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Damping in the vibrational spectroscopy of adsorbates with STM
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The damping of vibrationally excited adsorbates on metal surfaces may be an important issue in the observ-
ability of their vibrational spectra with a scanning tunneling microscope. In the present paper, we discuss these
effects in the framework of two-particle Green’s functions, following a method originally employed to describe
inelastic scattering in heterostructufés S. Wingreen, K. W. Jacobson, and J. W. Wilkins, Phys. Re¢0B
11 834(1989]. By dressing the phonon lines, one can take into account the finite lifetime of the oscillations
and obtain an expression for the total transition probability, through all the possible phonon channels. We also
show, in the no-damping limit, and for a single vibrating coordinate, the analytical correspondence between the
present method and the one presented in a previous related[Mork. Gata and P. R. Antoniewicz, Phys.

Rev. B47, 13797(1993]. [S0163-182699)02036-9

I. INTRODUCTION faces(Cu and Nj), in conditions that favor a resonant tunnel-
ing transition such as the one we are concerned with, both
Vibrational spectroscopy of chemisorbed species using aresently and in the previous wofk.
low-temperature scanning tunneling microscope should pro- What interests us here are the obstacles to experimental
vide a particularly convenient technique of identifying atomsobservation, which are intrinsic to chemisorption itself. Also,
and molecules on surfaces and in the study of their adsorg@mong other possibilities, we choose the damping of the ad-
tion properties and mutual interactions. Experimental evi-sorbate oscillations due to the excitation of electron-hole
dence of this kind of spectroscopy has been, however, scarceairs in the adsorbate-metal substrate system, as the main
More than a decade ago, Smihal?! obtainedsl/dV spec- channel for the dissipation of the oscillator energy. The im-
tra that could possibly be interpreted along the lines of ouiportance of this particular process has been emphasized by a
model in Ref. 2. But the instability of the tip-sample dis- number of workers, in particular GadztkUeba}? Persson
tance, as well as other factors have a large impact on thend Perssoft Persson and Hellsing,Persson and Ryberg,
fluctuations of the total tunneling curre(gee, for example, among others. One of the main results of these works is the
Ref. 3, precluding an unambiguous observation of the in-predicted dependence of the lifetime of the vibrational exci-
elastic effects we are seeking. Extrinsic factors, such atgtion on the inverse square of the adsorbate projected den-
noise, mechanical instabilities and others, have been progresity of states at the Fermi energy,(eg), as well as on the
sively reduced in recent experiments. However, one shoulthverse square of the electron-oscillatgiocal phonon™)
also take into consideration some of the inescapable, intrinsoupling constant, denoted here Y. Other predicted char-
sic, sources of signal degradation. acteristics of the electron-hole pair excitation mechanism are
Two different inelastic tunneling coupling mechanismsa lorentzian lineshapéut see Ref. 16 weak temperature
have been suggested by workers in this field: the electrordependence and a strong isotopic efféct.
dipole coupling, and the tunneling through an adsorbate reso- Unfortunately, these results indicate that the condition for
nance. Both may be, in principle, susceptible to be used fothe largest change in the resonant tunneling conductance co-
vibrational spetroscopy. However, for electron-dipole cou-incides with the condition for the strongest damping of the
pling, a change of conductance of at most 1% is expettedpscillation, with the possible result that the anticipated vibra-
whereas the tunneling through an adsorbate could provide, itional sidebands in the first derivativd/dV will be greatly
principle, relative changes of about 10 % in the conductancaeduced. Furthermore, since the total tunneling current is
especially when the resonance density of states is centeredgiten by the convolution of the transition rate with the den-
the Fermi level of the metal substratd? Note, however, sities of electronic state®0S) of the tip'® and of the sub-
that Persson and Baratoffredict a decrease in conductance, strate, it may very well happen that their structure will domi-
whereas we expected an increAs#ye to the opening of nate the observed conductance as a function of bias voltage
more tunneling channels. precluding, for reasons intrinsic to the chemisorption phe-
Most recently, Stipe, Rezaei, and W& observed inelas- nomenon, the attainment of this kind of vibrational spectros-
tic electron tunneling spectra, with a relative increase in theopy. It should be mentioned, however, that Stigteal®
junction conductance, at the excitation energies of the vibrawere able to minimize this problem by subtracting off the the
tional modes, of up to 12% for the case obH; on  DOS-dependent spectra obtained at a clean surface site,
Cu(100)® but not so large for the same molecule onaway from any adsorbed molecule.
Ni(100.1° These landmark results were achieved with an Our aim in the present paper is to develop a model de-
ultra-stable homemade scanning tunneling microscopgcribing these effects and making a direct comparison with a
(STM)” at a temperature of 8 K, by placing the tip above aprevious descriptichbased on the resolvent formulation of
single, isolated acetylene molecule adsorbed on metal suthe chemisorption problem. As an outcome of this connec-
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tion we show, in the Appendix, that there is an analytical 0, + . ‘ .
correspondence, at least in the case of a single vibrationalH1=Xa(CaCa—(Na))(B+B )+2| (VAICACI+ViAC| CA)
coordinate, between scattering in the gas phasbemisorp-

