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We present a systematic description of the semiclassical kinetics of two-dimensional fermions in a smoothly
varying inhomogeneous magnetic fi@gr). The nature of the transport depends crucially on both the strength
B, of the random component &(r) and its mean valu8. For B=0, the governing parameter is=d/R,,
whered is the correlation length of disorder ai) is the Larmor radius in the fielB,. While for <1 the
Drude theory applies, at>1 most particles drift adiabatically along closed contours and are localized in the
adiabatic approximation. The conductivity is then determined by a special class of trajectories, the “snake
states,” which percolate by scattering at saddle pointB(@f where the adiabaticity of their motion breaks
down. The external fiel@ also suppresses the diffusion by creating a percolation network of drifting cyclotron
orbits. This kind of percolation is due only to a weak violation of the adiabaticity of the cyclotron rotation,
yielding an exponentially fast drop of the conductivity at laBeln the regimew> 1, the crossover between
the snake-state percolation and the percolation of the drift orbits with increBdiag the character of a phase
transition (localization of the snake stajesmeared exponentially weakly by nonadiabatic effects. abe
conductivity also reflects the dynamical properties of particles moving on the fractal percolation network. In
particular, it has a sharp kink at zero frequency and falls off exponentially at higher frequencies. We also
discuss the nature of the quantum magneto-oscillations. Detailed numerical studies confirm the analytical
findings. The shape of the magnetoresistivityaat 1 is in good agreement with experimental data in the
fractional quantum Hall regime near half fillinfS0163-182899)01236-9

I. INTRODUCTION The peculiarity of transport properties of 2D electrons in a
random fieldB(r) shows up most distinctly in systems with
The transport properties of two-dimension@D) par- smoothinhomogeneities. The case of long-range disorder is
ticles moving in a spatially random magnetic figl@MF)  most important also experimentally — since the compressible
B(r) oriented perpendicularly to the plane have attractecstate in a half-filled Landau level is observed in high-
considerable interest in the last few years. This interest i§hobility samples. In the latter, a large correlation radius of
largely motivated by the relevance of the problem to thePotential fluctuationsd, is determined by a wide “spacer”
composite-fermiofCF) descriptio? of a half-filled Landau ~ P€tween the electron gas and the doped layer containing ion-
level. Within this approach, the electron liquid in a strong2€d impurities. Likewise, inhomogeneities of the RMF cre-
magnetic field is mapped—by means of a Chern-Simonﬁ‘;‘e‘j by the ferromagnetic overlayer§ frappear to be fairly

gauge transformation — to a fermion gas subject to a wea ng ranged. The large value of the correlation radiugs

effective magnetic field. Precisely at half filling, the averagecompared. to t_he mterelectr_on distahedows to describe the
lectron kineticgjuasiclassically

value of the Chern-Simons gauge field compensates the e?— It is well known that quantum interference effects may

fect of the external magnetic field. The RMF appears in thlscause localization of noninteracting particles in an infinite

model after taking static disorder into account: ﬂuctuations2D svstem even for arbitrarily weak disorder. This has been
of the local filling factor induced by the random potential of howyn to be the case for chayrged particles in‘ a BNIBpe-
impurities lead to a local mismatch between the gauge an@ifically, the RMF problem belongs to the unitary universal-

external magnetic fields. A number of observatibms . . S .

. - . . ity class, with the localization lengtli growing extremely
Fermi-surface features near half-filling give strong experi-~ " with the dimensionless conducta I(e2/h)
mental support to the model of the effective magnetic field. &€ oxx '

Apart from the composite-particle models involving ficti-

tious fields, 2D electron systems with a real RMF can be Exexpm’g?). (1)
directly realized in semiconductor heterostructures by attach-

ing to the latter superconductihtjor ferromagnetit’ over-  These theoretical results are in full agreement with the recent
layers. extensive numerical study. According to Eq.(1), already
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for g=1.5 the localization length is larger than any reason-change ofo,, . At the critical point, the percolation network

able system size, and the quasiclassical approach is fulliprmed by the extended snake states falls apart into discon-

justified. nected clusters, while the nonadiabatic scattering yields only
Let us stress that we consider the situation in which thea slight smearing of the critical singularity.

smooth RMF constitutes the only type of disorder present. For a~1, which is the regime relevant to the CF prob-

