f~rWN ,rWN!

D 21S EW 0~rW1 ,v!

A

EW 0~rWN ,v!
D , ~10!
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where V5(v2/c2)(«32«2)v, v being the volume of one
cell. Since all the components of the electric field in t
particles have been obtained from system~10!, it is then a
simple matter to derive the electric field anywhere in t
upper medium using a discretized form of Eq.~8!:

EW ~rW,v!5EW 0~rW,v!1V (
rW iPV

GJ re f~rW,rW i !EW ~rW i ,v!. ~11!

B. Focused plane-wave model

Near-field experiments demonstrating the local excitat
of surface plasmons on thin films or LSP’s on single meta
particles have already been reported.17,18The local excitation
has been achieved by illumination through a tapered m
coated optical fiber which is equivalent to a subwavelen
aperture. In our case, the local excitation of the nanowir
realized in a classical way with a focused plane wave. Le
consider the situation depicted in Fig. 2. A nanowire dep
ited on a glass plate is locally excited by a converging in
dent wave. The incident plane wave is focused through
glass plate by an immersion oil objective. The optical refr
tive index of the objective lens, the immersion oil, and t
glass plate are chosen to be equal. If the optical index of
lens is only slightly different from the index of the surroun
ing medium, the application of the first Born approximati
leads to neglect of the back-reflection of the scattered l
on the entrance side of the objective lens. As a conseque
we can consider that the nanowire lies on a semi-infin
homogeneous medium. The field diffracted by the parti
can thus be calculated using the GDM with the surface ten
defined above.

From Eqs.~10! and ~11!, all we need to compute th
scattered field is the zero-order solutionEW 0(rW,v), i.e., the
electric field associated with the focused plane wave tra
mitted through the bare interface. Most of the works deal
with the scattering of finite-size beam rely on a plane-wa
expansion of the beam in order to compute the contribu
of each plane wave of the spectrum separately.19,20 Because
the GDM leads to a real-space discretization of the scatte
such a procedure is not necessary in our case. We just
to know the components of the focused fieldEW 0(rW,v) at any
point located in the upper medium (z.0).

The model we use to describe the fieldEW 0(rW,v) was de-
veloped by To¨rök and co-workers to study the structure

FIG. 2. Diagrammatic view of the local illumination of th
nanowire by a focused plane wave.
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the electric field associated with a plane wave focus
through an interface between two materials with differe
refractive indexes.21–23 Assuming that the incident plan
wave is linearly polarized along thex direction and is fo-
cused on the upper side of the interface, the electric fi
transmitted to the upper medium«3 reads

E0,x~x,y,z!52 i F I 01I 2

~x22y2!

r i
2 G ,

E0,y~x,y,z!52 i I 2

2xy

r i
2

, ~12!

E0,z~x,y,z!522I 1

x

r i
,

wherer i5(x21y2)1/2, and whereI 0 , I 1, and I 2 are defined
as follows:

I 05E
0

a

df1Acosf1sinf1~ts1tp cosf3!J0~A«1k0r i!

3exp~ iA«3k0 cosf3z!,

I 15E
0

a

df1Acosf1sinf1~tp sinf3!J1~A«1k0r i!

3exp~ iA«3k0 cosf3z!,

I 25E
0

a

df1Acosf1sinf1~ts2tp cosf3!

3J2~A«1k0r i!exp~ iA«3k0 cosf3z!. ~13!

In Eqs. ~13!, a denotes the angle between the margin
rays and thez axis;ts andtp are the Fresnel coefficients fo
s and p polarized plane waves, respectively, andk0 is the
wave number of the incident wave in vacuum. The quantit
J0 , J1, andJ2 are the zeroth-, first-, and second-order Bes
functions of the first kind, respectively. The anglesf1 and
f3 are related by Snell’s law. In order to show the structu
of the focused electric-field wave, in Fig. 3 we report a s
quence of electric intensity maps computed over the b
interface for an incident wavelength in vacuuml5633 nm.
The observation plane is in air («351.0) and is located a
zobs525 nm over the glass substrate. The numerical aper
~NA! of the immersion objective lens has been chosen eq
to 0.9. Such a value of the NA is realistic, and can be ea
achieved with oil immersion microscope objectives. If t
dielectric function of the glass substrate is«152.25, from
the well-known relationa5arcsin(NA/A«1), we find that
the angle of incidencea of the marginal rays is about 36.9°
We have used 201 samples to perform the angular inte
tion of I 0 , I 1, andI 2. The four maps in Fig. 3 are normalize
with respect to the electrical intensity at the intersection
tween the vertical axis passing over the focal point and
observation plane. TheuE2u map shows a spot slightly elon
gated in thex direction. This nonsymmetric spot is most
due to the contribution of the longitudinalz component of
the electric field. The maximum contribution of thex, y, and
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z components to the total electric intensity are in the ratio
1, 0.0035, and 0.16, respectively. The spatial distributi
and the relative weights of each component can be dire
compared to the results presented in Refs. 24–26. Excep
the wavelength, the illumination conditions~polarization and
NA of the objective! described above will be kept consta
for all the numerical applications performed in the followin
sections.