tion in the Newns-Anderson approach as presented in review t t

papers, e.g., by GrimléY or Muscat and Newrt$ and reso- +Zk (VaAKCACKT ViaCiCh)- 22

nant tunneling in heterostructures as, e.g., in Ref. 22. This

was shown explicitly some time agdfor the zero and one- I Ho the first term describes the atoor moleculé to be
phonon channels. GadZAfkhas pointed out the general cor- adsorped, the second _and third terms describe the substrate
respondence between the descriptions of Domcke an@nd tip states, respectlvely_, and the last term represents the
Cederbaurt? and Wingreeret al,2? using numerical simula- unperturbed adsorbate-oscillatbt;, on the other hand, de-

tions but without establishing explicitly, however, that ana_scribes the varigus interactions—the f"?‘ te“f“ qoupleg, _the
lytical connection state of occupation of the adsorbate orbital with its position

This paper is organized as follows. In Sec. Il we start Withcoordina’ce, the second and third terms couple the adsorbate

the same Hamiltonian as beférand follow Wingreen orbital with the substrate and tip states, respectively. The
et al.22 constant factorn,) represents the self-consistent equilib-

expressing the total current, elastic and inelastic, in”. S .
terms of a Fourier transform of a two-particle Green’s func-/um occupancy of the adsorbate orbital, €., without tunnel-
tion. This Green'’s function is solved for, leading to a current'"d current. As before, wnneling between tip and.adsorbate
as a sum over all possible phonon channels. Next, in Sec. I, ill be assumed to be represented by the mgtnx element
we review the results of Ueb3,of interest to the present Ak:.<A|H|k>:<A|H|t><t.|k>’ where|t) is the orbital of t.he
problem, concerning the electron-hole damping of the adsoJ—aSt tip a,tom fro”?’to Wh'C.h electre(%)$t256tunnel apRH[t) is
bate motion. In particular we extract the expression for theBardeen S j[unnellng matrix elgm :
dressed phonon propagator and, by inserting this modified Introducing a coordinate ?T')Sp'ag?meg“ through the new
propagator in the perturbation expansion for the aforemenPOnon operators such tha'"/=b""+ xa(na)/Q2, we re-
tioned two-particle Green’s function, we rederive, in Sec. IV, Write the Hamiltonian thusid=Hq+H,, with
the total current. This current reduces to the previous expres-
sion in the no-damping limit. We then compute the related Ho=eSchcat D, ecici+ >, ecicct Q(bTb+1/2) +a
resonant transition rate as a function of the incomitig) I k
electron energy relative to the shifted adsorbate orbital en- (2.3
ergy. This shows the main point of our present argument, thg 4
possible disappearance of the conductance vibrational side-
bands, which, as we argued previously, should provide infor- o, ; :
mation on the adsorbate vibration quantum. In Sec. V, we Hi=xa(Chca—(na))(b+b")+2> (Vachei+Viacica)
draw some conclusions pertinent to the observation of these !
spectra and, in the Appendix, we prove the consistency of
our two approaches by showing that, at least for a single + 2 (VACACK+ ViaCica), (2.4
vibration mode and in the absence of damping, the present :
many-body method and the simpler one we used previouslwhere we have defined a renormalized adsorbate energy
give the same analytical result for the transition rate. given by ex= 62+2(X2)2<nA>/Q (and which may include

image effectsand the constant factar= — (x3(na))%/ Q.
From S-matrix theory, the electronic transmission prob-
II. TUNNELING CURRENT ability between an initial statg;) in the tip and a final state
%I ¢y in the substrate, here through the intermediate resonance

We aim at describing the resonant tunneling transition a A}, is given by the thermal average’

a scattering event in the more general formalism of many

body Green'’s functions, with the restriction of a single vi- e BEn,
bration coordinaté*local phonon”). In this section we ob- T2(1, ,ki)=2 2 [(1¢:n¢|Ski N2, (2.5
tain, without damping, an expression for the total current ne m Zphonon

(e_Iastic plus inelastjc We only highlight the m_ain points in whereg=(ksT)"%, E,=0Q(n;+1/2) is the energy of the
this section because we follow Ref. 22 quite closely and ilator in stat (Ijz is the localized ilat
because the final result is, in fact, the same as in Ref. 2, usin@SCI ator in staten;) andZpnononis the localized oscillator

a resolvent technique. atﬁlﬁlogfuntct_lon. tor ab . b
Our starting Hamiltonian is the same as in Ref.I2, € > matrix operator above IS expressed by

=Hy+H4, where Lot
S=1—if TleiHotl/hHle—iHotl/ﬁ

—0o0

Ho=edchca+ > ecici+ >, ecic+Q(BTB+1/2)
| k

+oo fredtydty .
_|f J’ 12 2eIHotzth1Gr9t.(t2_t1)Hle_IHotl/ﬁ
(2.7 —x Jow f

(2.6

and where
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Gret(tr—1)=—i10(t,—t;)e 2"t (2.7 Green’s function according to the usual rules of many-body
perturbation theoR??2 leads to a transmission rate, at 0 K,
is the retarded Green'’s function operator, in the present casfiven by
to be applied to the intermediate resonant orliégl. H is
the total Hamiltonian operatoHl =Hy+H,, and the initial