This should be contrasted with the starting point of Ref. 11)Jem, we perform a numerical simulation to calculate the

where the main contribution to the resistivity was assumed tgnagnetoresistance,,(B). The obtained curves are in good
be given by a short-range random scalar potential, while agreement with experimental findings: they show a weak

long-range RMF was considered as a small perturbation. . . .
. : . . positive magnetoresistance at I@®y crossing over to a fall-
The purpose of this paper is to examine the transport in R

long-range RMF in detail, with particular emphasis on theOff of pyx with increasingB. Further, we analyze the quan-

conductivity in an externalhomogeneoysmagnetic field tum oscillations ofp,(B) [Sec. Ill F and show that, in con-

Ez(B(r)) and/or at finite frequency. We complement the  trast to the conventional Shubnikov-de Haas effect in a short-

analytical analysis by numerical simulations. The importancéange random potential, they start to develop only when the

of the latter is due to the fact that in the most interesting parglimensionless conductivityr,,/(e’/h) drops down to a

of the parameter space the transport is dominated by thealue of order of unity.

phenomenon of percolation, so that only estimates “by order In Sec. IV, we discuss the transport in the RMF at finite

of magnitude” are available at the analytical level. frequencyw. We find strong deviations of the ac conductiv-
In Sec. Il, we study the dc conductivity in a long-rangeity from the Drude behavior, especially in the percolation

RMF 6B(r) at zeroB. The character of thB=0 transportis regime, i.e. whenx and/orB is large. At smallw, we find a
determined by the parametew=d/R,, where R, nonanalytical(>|w|) contribution too,(w), which is deter-
=ve(mdeBy) is the Larmor radius in the fielB, which is ~ mined by returns of the particle to the same spatial regions
a characteristic amplitude of the fluctuationg, the Fermi  after a time~ 1/ w|. At higher frequencies and lardg, the
velocity. At a<1, the classical dynamics is of conventional ac conductivity takes the formr,,(»)=|w|®7, sincew itself
diffusive nature andr,,~(e’nd/mvg)/a?, wheren is the  starts to determine the width of the percolating “stochastic
particle density. At strong disorderg1), the conductivity ~web” responsible for the conductivity. At still larger fre-
is determined by a smaftaction of classical trajectories — quencies thec conductivity starts to drop exponentially re-
so-called “snake states®*3 — which percolate through the flecting the “ballistic” motion of drifting orbits (or snake
system by winding around the lines of zdéBgr) and yield state$ on short scales.

T~ (€2nd/mvi)/ a¥¥(In @)*. The crossover from the df Section V summarizes our findings. The analytical results
to 1/ behavior ofo,, at a~1 is confirmed by our nu- of Secs. Il and Ill were partly presented in the Leffer.
merical simulations. Furthermore, the latter allow us to find

the numerical value obr,, for the CF problem(for which || pc TRANSPORT IN ZERO MEAN MAGNETIC FIELD

a=1/\/2 lies in the crossover regipn , _ .
. — . = We begin by formulating the model to be studied. We
In Sec. Ill, we consider the case of stroBglincreasing® .

also leads to a suppression of the conventional diffusive moSOnsider noninteracting particles in the RN8F- 6B(r) with
tion and a transition to a percolation regime, evea#1. meanB and the correlato(&B(O)éB(r»:Béf(r), where
The physics of this phenomenon is, however, quiie distincf(0)=1. We assume that the functidifr) is characterized

from the snake-state percolation. In the limit of lagethe ~ PY @ Single spatial scale, which is the correlation length of
dynamics of drifting cyclotron orbits is governed by an adia-the RMF. In particular, in the CF model with the electron
batic invariant(magnetic flux through one cyclotron orpit densityn equal to the charged impurity density we have