III. NEAR-FIELD AROUND A RESONANT NANOWIRE

In this section, the propagation conditions of a local el
tromagnetic excitation along a metallic nanowire are de
mined. We first consider a nanowire made of gold with
length of 1.5 mm, a width of 30 nm, and a height of 15 nm
The dimensions of the nanowire have been chosen to b
the range of feasibility of current nanofabrication techniqu
such as electron-beam lithography.27

The optical properties of small metallic particles a
strongly influenced by localized surface plasmon which
the collective oscillations of electrons. The LSP excitati
conditions of nanoscopic metallic clusters are well und
stood on the basis of a relatively simple formula deduc
within the nonretarded approximation~the quasistatic re-
gime!. In the case of nanowires, the elongation in one dir
tion up to a mesoscopic size makes the matter more diffi
because the phase retardation effects cannot be negl
anymore. Simple formulas similar to those produced by
nonretarded approximation are not available. Therefore
determine the excitation conditions of nanowires, we n
merically perform a spectroscopic analysis over a wide sp
tral range.

Figure 4 shows the spectrum of the intensity compu
over the ‘‘exit’’ end of the nanowire when the incident wav
length is swept from the visible to the near-infrared. To co
pute this spectrum, the center of the incident beam has b
shifted away from the other ‘‘entrance’’ end of the wire
order to reduce the area of the particle illuminated by

FIG. 3. Electric intensity maps of the focused plane wave tra
mitted through the bare glass-air interface. The incident plane w
is linearly x polarized, and the objective lens has a NA of 0.9.
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incident light. The shift has been chosen to bel dependent,
and fixed tol/4 in order to compensate for the spot si
growing with increasing wavelength. In the numerical wo
the scatterer is discretized with 1600 cubic cells. Because
volume of the wire is large enough to exclude intrinsic s
effects, we use the bulk values tabulated by Palik to desc
the dielectric function of gold.28 The signalQ computed ver-
sus the wavelength is defined as

Q~l!5
1

SEs

uE~x,y,zobs,l!u2

uE0~xb ,yb ,zobs,l!u2
dS, ~14!

whereS is an area with a surface of 100350 nm2 located
above the ‘‘exit’’ end of the nanowire at a distance of 10 n
from the top of the nanowire.E0(xb ,yb ,zobs,l) is the elec-
tric field associated with the incident beam at the point
cated in the observation plane above the ‘‘entrance’’ of
wire. l refers to the wavelength of the incident light
vacuum. The quantityQ(l) can be understood as a kind o
near-field scattering coefficient29 that measures the near-fie
response at the ‘‘exit’’ end of the wire relative to a give
local excitation at the ‘‘entrance.’’ Eventually, this coeffi
cient is proportional to the signal that would be detected b
photon scanning tunneling microscope. The spectrum plo
in Fig. 4 exhibits several peaks in the red and near-infra
regions. Because the peaks occur at low frequency, we
assume that they are related to longitudinal eigenmodes,
excitation with the electric field parallel to the long axisx of
the nanowire.31,1 This assumption is supported by the fa
that no significant signal is detected at the ‘‘exit’’ end of th
wire if the incident beam is mostly polarized in the tran
versey direction. Note that for microwave wavelengths, it
known that longitudinal resonances can be sustained b
highly conducting wire in free space when the wire’s leng
is equal to an odd number of half-wavelengths.30 Of course,
in our situation, the high conductivity criterion is not verifie
for all wavelengths of the spectrum, so that the effect d
cussed here relies on the features of the frequency-depen
dielectric function of gold.