[’

and final electron-phonon states are defined by their occu- Wl k)= 2 Win(e)d(e—€,—mQ), (212
pancies m=0
where
ki ini)=10a:(1);ni) [1;ne)=[0a:+ 1 i05). (2.8 i
The initial electron-phonon state describes an empty adsor- Wm(eki):27T/ﬁ|VAki|2|VIfA|ze_ng|Bm[z(5ki)]|21
bate orbital,n; adsorbate-oscillator phonons and the ground (2.13

states of both the tip, from which the tunneling electfk

is highlighted, and the substrate. The final electron-phonon m m\ & g
state describes an empty adsorbate orbitgl,adsorbate- B, [z(e )]= > (—1)j( - )E mlzle)—(j+Ha]
oscillator phonons and the ground state of the tip minus one ' =0 j/=ol! '

electron and of the substrate plus one electfigin, The tran- (214
Sied tip statdibelow the i Fermi levalio the empty adsor 10 31S0 9=(K/)%, 26 = e (eh— o) +il'2
predtip P Py ljﬁl({jre ei=extSR+a, IR being the chemical shift of the

bate resonance, to an empty state above the substrate Fe S ) .
level. In fact, the intermediate resonant state has a fraction@dSorbate level upon hybridization, given by the Hilbert
he leve(full) width I" which, in turn, is given

occupancy, but that occupancy is taken into account by affansform of t > !
k|VAk| 5(6_ ek)+27TEI|VAI| (S(E_ E|). One

fecting the total current by the correspondent vacancy factopy I'(€)= 272 . i X -
so that we will be able, from now on, to perform the calcu-€Xpects the interaction with the tip to have a negligible con-

lation of the transition rates as if the intermediate state werdiPution both to the chemical shift and to the level width,
vacant. due to its much weaker coupling to the adsorbate. In what

The transition probability for a tip electron of energy ~ follows we shall takd" th_’ be a constant independent of the
{0 be transmitted to the substrate with eneegyis given by~ S"S/9Y: IMPlying thak ™ is null.
o be a. smitied fo the substrate eneegys given by The total resonant tunneling current, for any number of
the Fourier transform vibration excitations(“phonons”) excited in the process,

can be written
dt,dt,ds,d
Tz(lfiki):|VAki|2|VIfA|2f f f f%
Jiorar =24 24 W(LKI[1= foups(€)] (1= (na)) Frip( i),

XO(t,—t1)0(s,—57) (2.15
x gletz /g ieg(ty syl where f,(€) and f,ps(€) are the Fermi-Dirac occupancy
factors, which are simple step functions fb=0K, and (1
T T
X(Ca(S1)CA(S2)Ca(t2)CA(t1)), (2.9 —(n,)) is the equilibrium vacancy factor associated with the

adsorbate orbital. Since, in the absence of damping, we can
separate this transition rate according to the number of
phonons produced and introduce the densities of electronic
states for the tip and for the substrate, we can also write the

and the transmission probability per unit tinv(l; ,k;), for
all the possible final phonon excitations of the resonant or
bital oscillator, is given bysee, e.g., Ref. 37

T2, k) 1 total current as a function of the applied bias voltagéip
W(l; ,ki)[sec‘1]=+= g|VAki|2|V|fA|2 negative, in the process we have been considetimgs
dt, w

Jiotal(V) =(1— <nA>)thinsubs 20 0(evV—-mQ)

drdsdt m=
<SR
XJ Wm(e)ptip(e_ev)psubs
< ei[(ek‘f E|f)T+ €,t- EkiS]/ﬁGA( T,S,t) mQ

(2.10 X (e—mQ)de (2.16

in which the electronic energies are being measured with
respect to the substrate Fermi lev@l,, and (), are the
_ T T tip and substrate volumes, respectively, and eaatompo-
Ca(nsD)=0(1O(S){Cal7=s)Ca(T)CA1)CA0) nznt defines the number of phc?nons ei/(cited in the trgnsition
(2.13 (m=0 corresponds to the elastic curremt=1 to the one-
is the two-particle, four-time thermodynamic Green’s func-phonon inelastic current, tcThis expression for the total
tion containing all information on electron-phonon as well asresonant current reduces to expressi@s and (56) in our
on adsorbate-electrodes interactions. The expansion of thjgevious model, Ref. 2, fon=0 and form=1.

where
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As a consequence of the equality of the two results for the Q
no-damping total current, elastic afehy-phononinelastic, Do(t;—ty)= —i(—) e Alu—tllig=i0 (i —t)/h (3 )
which is proven in the Appendix below, our previous con- Q'
clusions concerning the possible ratio between inelastic anghere the shifted adsorbate-oscillator vibration quanfum
elastic resonant currents remain the same—although varying given by the relation
widely with the adsorption conditions, that ratio could, in
principle, become of the order of 1088:2%8 (Q")2=02+20 R 1,5 ] — A% (3.7