In the adiabatic approximation, the particles drift along theBo=(7ic/€)(kg/y2d) and f(r)=(1+r?4d? %2 where

closed magnetic field contours and hence are localized. It isg=4n (note that the electron gas is fully spin polarized
only a weaknonadiabaticscattering between drift trajecto- nearv=1/2; we discard the spin degree of freedom through-
ries that yields a finite conductivity. This localization effect out the paper In this section we confine ourselves to the

is similar to the formation of a “stochastic wel"*°in a  case of zerd®. The RMF with zero mean is characterized by
slowly varying scalar random potential in the presence of afwo length scalesd and the cyclotron radiuR, in the field
external homogenec_Jus ma}gnetic field. The cgnductivity dug. Defining the parameter=d/R,, we can distinguish the
to the weak nonadiabaticity falls ofxponentiallyfast at  \yeak-RMF regimea<1, where the mean-free patkR,
large B: In o= —A(@)(B/By)?, where the coefficienf\(«) >d, and the regime of strong fluctuations>1, where one
scales asr*®. Note that the conductivity in the CF problem should expect drastic deviations from the Drude picture. We
(A~1) falls off sharplybeyond asmalldeviation from half-  will explore these two limiting cases analytically. However,
filling. since the value o# corresponding to the CF problem lies in
The manner in which the conductivity crosses over intothe crossover region, we will turn to numerical simulations
the adiabatic regime is qualitatively different in the cases ofn order to geto,, of the CF’s.
weak and strong disorder. At>>1 [Sec. Il E], the transport

regimes controlled by the snake stateeakB) and by the A. Weak disorder

nonadiabatic dynamics of the cyclotron orkis¢rongB) are We start with the simple case of<1. In this limit, the
separated by a shampansition accompanied by an abrupt CF trajectories are only slightly bent on the scalela$o that
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Here,y andy are the distance and the velocity in the direc-
tion perpendicular to the ze®ine, and the integral is taken
over one period of the oscillations. The conservation of the
quantity I, can be established directly by considering the
evolution of the angled(x) the snake-state trajectory forms
with the line of zero field y=0) at positionx along this line

as a consequence of the smoothly varying gradigid)
=|0B(x,y)/dy|y-o. The adiabatic invariant is parametrized
as

FIG. 1. Types of trajectories in a strong random magnetic field:
drifting orbits along nonzer® contours and snake states n&ar Il(b,0)=4mv,‘°§/2(2mc/eb)l/2F(0), 4
=0 lines. Geometry of a snake state is characterized by the ang\ﬁ/hereF(ﬁ) is a dimensionless function of order unity which
6 (0< 6< ) at which the trajectory crosses the zero-field contour..an pe found explicitly:

Note that the direction of motion of the snake state withé, (left)
is opposite to that fop> 6, (right), wheref,=131°. The widthRq
of the bundle of snake state trajectories is also indicated.

F(6)=(1-cosb) Joldgm— & +cosh(1—£%)?. (5)

the Born approximation is valid. Accordingly, for the trans- Note thatl, (b,#) may be written also ase(c)®(b,6),

port scattering time one géty 7.~  where® is the magnetic flux through the area encircled by

=v,§1(eBolmc)2f5°drf(r)=2a2vF/d, where the CF effec- the snake-state trajectory and the zBrdine in one oscilla-

tive massm=7#Kkg /v is introduced. The Drude conductivity tion period. We represent the equatidm, /dx=0 in the
form of a scaling relation for the snake-state angle

at zeroB, o,,=e’nr,/m, then reads

dinb InF(0).

d
G(6), G71(9)=2d— (6)

@ o
This equation expresses the adiabatic invariance in terms of
the fact that, given boundary conditiohg(x,) andb(x,) at
some pointxy], the angled at a pointx of the trajectory is
completely determined by the gradieb{x) at the same

Let us now turn to the strong-RMF regimes> 1, keeping . . ; \ .
— ) , X point. Equation(5) gives the asymptotic expressions for
B=0. The seemingly innocent assumption about the chaotig; 0)

character of the particle dynamics, which enabled us to rep-
resent the conductivity in the forme?nr, /m, is not valid
anymore. Most particles are now out of play since they are
caught in cyclotron orbits drifting along the closed lines of

B. Dynamics of the snake states

G(G)zg, 6—0; @

constantB(r) (“van Alfven drift”). In the adiabatic limit,

their drift trajectories are periodic and so do not contribute to

the conductivity. Still, however largB, is, there are classi-

cal paths, which are not localized and percolate through the

system by meandering around the lines of zB(@). The

conductivity is determined by the particles that move along

these extended “snake staté$'(Fig. 1).