Figure 5 shows the spatial distribution of the near-fie
electric intensity over the wire for two incident wavelengt
l5633 and 835 nm. Similarly to the computed spectrum
Fig. 4, the observation plane is located 10 nm over the top
the wire and the intensity is normalized with respect

-
ve

FIG. 4. Near-field spectra of the 1.5-mm-long nanowire. The
incident spot center is shifted by a distance ofl/4 with respect to
the ‘‘entrance’’ end of the nanowire. The detection areaS is located
10 nm over the top of the nanowire.
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uE0(xb ,yb ,zobs,v)u2. Out of resonance, forl5633 nm, only
the area of the wire directly illuminated by the incident sp
shows up in the near-field map. Ifl is changed to 835 nm
we observe a kind of standing-wave pattern over the wire.
refine the analysis, in Fig. 6 we show a crosscut of b
images in thex andy directions. Forl5633 nm, the crosscu
shows that the intensity along thex direction is strongly
damped. For a distance of 250 nm from the ‘‘entrance’’
the nanowire, the detected intensity is reduced to 10% of
normalized intensity. Forl5835 nm, the normalized inten
sity exhibits a strongly oscillating behavior. The normaliz
intensity 1.4 mm away from the ‘‘entrance’’ end of the wire
is still 40%. If the local probe of a near-field optical micro
scope is brought very close to the ‘‘exit’’ end of the wire,
should be possible to detect the field intensity of the LSP
has been excited by the incident beam. In that sense,
nanowire can be regarded as a subwavelength waveg
Although the purpose of this work is not to optimize th
waveguide performances of the nanowire, we can expect
the coupling efficiency with the eigenmode of the wire cou
be significantly improved by adjusting the parameters of
mensions and material of the wire. Such an optimization w
shown to be possible by Quinten and Kreibig in the case
silver particles chains.6 In order to gain more insight into th
structure of the wire’s eigenmodes, we introduce the conc
of electromagnetic local density of state in Sec. IV.

IV. LOCAL DENSITY OF STATES ABOVE A METALLIC
NANOWIRE

Up to now, we have used the GDM only to compute t
electric near-field scattered by the nanowire, but much m
physical information is contained in the Green dyadic.
analogy with the scalar Green’s-function theory,32,33one can

FIG. 5. Side view of the illumination condition and electr
near-field map computed 10 nm over the top of the nanowire.~A!
out of resonance,l5633 nm.~B! At resonance,l5835 nm.
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see that the LDOS can be extracted from the Green dy
using the relation34

h~rW,v!52
1

p
Tr,I GJ ~rW,rW,v!, ~15!

where Tr andI stand for the trace and the imaginary part
GJ (rW,rW,v), respectively. In Eq.~15!, the tensorGJ denotes the
Green dyadic of the complete system, i.e., the reference
tem in the presence of scatterer. The calculation
GJ (rW,rW8,v) is performed thanks to the Dyson equation15

GJ ~rW,rW8,v!5GJ re f~rW,rW8,v!

1E
V

drW9 GJ re f~rW,rW9,v! VJ~rW9,v! GJ ~rW9,rW8,v!.

~16!

In the context of electron physics, the LDOS is understood
the density of the probability to find an electron at the obs
vation point with a given energy. The density of the pro
ability is related to the square modulus of the electron wa
function which can be computed using the Green’s-funct
formalism. In our case, the quantity we compute with t
Green dyadic is the electric field. As a consequence, in a
ogy with the Green’s-function theory, the electromagne
LDOS calculated using Eq.~15! gives the square modulus o
the electric field associated with the eigenmode of the s
terer at a given frequency. Note that the electromagn
LDOS computed here does not correspond to the squ

FIG. 6. Crosscuts of the near-field map shown in Fig. 5.~a!
Along the x direction: ~A! l5633 nm, and~B! l5835 nm. The
white arrow shows the position of the ‘‘entrance’’ end of th
nanowire.~b! Along the y direction: ~A! l5633 nm @the initial
values of~A! multiplied by 100#, and~B! l5835 nm.
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modulus of a photon wave function since, in quantum fi
theory, the electric field is an observable and not a pho
wave function.

In Fig. 7 we show the LDOS computed along thex direc-
tion, 10 nm over the top of the wire. The LDOS gives
image of the electric-field intensity associated with t
eigenmodes of the object. The eigenmodes of the wires
be understood as solutions of the vector wave equation w
no incident field illuminates the object. As a consequen
the LDOS profiles exhibit symmetric shapes, since no dis
sion is induced by the superposition of the incident field. F
a frequency that corresponds tol5633 nm, the LDOS
shows an almost flat profile above the nanowire, except o
the edges where tiny damped oscillations occur. Convers
for l5835 nm, the LDOS profile exhibits a strong oscilla
ing behavior. Except for the two sharp oscillations over
edges of the wire, we observe the same number of period
the LDOS profile and on the corresponding crosscut of
normalized intensity reported in Fig. 6. It appears that
oscillations observed on thex crosscuts of Fig. 6 reveal th
intrinsic structure of the excited eigenmode. Note that suc
similarity between the LDOS and the electric intensity p
files is only observed when the incident light locally excit
the nanowire. If the object is entirely excited by an incide
plane wave, for example, polarization and phase effects