The above expression f@- (t;—t,) reduces to the previ-
lIl. DAMPED OSCILLATOR PROPAGATOR ously used resultD_(t,—t,)= —i exd —iQ(t,—t,)/A], in

Uebd? considered the phenomenon of adsorbate vibrathe limit of no damping 4 —00Q'—Q).
tional damping on metal surfaces, due to the excitation of
electron-hole pairs in the overall electronic system. In pardV. CHANGED TRANSITION RATE AND CONDUCTANCE

ticular, he used a finite temperature propagator approach that

. . . It was shown, in Eq(2.10 above, that the transmission

is especially suitable for our present purposes. In fact, hewas, . = . . .
able to arrive at final results for the self-eneryy(«), to rate is given by a triple Fourier transform of the two-particle
) . " - Yed @), . propagatorG,(7,s,t), associated with the adsorbate orbital.
be associated with the “local phonon.” The real and imagi- . . . )
. .~ . The perturbative expansion of this propagator, according to
nary components of this self energy represent the shift in : . .
YR L the usual diagrammatic methods, introduces electron and

frequency and the widtkfinite lifetime) of the vibration.

i . ; . honon lines representing the respective correlation func-
Speuflcally, the a_pproxmate expression for the redshift du‘%ons. Our approach consists in dressing the phonon lines in
to adsorption is given by

the second-order diagranthe zeroth order diagrams do not

R TI ~—2\|2 1 contain phonqn lines and the first-order diagrams are) _nuII
e )] IMpaler), @D 2nd to determine the ne@®,(7,s,t) to all orders, once again
whereas the widtf is given by by a exponential resummatiéf?? As before, the “bare”

electron lines already include, in fact, hybridization of the
A=—2 1Mo w=Q/h)]=27|\|?Qpi(er) (3.2  adsorbate orbital, so that the corresponding propagators also

decay in time. These are given by
and gives the vibrational lifetimé,/A. In the above expres-

sions,\ is the electron-phonon coupling constéptesently GO ()= _i@(t)e*(iflﬁm)“ﬁ 4.2
denoted byxg), Q) the unshifted vibration quantum and , ' i i
paler) the value of the adsorbate density of states at th&/here e, and I' are defined as above, artdl is the step
Fermi level of the substrate. We assume a Lorentzian densifnction. _
of states, so damping will be strongest if the Lorentzian is_ According to this method, the perturbed propagator
centered at the Fermi level. Ga(7,s,1) is given by
From the above results, we can determine the perturbe (0
phonon correlationT function(A(t,) A(ty))=iD - (t,—t,), gA(T’S't)_Gg (r,8,0)
whereA(t) =b(t) +b'(t). Itis this perturbed propagator that (2 (2) (2)
we shall need to determine first and then to insert in the Xex;{ CAAT S+ CRAAT S+ GALT S Y .
perturbative expansion of the new Green’s function G(7,s,)
Ga(7,s,t), which will then include the effect of the oscillator 4.2)
damping. '
In order to pursue this objective, we start from Dyson’sG(AO)(T,S,t) is represented by a diagram with two electron
equation lines, G)(7,s,t) is represented by two electron lines con-
nected by a dressed phonon li@&2)(,s,t) andGZ)(7,s,t)
Dred @) ={[Dfer(@)] 1= e @)} %, (3.3 are represented by two electron lines in which one or the
other is straddled by a dressed phonon line, as in Ref. 22.
The new results for these zeroth and second-order propaga-

where the unperturbed phonon propagator is

tors are
D% (w)= 20 (3.9
el @)= 02 tie : GO(7,5,0)=[GQe(8)T* GOy(1), 4.3
and, by way of the spectral density functidd(w)= 5 o 0p O 2A
—2 Im[D,e(w)], take advantage of the relatidd- (w)= G(1,5,)=G(7,5)(xn)>—

—i[ng(w)+ 1]B(w), which gives, at 0 K Q' [(A)*+(Q)?

D (w)=—iB(w). (3.5 XO(t—7+9)[70(7)—(7—1)O(7—1)
. . . . —(7—5)O(7—s)]/fi+e All/hg=i0 7k
Fourier transformind - (w) to the time domain, we ob-
tain the final result under the restrictions of zero temperature X[V —iW sgn T)]_e—Alr—tllhe—iQ’(r—t)/h
and weak dampindi.e., damping time#i/A much longer
than vibration period, oA<Q,Q"), X[V—iWsgnr—t)]
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e Alr-s—tlitig=iQ' (r=s=0)/h

x[V—ingr(r—s—t)]], (4.9
(x20/Q’
G 7,8,)=G0(7,5,t)———
fATSH=CRA(ms )= o
1 A !
X1 —tlh+ [1—e-(Ari0OvAT
A+iQ)’

(4.5
(X200’

G2 7,5t =GO 7,5t
Rursn=6P(rsn=——

Y

x[—s/ﬁ+
A—i

[1_e(Am’)s/h]]_
(4.6)
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In G)(7,s,t) we defined the factors
v AZ_(Q/)Z (4 7)
[A2+(Q/)2]2’ '
2AQ
W= —— 4.9

[A2+(QI)2]2'

In the above we also have the step functtdrand the func-
tion

-1 if x<0
sgnx)=4 0 if x=0
+1 if x>0.