Note that there is only one single percolating path on the

manifold of theB(r)=0 contours; yet, the conductivity is

1

2
G(0)=—73 ®

, 00—
(7m—6)In

T— 6
Equations(6) and(7) tell us thatd(x) obeys the scaling

0(X1) _
0(Xz)

1/4

b(xy)
b(xy)

©)

nonzero since the snake-state trajectories form a bundle @f the limit of small harmonic oscillation—0. The singu-

finite width, Rs~d/ a2 (see Fig. 1 The conducting network

larity of G(6) in the opposite limit ofd— = is a precursor of

is made up of those snake states that can cross over from ofi§e bifurcation, which accompanies the break away of the

critical zeroB line to another. This coupling of two adjacent

trajectory from the zer® line at = 7 (see Fig. 2, top The

percolating clusters occurs near the critical saddle points ounctionsF(6) andG(6) in the whole range o are shown
B(r), which are nodes of the transport network. The crucialin Figs. 3a) and 3b).

role of the saddle points is that they break down the adiaba- The remarkable point to notice is th@{(#) changes sign
ticity of the snake-state dynamics, as we are going to explaiat someé#= 6, (which is =131°). More specificallyG(6)

below.

behaves singularly arouné., as (¢— 6.) 1, which corre-

Everywhere except in small regions near the saddl&ponds to a maximum iR(6) at this point. This behavior of
points, the motion along the rapidly oscillating snake-statq (§) means that the velocity of the snake state$6)

trajectories around the zeB®-contours conserves the adia-
batic invariant(see also Ref. 13

| =m §§ydy. 3

(which is the average of over one periofmust change sign
at 6= 6., i.e., the snake state is “reflected” at the poiqt
defined by the equatiof(x.) = 6. (Fig. 2, botton). Indeed,
as follows from Eq(4), the constancy df, [ §(x)] cannot be
maintained orboth sides of the poink.. Note also that, in
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FIG. 2. “Serpentology.” Top: transformation of a snake state 5.0 -
with large 6 into a drifting orbit with decreasing gradient of the
magnetic field; bottom: reflection of a snake state by a magnetic
. -10.0
bottle-neck. 0 3 2 6, n
0

terms of the time evolution of, the change in sign of the

function G(6) at 6= 6. means that the time derivative
retains the sign it had before the reflection. In fact, one can
show, by solving the problem with constant gradienéx-
actly, that

1+%coge

() =VeF'(0 . (10
V() =ve ()gsinaF(ﬂ)vLcosaF’(e) (10

i.e., vg(0) interpolates betweewg(0)=vg and v¢(m)=
—Vg and vanishes &= 6, [see Fig. &)]. It is worth noting
that the period of the oscillationg( ) increases monotoni-
cally with growing 6

3 Jd
—+Cot0—> I,(b,6), (11 FIG. 3. The function$(6) andG(6) determining the adiabatic
2 a0 dynamics of the snake states according to Egs—(6), and the

i.e., T,(6) is equal to 2r(mdebvy) Y2 at §=0 and diverges Snake state velocity(6).

as 4mmdebvp)Y?In[1/(m—6)] at §—m. The “wave-

length” of the snake states along the direction of propagationthat o,(«) is exponentially suppressed in the limit of large
obviously reads\x=|v| T, while the amplitude of the os- «. The point is that there are rafleut not exponentially raje
cillations in the perpendicular direction is given hyy  places along the zem-contours where the adiabatic picture

T(0)=—5
5 V|2:

=2ve(mdebve)? sin(@/2). fails completely These are regions where the contours pass
near the saddle points &f{(r).
C. Snake-state percolation Consider a snake state that is incident on a saddle point

The adiabatic nature of the snake-state dynamics meai¥th the impact parametes (Fig. 5. This means that the
that a typical trajectory is “trapped” between two return magnetic field at the saddle point By,~Bop/d and the
points x, and x_ with 6(x.)= 6, [Fig. 4a]. Within the  distanceR, at which the zerd3 contour passes the saddle
adiabatic picture, the drift motion in such a trap is periodic inpoint is R, ~ \/_ At the saddle point, there is an intersec-
time, as demonstrated in Fig(}. Hence, unless nonadia- tion of two lines of constanB(r)=Bg,, while two zeroB
batic corrections are taken into account, these trajectories dimes, along which the snake states can propagate, come
not contribute to the dc conductivity. The nonadiabatic cor-within the distance R, from each other. Clearly, R, is
rections for a typical trajectory with a slowly varying(x) small enough, the snake state can change the zero-field con-
are exponentially weak, so that the motion remains finite ontour. The angled, which characterizes the type of the snake-
an exponentially long time scale. Yet, this doast mean state trajectory, is then also changed, i.e., the adiabaticity
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FIG. 6. Scattering of a snake state at a saddle point. The particle
may turn either left or right, depending on the initial conditions.