FIG. 7. Three-dimensional view of the computational situatio
Electromagnetic LDOS profiles calculated along the line (C-C8).
The line (C-C8) is located 10 nm over the top of the wire.
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downgrade the agreement between the LDOS and the ele
intensity. The physical explanation of such a result is co
tained in Eq.~11!. Considering this equation, one can s
that the total scattered field is the superposition of the in
dent field and the field radiated by the object. In the case
local illumination, because the amplitude of the incident fie
decays as a function of the distance to the focal point,
unambiguously observe the field associated with the eig
mode of the ‘‘exit’’ end of the nanowire. Conversely, if th
nanowire is excited by a plane wave, the scattered field
any point above the object is a coherent sum of incident
radiated field that can mask the field of the nanowire eig
mode. We can conclude that an eigenmode of the wire
convenient to propagate a local excitation if the LDOS o
cillates strongly over the object.

V. SINGLE-PARTICLE EXCITATION
WITH A NANOWIRE WAVEGUIDE

In previous numerical applications, we have been int
ested in the total electric-field intensity. The GDM also o
fers the opportunity to investigate the contribution of ea
component of the electric field separately. Let us now c
sider a gold wire with a volume of 1000330320 nm3. The
spectrum of the wire shown in Fig. 8 is obtained when t
entrance of the nanowire is excited as in the previous c
The spectrum shows three neat resonance peaks in the v
range. We choose an incident wavelength ofl5770 nm, and
compute the near-field intensity in an observation plane
cated 20 nm over the top of the object. TheuEu2 and uEzu2
maps reported in Fig. 8 are plotted with the same gray sca
It appears that thez component of the electric field suppor

.

FIG. 8. Near-field spectrum of the 1.0-mm-long nanowire and
electrical intensity near-field maps forl5770 nm. The observation
plane is located 20 nm over the top of the object.
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most of the intensity detected over the nanowire. At
‘‘exit’’ end of the wire, more than 90% of the total intensit
is due to thez component. Note that this behavior is n
inconsistent with an excitation of thex axis of the wire. A
small prolate ellipsoid excited at the resonance frequenc
its long axis can also scatter an electric near-field loca
strongly polarized along a direction perpendicular to the
cited axis. This result suggests that the electric field of
electromagnetic mode supported by the wire could be use
excite thez axis of a metallic particle placed close to the e
of the nanowire. In order to check this hypothesis, we c
sider the situation depicted in Fig. 9. At the end of two
mm-long nanowires, we have placed two gold particles el
gated in thez direction. Both particles, denoteda andb in
Fig. 9, have a height of 100 nm. Theb particle has a rect-
angular section of 20330 nm2, while the section of thea

FIG. 9. Top and side views of the single particle excitation se
and near-field maps calculated 20 nm over the top side of the
lated particles.~A! l5730 nm.~B! l5820 nm. The dashed profile
show the position of the two nanowires used as waveguides.
R

v.

a

e

of
y
-
e
to

-
-
-

particle is square with a surface of 30330 nm2. Using the
GDM, we have found that thez axis resonances of the pa
ticles a and b occur atla5730 nm andlb5820 nm, re-
spectively. Even if these two wavelengths do not corresp
to maxima of resonance peaks of the 1-mm-long nanowire
~cf. Fig. 8!, the quantityQ has a significant value for bothla
andlb . These two wavelengths have been used to comp
the maps shown in Fig. 9. One can see that, depending on
wavelength, a bright spot appears above one or the o
particle. Because the field amplitude of the nanowire mod
exponentially damped with the observation height, we c
not observe propagation along the wires. To reach the
particles, the field of the nanowire mode has tunneled ac
an air gap of 20 nm. In spite of the damping induced by
tunneling, the coupling between the wire and the partic
remains efficient. Such a configuration could be of expe
mental interest for many applications, since it achieve
single-particle excitation with the opportunity to switch fro
one particle to another by adjusting the incident waveleng

VI. CONCLUSION

Using a rigorous Maxwell’s equation solver based
Green’s dyadic technique, we have investigated the plasm
excitation of metallic nanowires. If the incident beam is p
larized parallel to the long axis of the particle and illuminat
one of the end of the nanowire, the local excitation can
guided along the nanowire by means of localized surf
plasmon over distances larger than the incident wavelen
When locally excited at the resonance frequency, the elec
near-field intensity scattered by the nanowire is related to
electromagnetic LDOS profiles computed over the obje
Therefore, local illumination offers the opportunity to ob
serve directly the structure of the eigenmodes sustained
the nanowires. Finally, we presented examples of the us
nanowires to excite individual particles at different wav
lengths.
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