The final result for the perturbed two-particle Green’s
function G,(7,s,t) is somewhat involved:

Q F
GA<r,s,t>=G&%t)[@&?iet(s)]*exp(<x2>25D2[2FR—5®<t—r+s>[r®(r>—<r—t>@<r—t)—(r—s)@(r—s)]/h

Fl
+(1/2)5(t+s)/h

+i %(t_s)/h_FefAt/hefiQ’t/h_F*efAS/heiQ’slh_FF(T)efA\r\/ﬁefiQ’f_F(T_t)efA|rft|/hefiQ’(~rft)/h

_ F(’T_ S)e—A|T—S|/he—iQ'(T—S)/ﬁ+ F( r— S_t)e—A|T—S—t/ﬁe—iQ'(T—S—t)/ﬁ] ) ’

where we have defined the factors

p-— 2 (4.10
A2+ () '
F(x)=FR+iF" sgn(x), (4.11
(A)?=(Q")?
FR=———— 4.1
@z (4.12
F'=—% (4.13

4.9

damping, viz., P(t) = Ga(t,1,1) =[G e (1) 2
o« exd — (I'/2)t/%]. We can explain this result by noting that
nothing in the present formalism allows for an interference
between the two distinct lifetime associated processes that
take place, namely the decay of the localized phonon, due to
energy dissipation to the electron-hole continuum, and the
width of the electronic resonance, due to its interaction with
the electronic degrees of freedom of the underlying substrate.
These processes occur independently in the present model
because of the assumption that the Green’s function of the
electronic resonance takes an exponential form, a step nec-
essary in order to keep the problem soluble.

Having obtained the result foG,(7,s,t), the modified
transition rate and resonant current are of the same general
form as given by Eqs(2.10 and (2.15, respectively, even

All these results are consistent with the ones in Sec. IthoughW(l; ,k;) is now different from Eq(2.12.
(and with Ref. 2 in the limit with no damping A—0 and In expressior(2.15 above we first transform the summa-
Q'—Q) and considering only a single vibration coordinate.tions over electronic states to integrals in the electronic en-
We also note that the decay law for an electron put at timeergies, through the use of the density of states in energy,
t=0 in the adsorbate orbital is still the same as withoutp(e), along with the volume$) of tip and sample, for each
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side of the tunneling junction. Taking Fermi-distribution in which o is a new dummy integration variable and Re
functions at zero K as step functiofis the result is, for any extracts the real part of the integral. On the other hand, be-
number of excited phonons, sides the already defined paramet&rsand FR, we have
introduced a larger electronic resonance width, denbted
and, for compactness, the three new factty8(e,), both

+ oo
Jmta':(l_mA))eﬁx deiippip( €00 (€r,~ ) real, andC, complex, defined thus

+ oo
Xf deiQsubspsubs(€)O(ep_  —€)W(e ,€p), I'=r+2(x%?% — | ———, 4.1
o subsisubs subs (XA) Q, A2+(Q')2 ( 9)
(4.149
where A=T/2+2(x%)? . (4.20
Mlar)az+n?
1
W(e uEk)[sec_l]:%|VA,k|2|VI,A|2
B(ey)=(ex—€n)+ 02—, 4.2
drdedt (€)= (ex—€a) +(xn) AT () (4.21)
Xf fJ ei[(ek—5|)7+5|t—eks]/h
3 ol Q
C=(xp)?* —|[V—iw], 4.2
K GA(TS ), 4.15 (xa) Y [V-iW] (4.22

as in Eq.(2.10 (writing €, ase, ande, ase)), but with a v andW having been defined in Eqét.7) and (4.8) above.
different GA(7,s,t). The applied bias voltage displaces the Now it turns out that the remaining integral above can be
scale of values taken by andeg, . Instead of attempting to  conveniently expressed by an incomplete gamma function
perform a triple Fourier transform and a double energy inte-¥(@:/8), with complex arguments, and we obtain the final
gration in order to compute the total current, we turn to the€XPression for the integrated transition rate:

calculation of the integrated transition rat4 ¢, ), defined by 02, Q. 5 g
el (G D?FR

4 ) )
+o W(Ek)=7|VA,k| IVi.al ;
W(e,) = deW(e, e (4.16 r
o A-iB(ey)
and representing the transition probability per unit time for C)3riar |A-iB(&)
: X Re Cif.
an electron to transfer from a tip state of eneggy through A+iQ’ A+iQ’

the resonance, to any substrate state, but without taking into
account either the electronic statistical distributions or the (4.23

densities of states in the electrodes. In fact, the integrated,qm this result, we may be able to estimate the effect that
transition rate should suffice for our present purpose, of ase existence of damping, here caused by the excitation of
sessing the effect damping may have on the vibrational spegsjeciron-hole pairs, has on the tunneling transition rate. The
tra. . . . two main effects due to an increaseAnare the washing out
We use the approximation of taking the electronicut yhe first derivative vibrational sidebands and the general
transition-matrix elements to be constant, independent of thFowering of the transition rate. As befofethese peaks are
energies in the physically important ranges and, after changsyected to become visible for a sufficiently large resonance
ing the order of the integrations and using the resullifetime and their separation in energy is equal to the value of