v which gives the conditiox>x., wherex, is the character-
istic wavelength of the “last” oscillation before the particle
0r hits the saddle point. For typical trajectories with-1 and
Ax~(dRy)Y? at x~d, this condition fails ak=<x.~d/ a3,
Now, as is clear from Fig. 6, whether the particle will be
, \ , , scattered to the left of the saddle point or to the right is
0 200 400 600 800 1000 determined by the initial phase of the snake-state oscilla-
t tions. This sensitivity to the phase signals the breakdown of

FIG. 4. Snake state in a traga) Real-space trajectory of a he adiabaticity. o

particle trapped between two bottle-necks. The scales of ey We now turn to the case of finitg. At large enougtp,

axes differ by a factor=25: the figure is “compressed” in the the typical snake-state trajectory does not change theEero-
x-direction. The dashed lines show the contours of the constarlin€: the condition is that the anglé(x.), with which the
magnetic field(b) Time evolution of thex coordinate. It is seen that trajectory comes to the saddle point, be much smaller than
the drift motion in the trap is almost periodic. the ratio Ry,i,/%.. Substituting 6(x.)~ (x./d)** [see Eq.

(9)], we getp>d/ a5 However, the adiabatic invariance is

will be broken down upon “scattering” on the saddle point, Proken at the saddle point in a wider rangepofthe condi-

To understand the parameters, consider first the cage of tion for the curvature of the zerB-line to be large on the
—0 (“direct hit” ). The snake state propagates then along £¢@l€ of the wavelength iBpy=x:, which givesp=ps,
straight line with decreasing gradiei¢x) ~Box/d, wherex ~ Where
is measured from the saddle point. According to [E9), dl e 12
6(x) <x** decreases when the particle approaches the saddle Ps @ (12)

point, while, as follows from Eq(11), the wavelengttAx  wjithin this range, the anglé after the scatteringf,., is
diverges a2, The adiabatic picture is valid only as long typically of order unity even though the particle is incident
asAx(x) is much smaller than the scale on which the mag-on the saddle point with a smafl (moreover,gout depends
netic field changes, i.eAx(x)<x near the saddle point, strongly on the phase of the oscillations of the incoming
trajectory. As we argue below, the breakdown of the adia-
B=0 batic invariance ap=<pq results in the randomization of the
incident snake states over the outgoing links.

Now consider how the particles propagate between such
nonadiabatic saddle points. The saddle points withpg are
distributed sparsely along the zeBoitrajectories with the
linear density~ p./d?. Therefore, only a small fraction of
the snake states can escape the adiabatic traps on their way
between two such saddle points: most trajectories are local-
Bsp i ized in between. The snake state is not trappeg{x) < 6,

everywhere on its trajectory between the collisions with the
saddle points. According to E@9), this is possible for tra-
jectories with sufficiently smalb. Indeed, consider a snake
state, which has a small angte<1 in a typical place with
the gradientb~B,/d. Typically, it will be able to travel a
B=0 long distance, by far larger thah until its angle reaches the
valueé, : this will occur in a fluctuation of the magnetic field
FIG. 5. Geometry of a saddle point. with the anomalously high gradiemt~B,/dé*. Since the
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probability p(b) that the gradient at a given point exceedsNext, we turned to consider a special class of the trajectories
some valueb is determined by the Gaussian statistiogh) — the snake states. However, as we showed above, most
=exp(—b?(b?), we find that the state will typically run bal- snake states are also localized in the adiabatic traps and only
listically the distance L(#) obeying the equation those with angles smaller thafiy can propagate along the
L(6)p(Bo/dé%/d~1, which gives L(8)~d exp(® 8. lines of zeroB. At this point, we have to be concerned about
Hence, usingL(6.)/d~d/ps~a?® we conclude that the the topology of the zer® contours. The first thing to notice