[odee et =2 5(t— ), we simplify W(e,) to the oscillation quantum.
o In order to make the effect clearly visible, we chose a
W(e) = 7|VA,k|2|V|,A|2 suitable range of adsorption parameters, keeping in mind the

condition of small dampingA<Q,Q’. Even though we do
not attempt to apply the present results to a specific tip-
+= (+odsdt ] ; )
% e t=9G, (t,5,t) adsorbate-substrate system, our range of adsorption param
o S B2 A= eters should be representative of real experimental situations.
11 Since our main concern at present is the influence of damp-
(4.1 ing on the conductance curvesl(dV), and since this ob-
However,G,(t,s,t) itself can now be considerably simpli- servable is a convolution of the transition ré#e, ,e,) with

fied, resulting in the densities of states and electronic distributighg4), the
graphs below have the axe) the incoming electron en-

4o e[(xg)Z(ﬁ)DZFR] +odo ergy, in eV, with a range of- 1 to + 1 volt around an origin
W( ek):7|VA,k|2|V|,A|2 ; ReJ’0 W coincident with the adsorbate shifted resonance cerigr, (

(2) the the damping energy parametgralso in eV, ranging
. Y from zero (the no-damping situationup to a maximum of
AL _ (A+iQ")olh
X exp{—[A—iB(e)]olh}lexd —Ce L 002 eV (except in one graphcorresponding to a minimum
(4.189  time damping constant of around %30 ** s, and(3) the
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FIG. 1. Tunneling transition rates for
I'=0.15eV, x2 = 0.30eV,Q'=0.30eV,Q’
6.25 - 0,015 =0.25 eV, A values from 0.00 to 0.02 eV.

Normalized 0.75

Transition Rate ;4 g

Electron Energy (eV}

integrated transition rat&(e), normalized to its maximum ductance, unless the electron-oscillator coupling cons}@ﬁnt,
value in each run. Furthermore, taking a typical value of thds sufficiently strong. And, of course, the reverse is also true,
observed(redshifted oscillation quanta of)’~250 meV,  even for large values of%, A has to attain a sufficiently

which gives an (Zunobse.rvablya unshifted quantumQ of  |3rge value for any damping effects to become visible, as all
around 300 meV/ the ratioA/€)’ varies between zero and a e graphs show.

maximum of the order of 0.08, i.e., a minimum ratio between  ,wever, a combination of strong electron-oscillator cou-

the oscillator damping time constant and its “period” of pling (Iarge)(f\), i.e., strong variations of the resonance po-

around 12.3(_)r_a minimum quality factor 0Q=6.25). sition with the vibration coordinate, together with a strong
The remaining adsorption parameters are the electronic

resonance widthl", in eV, and the electron-oscillator cou- Gscillation damping(large A), here due to the creation of
: 0’ ! . electron-hole pairs, can effectively lead to a rapid smoothing
pling constant,x,, also in eV. Their chosen values are

. . : of the spectra, especially for long-lived, narrow electronic
meant mainly to illustrate our results in the, A, W) graphs, gmallT'). Th . ¢ to0 indicat
but should be typical of real chemisorption situations. On thd €Sonancessma ). These circunstances seem to indicate

other hand, we have not included, in the computations, thi1€ advantage of using weakly chemisorbed species in at-
prefactor (4r/#)|Va |2V, a/2 in expression(4.23 above, tempting to observe vibration spectra of adsorbates with the

under the simplifying assumption that the hopping and tunSTM. Another possibility would consist in tunnelir@om

neling matrx elements are constant the tip) through a mostly unoccupied antibonding orbital of a
strongly chemisorbed system, in the so-called “surface mol-
ecule limit,”3031.21.32

V- DISCUSSION In the figures, we try to convey what we believe are the

Even though one can see that the existence of dampingssential components of the present results. In Fig. 1, we
will increase the difficulty in detecting the presence of theshow the decrease of the vibrational structure as we decrease
inelastic channel due to the lowering of the total transitionthe oscillation decay time, from infinity to the 3.3
rate and the smoothing of théossiblg first derivative <10 ** s minimum value. As in Ref. 2, in the absence of
peaks, an immediate conclusion is the importance of the indamping, the vibrational sidebands, a quantamapart, are
terplay betweem\, x2, andT. That is, a relatively large clearly visible due to the relative high value of the coupling
value of the damping constant by itself is not sufficient to ~ constantya . This high value also clearly redshifts the posi-
prevent the appearance of structure in the spectra. As to d®n of the first phonon emission pe#&ko absorption peaks
expected, it has to be combined with a relatively largeare present since we are at 0.K
electron-oscillator coupling constant. In other words, even In Fig. 2, with a slightly larger electronic width but a
short oscillation decay times will not affect the junction con- particularly small coupling constar)‘t,‘i, we extend theA

1

FIG. 2. Tunneling transition rates fol’
=0.20eV,x2 = 0.01eV,Q’ = 0.30 eV,Q’
=0.25 eV, A values from 0.00 to 0.10 eV.