states with the angleg< 65, where is that all the contours are closed except one and this one
U percolating contour by itself cannot yield a finite conductiv-
Os~(Ina)™ ™5 (13 ity. The conductivity is nonetheless finite since the snake

states in fact form a conductingetworkof finite width. The

nodes of the network areritical saddle points, where two

between saddle points “ballistically” with the longitudinal adjacent percolating contours come close to ea(_:h othgr. Note
: ; 4 that most of the saddle points that the particle hits on its way

velocity vg=vg, while others are simply out of play. Now "

we turn to construct the overall picture of the snake—staté) etween the critical ones only connect up small closed loops

propagation. The scattering on a saddle point is actually gnd so do not create a connected network. This happens only

multistep process. The fact that the anglg,is typically — 1 at the critical saddle points, where the snake states can cross

. : - 14/9
means that, having collided with a saddle point once, th&Ver from one critical zerd line of lengthLs~a""d to

. LS o another. We use here the results of the percolation theory
particle almost inevitably returns back to it with a new angle(for a review see, e.g., Ref. 18 ~d(d/p)"*L, where
of incidence #': in effect, the trajectory “sticks” to the . ce, €.9., ' s Ps P ¢
saddle point. However, after many mappi P =4/3 is the critical exponent that controls the size of the

: ) @S> 0oyt ) . - v .

the multiple reflections establish a stochastic distribution Ofr:gli?al-gﬁztf%n ddt(hde/F:jsi)stéi?:éhf?toﬂetrzznsot;iiwe Iiﬁ of
the angled,, characterizing the outgoing trajectory. Also, ~d/ J Theycharacteristic distance between thgepnodeg ie
after many attempts the particle will go to the left or to the Ps- CoT

; : 8/9
right with equal probability. This randomization &f,,; and the IS'Z? gf tr:?helem?hntaryrgqig ' d|snthriinda nt()) nvlier\:vgtg
of the direction of motion is clearly seen in the numerical S¢2'€s 'onge agk, the particle dynamics can be viewed as

simulation in Ref. 13. Once the particle picks up the anglefuIIy stochastic. We estimate the macroscopic diffusion co-

. w . ,-\, 2 2 . .
ou~ 05/ ™2 it will move ballistically until it reaches the efficient asD~»sDs, wherevs~LRs65/¢; s the fraction

- F1/12; of particles residing in the delocalized snake-states @pd
next saddle point. Here, the factor Y*?is related to the fact ©' P esiding in the 1 §
that the angled(x) will increase=x* on the scale ofl, so ~ XV lLg s their diffusion coefficient. Note thatg con-
that the particle must havé,,,, which is (x./d)Y times tains a factord; — since the density of the snake states is

smaller thand. At the new saddle point the whole processdetermined in the phase space parametrized by both the
will repeat itself. Since the saddle points are separated by th@hgled and real-space coordinate: accordingly, one fagtor
large distance-d?% pg, the average time it takes the particle COMes from the calcu]anon of the fraction qf the plane cov-
to move to the next saddle point is determined by the ballis€ed by the conducting snake states, while the other de-
tic propagation between them, which requires the tipe scribes their fraction in thed space. We, thus, hav®
~d%/pve~(dive)a®3 not by the multiple attempts to ~VeRs62 and, correspondingl¥.

“break away” with large 6., which end in returns to the 5
starting point. Indeed, assuming the full randomization of _*© krd
6,4, We estimate the number of such attempts, until the par- T iz
ticle picks up the anglédo,= %= a~AIn a)~"8 neces-
sary to reach the next saddle-point,Ns 1/6{). According
to what is said above, the initial conditiofy allows the
particle to advance the distance

will typically get through to the saddle point.
We, thus, conclude that the particles witks 65 propagate

L~InY* o, a=1. (16)

It is worth noting that the percolatioenhanceshe conduc-
tivity: by comparison with the Born approximati¢&g. (2)],
the conductivity is~a®?% £ times larger(though the local-
ization effects are strong and naively one might have ex-
a*1’30(§u‘§, Oou= V12 pected the oppositeLet us also note that,, given by Eq.

12, \—8 _11, (14 (16) is larger by a factor of~ a1 £ than that obtained for
exf(a o) "1, Oousa T a>1 in Ref. 20 by using an “eikonal approach.” The fault

the unsuccessful attempts to reach the next saddle point isPut with the method of disorder averaging, which neglects
the localization of particles and the percolating character of

o3 the transport through the snake states.
tw~N Q(C)deoutL(Gout)/VFN(d/VF)a fna. (15 We now turn to the numerical simulation. To calculate the
out conductivity tensor components,, we evaluate numeri-
Thus, the total time it takes to get through from one saddieally the classical current response function,
point to another is indeed determined typ-t,, .

L(90u1)~dx{

L. L U-,U.VzezpFJ dt<VM(O)VV(t)>, (17)
D. Conductivity in a strong random magnetic field 0

Now let us calculate the conductivity at>1. As was  wherepr=m/27%? is the density of states and the average is
mentioned at the very beginning, most trajectories do notaken over the disorder realizations and starting points of the
contribute to o, since they follow periodic drift orbits. trajectory. Typically, evaluation of the conductivities in-
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6B(r)=0 lines. From the point of view of topology of the

network, the situation is thus similar to that at zé&cand
a>1. What is crucially different, however, is the mechanism

3 of the percolation. Specifically, at lard® there is no sto-
chastic mixing at the nodes of the percolation network: un-

like the snake states &=0, the rapidly rotating cyclotron
orbits pass unharmed through the critical saddle points of
6B(r) without crossing over to the adjacent cell. In the high-

Elimit, the mixing occurs on the links of the network and is
only due to the weak scattering between the drift trajectories.

In order to calculate the conductivity BB, we should
integrate out the fast cyclotron rotation, taking care not to
lose the effect of the nonadiabatic mixing. Specifically, we
have to go beyond the standard separation of the fast and
slow degrees of freedom, known as the drift approximation.
The parameter that governs this separatiof &5 wheres is

FIG. 7. dc conductivity aB=0, as a function of the parameter a characteristic shift of the quiding center after one cvelotron
a. The dashed and the full lines correspond to the theoretical as- ISt : guiding y

ymptotics(2) and(16), respectively. Statistical errors do not exceed rev_olut!on. The drift approximation is repre_sented asa pc_Jwer
the symbol size. series iné/d<<1. In our problem at~1, this parameter is

the ratio B(,/E. Therefore, ifB> By, the adiabatic descrip-
volved averaging over-10°+ 10* trajectories. The numeri- tion is good onmicroscopicscales. The key point, however,
cal results fora, in Fig. 7 fully confirm the analytical find- is that the conductivity is strictly zero at the level of the drift

ings above. For smalk, the results are in good agreement @pproximation — since the drift orbits are periodic in the

~1 a crossover to the~ Y2 behavior, Eq(16), takes place. nvariance and lead to the transitions between the drift orbits

At a=1/\2 (the value relevant to the CF problemratn;,  aréexponentiallyweak até/d<1.

and in the absence of impurity correlationse find oy

=1.0(e?/h)ked, which is a factor of~2 larger than the A. Single-impurity scattering

Born approximation value. This improves the agreement The problem of the scattering between the drift trajecto-
with the experimentally found CF conductivitglefined as ries in the static RME® as well as a similar problem for a
the inverse of the measured resistivityvat 1/2), though the  random scalar potential, considered recently in Ref. 14, is a
typical experimental values af,, are still larger than the particular example of the broad class of problems dealing
one we obtain by a factor of 2—3. This remaining discrep-  with nonconservation of an adiabatic invariant. Despite the
ancy mlght be attributed to correlations in the distribution Ofgenera| interest of this prob|em, any Systematic expansion
the charged donorg,which reduces the effective strength of capable of giving the scattering rabeyondthe exponential

the random potential and thus redueesThe resistivity data accuracy, has proven to be a tough exercise. To consider a
in zero external magnetic fielgas contrasted to zero effec- transparent example, we formulated and solved parametri-
tive magnetic field acting on CH'sndeed indicate that the cally exactly asinglescattering problerd’ Specifically, we
model of statistically independent impurity positions overesintroduce a weak homogeneous gradieof the background
timates the amount of disord&?" It is also worth noting  magnetic field and consider the interaction with an “impu-
here, in view of the Controversy about the effectile mass Of’ity” modeled by a Spatia”y localized perturbati(ﬁB(r) of

the CF’s?**~?*that in the RMF modebr,, at zeroB [Egs.  Sized, so that the total field