Normalized 0.75

Transition Rate 0.5

0.25



9006 M. A. GATA AND P. R. ANTONIEWICZ PRB 60

1

Normalizea 0% 0 FIG. 3. Tunneling transition rates fof
Transition Rate 0.6 =0.75 eV,X2:0.35 eV,Q’ =0.30 eV, Q'
°0“‘2 S 0.015 =0.25 eV, A values from 0.00 to 0.02 eV.

1
Damping Energy D {eV)

Electron Energy (eV)

1

Normalized o5 s FIG. 4. Tunneling transition rates fof’
Transition Rate , =0.05eV, x3=035eV, Q'=03eV, Q'
0.25 0.015 =0.25 eV, A values from 0.00 to 0.02 eV.

[
-1

Electron Energy (eV)

A FIG. 5. Tunneling transition
Normalized 0.75 02 rates for I'=0.05 eV, Xg
Transition Rate =0.15 eV, 0’'=0.3 eV, Q'
0 .25 Iy 0.015 =0.25 eV, A values from 0.00
to 0.02 eV.

Damping Energy D (eV)

Electron Energy (eV)
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FIG. 6. Tunneling transition rates fof

=0.20eV, x3=0.15eV, Q'=0.3eV,Q’

=0.25 eV, A values from 0.00 to 0.02 eV.

Normalized 0.75
Transition Rate

0.5

0.25

Damping Energy D (eV)

values up to 0.10 eV, reaching an unphysical damping rati@ence of the height of the conductance peaks on the sharp-
A/Q' of 0.40, with the intention of showing that even exag- ness of the microscope tp.

gerated damping constants do not lead, by themselves, to

visible effects on the junction conductance. Also, no vibra-

tional sidebands are present. ACKNOWLEDGMENTS
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nance profile with almost no lowering of the transition rate,- | A p (Luso-American Development Foundatjorand

even though the coupling constant is relatively strong. Buﬁtrom the University of the Azores, Portugal
the width of the electronic level, upon chemisorption, im- ' '

poses a fairly stable and wide, shapeless bump across the
voltage axis, Wlth no vibrational sidebands present. APPENDIX: RELATIONSHIP BETWEEN THE TWO
In contrast, Fig. 4 shows a rather structured spectrum, METHODS
with the same value for the coupling constant as in Fig. 3, _ _ _ .
but with a much narrower electronic width. This is the com-  In this appendix, we show the analytical consistency be-
bination of adsorption parameters, considered above, th&ween the present approach, in the no-damping version of
leads to the fastest disappearance of variations in the conduec. Il, and the one we followed previously, in Ref. 2. This
tance spectra. comparison also concerns the relationship between the gas-
In Fig. 5 we keep the electronic width from the previousphase inelastic ~scattering model of Domcke and
figure but decrease the coupling constant, reducing both th@ederbauﬁ? and inelastic resonant tunneling in heterostruc-
redshift of the spectrum and the number of visible vibrationaltures in the model of Wingreen, Jakobsen and V\/_|II%|°n'§he
sidebands. The reduction in the transition rate is also muchxistence of such a connection has been pointed out by
less pronounced. Gadzulk®* and ourselves2?° The previous results for the
Finally, in Fig. 6, we again use moderate values for bothelastic and one-phonon inelastic components of the tunneling
I and x% and the result is similar to Fig. 1 but with a re- current[expressiong55) and (56), respectively, in Ref. 2,
duced damping effect, due to the smaller value of the coubut neglecting the imaginary component of the electron-
pling constant. phonon coupling constajdre particular cases of the general,
Another consequence of damping is the fact that, havin@ny-phonon, result. In that resolvent formalism, this general
acquired an imaginary component, the possible frequenciesult could be written
values of the adsorbate/oscillator are no longer eigenvalues

of the Hamiltonian and, therefore, the opening of the inelas- o

tic channel is not a step-function as before, but instead by a Jtotal(V) = (1= (Na)) Q4 Qeups > 0(ev-mQ)
function that increases smoothly from zero to one. This re- m=0

duces the inelastic channel peak that one usually looks for. eV

As the inelastic signal becomes weaker, the particular struc- xf Win(€)piip(€—eV)psups(e—med)de
ture of the density of states, of both substrate and tip, be- mQ

comes more important and may, by itself, cause variations in

conductance that will be hard to distinguish from the ones

due to the electron-phonon coupling. ) - ]
Further work on this problem will necessarily deal with a @ Well, but the included transition ra¥é.(e) (m being the

better description of the physical situation specific to surfacéumber of excited phonopsvould be given by

phenomena in scanning tunneling microscopy, for example,

by going beyond the tunneling Hamiltonian. One will also g™

need to adopt a more sophisticated approach to the descrip-  Wiy(€) =2/ [Vad?|Val?e™ 20— |An[z(e)]%, (A2)

tion of the nonequilibrium occupancy of the intermediate m:

resonant state. A more realistic description of the physical

situation should be able to account for the observed depemwhere

(A1)
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m

- (m)| gi-m*n
Anl2e)=2 > ‘”( i JG—mimr
x{z(e)—nQ} 1 (A3)
and z(e) and g are defined as above. The

e 99™?%/(m)Y?A[z(€)] factor is basically the same as in
the original model of Domcke and Cederbatitd®?*for the
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{z—(m—=1+1HQ} 1
i=o I!

* |
|:Eo ?—!{z—(m+I)Q}‘1.

m
+(—1)m(m

We pick up the last term, for=m, and rewrite the sum-

gas-phase inelastic resonant scattering, but considering "gation index as’=I-+m,
single vibration coordinate and an electronic resonance width

independent of the vibration coordinate. It also results from
the calculation of the product of the Frank-Condon overlaps

m\ .~
<—1>m(m l;?—!{z—mﬂ)m‘l

between the oscillator initial, ground state and all possible,

intermediate, displaced oscillator vibration states, here repre-
sented by the inder, with the overlaps between these inter-
mediate states and the final vibrational state, here represented

by the indexm.®

Since, in the present paper, the corresponding expressio%

we got forJ;oa(V) and forW(e), Egs.(2.16 and (2.13

respectively, are formally identical to the ones above, Egs.
(A1) and (A2), what remains to be proven is, in fact, the

equality
Bu[2(e)]1?=|Anlz(e)]]?, (A4)

with

|C

|
izl - (j+Da}
(AS)

m . m 0
Brlz(€)]= 2, (—1)1( . )E
=0 ] Ji=0

This B[ z(¢€)] factor is basically the same as in the original

model of Wingreeret al,?? for the inelastic resonant tunnel-

ing in quantum well structures, but again with a single-

vibration coordinate.
It will be convenient to start by separating od,(z) as

0

the first double summation including the terms for whith

gj—m+n

(j—m+n)!

m—1 m o0 m
nioe( 3, 3 43 3 o

x{z—-nQ} 1,

* |
=(—1>m(2)|2 ?—!{z—m}*l.

For thej=m—1 term, we first separate out the 0 part
d then také’=1+m-—1 in the remaining part, obtaining

_ m—1 m 92 _ _ -1
(—1) m—1 ortz—(m=1)Q}
o gV7m+1
1 -1
+|§m(l’—m+1)!{z e

For thej=m—2 term, we group thé=0 andl=1 parts,
introducel’=1+m—2 in the remaining and obtain

m=2/\ 252 (I'=m+2)!
*® I"—m+2

+Eg

'=m (I"'=m+2)!

{z-1'Q} 1

{z-1'Q} 2

Of course,l’ is a dummy index and, introducing firbt=1
+m—p and using the fact that,{' ))=(3), we can write
down the generaj=m-—p term as(grouping equal factors
under the two summation signs

o)

m—1 o0

25 +E§%

=m-p

I—m+p
g (101,

(I=m+p)!

<m and the second double summation the ones for whicly here in the first summatioh< m and I<p<mand, in the

n=m. Leaving A, as it stands, we will get an equivalent
result starting from the above expression By(z). Decom-
posing it according to the values ¢=0,1,2 ... m—2m
—1,m, we can write

e
Bm<z>=(—1>°(0)2
=0

|
?—!{Z—IQ}‘lJr(—l)l(T)

mgI
=Tl

><{z—(1+I)Q}1+(—1)2( )I_EO

x{z—(2+HQ} 1+ ..

>

2 {z—(m=2+1HQ} 1

[

g
I

m
_ m—2
(=1 (m—2

secondm=l|, O=sp=m.

We now sum over all possibjevalues, ranging from 1 to
m in the first summation and from 0 tm in the second
summation and rewrit8,, as a sum ovep, instead ofj:

p=1l=m-p p=01I
. m gI—m+p .
X(_l) p (l_m+p)|{z IQ} ’

the first term fol <m and the second term fé=m. In order
to prove our point, we still have to show that the first term in
B, above corresponds to the first termAg,, that is to say,
that
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m m—1 m—1 m m—1 m m o

> X Faph=2 2> Fupl), Brn(2)=(-1)" IR )

p=1l=m-p I=0 p=m-—I I=0 p=m—-1  p=01I=m
where the matrix elemen,(p,l) is being defined in an m| g'-m*p
obvious way. But, in fact, these two double-summations span X(— 1)p( )m{z— Q-1
the same set of elements of this matrix, the ones below its P P

main diagonal, including this diagonal. On the Ihs of the

ments IStuarcs, il i reach th frs colur. On th. s SCTIP2MTG s esul wih th last xpression above fo
, : An(z), we conclude thatBy(z)=(—1)"An(z) or that

we cover exactly the same elements, this time summing, for 5 P . '
each columnl, all the line elements downwards, until we LB”‘(Z)IJ —|Am(z)t| » 85 re‘é‘_’”e‘z fct’; tht\elzvequallr:y(;)f the total
reach the last line. Recognizing this fact, we may write unneling currents, according to the two methods.
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