(2 and (16)] does not depend omm (neglecting the

o, /k.d [e°/h]

correctioné® related to the interaction between the QF's B(r)=B[1+e(y/R¢)]+ 3B(r), (18)

whereR¢ is the cyclotron radius in the fielB. The guiding

Ill. DC TRANSPORT IN NONZERO MEAN MAGNETIC center coordinatey averaged over the cyclotron orbip,
FIELD =(Y)¢, plays the role of an impact parameter. The particle

] o = . entering the system at= — o with {y).=p; will leave it at
We now consider the conductivity at fini Let us first  y—c along the trajectory wity).=p;+Ap, whereAp is

discuss the case of~1, when the conductivityr(g) can be the nonadiabatic shift we are interested in. In this single-

parameterized as a function of teingle variableB/B,. As  IMpurity scattering problem, the shift is a perfectly well-
. . . — defined quantity. To first order idB, the exact solution is
shown in the previous section, at smBUB, we are at the

. . iven b
crossover between the uncorrelated diffusion and the snakg- y

state percolation. Now, &> B, the particle dynamics is a *
slow van Alfven drift of the cyclotron orbits along the lines Ap=oyl, 1= fﬁxdt
of constantéB(r). It follows that the conductivity is deter-

mined by a percolation network of trajectories close to theHere,r(t) is the unperturbed trajectory f@B=0,

8B ro(1)].
B

(1). (19
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. o, nonadiabatic scattering remain unchanged and the main mes-
y(€)= o YO('E)J dt'xo(t")/ys(t") ) (200 sage can be simply stated: Because of the exponentially
0 K
c strong dependence of the shift on the parameters of the

wczeE/mc, and the angular brackets denote averaging ove?Ingle scatterer, the conductivity is determined tyre

one cyclotron period. In the limie—0 the constanty—s places with an anomalously high rate of nonadiabatic

L : transitions:*® Accordingly, one can neglect correlations be-
- 1. We can further S|mpl|fy the model_ by assuming tﬁ.Bt tween consecutive transitions from one drift orbit to another
is a function ofx only. In this case, the integral in E(LY) is

) : and each nonadiabatic shift can be considered independently.
evaluated a<1 by the saddle-point method to give Since the nonadiabatic scattering rate increases as the drift

ov c > motion gets faster, the effective scatterers, sparsely distrib-
Ap=— T':\ﬁ 05<__ _) COSpq uted along the percolating trajectories, are characterized by
B ™ 4 anomalously sharp changes of the RMF. The problem now is
. to find the density and the parameters of these scatterers.
XJ dt cosw.tSB Eth—R ) (22) The nonadiabatic shifhp=Ap,+iAp, (in complex no-
— ¢ 2 ¢ tation) after one scattering reads

This formula expresses the nonadiabatic shift in terms of the o

asymptotics of the Fourier transform of the smooth function AP:VFJ dte'cttTeoA(t), (23
6B(x) — thus demonstrating explicitly the exponential small-

ness ofAp. It shows that the parameter that governs thewhere the smooth functiof(t) varies slowly on the scale of
exponential falloff ofAp is d/ 5> 1, whereé=meR., while  _* and is given by the following average taken over one
the ratiod/R; may be arbitrary. Note that the pre-exponential cyclotron period:

factor happens to oscillate wildly &s-0. These oscillations

are geometric resonances due to the commensurability of - e (t | ,

two length scaleR; and 5. Remarkably, the series of the At =(e*P)e, x()= m:fodt oBlr(t")]. (24
resonances is defined by the properties of the unperturbed

solution (“self-commensurability’) and not by the shape of The integral that determines the random phgég should

the scatterer. This means that the oscillations are dampdsk done on the exact trajectarft). Note that Eq(23) gives
with increasing strength of the perturbaftén- since the the nonadiabatic shift both along and across the drift trajec-
resonance condition cannot be met simultaneously evernytory. Since only the latter is of interest, one should project
where on a strongly perturbed trajectory. Another peculiathe result of the integratio(23) onto the axis perpendicular
feature of the nonadiabatic shift is its sensitivity to the phaseo the direction of the drift of the outgoing particle.

¢q of the cyclotron rotation of the incident electron 4 Since the nonadiabatic mixing is determined by the short
< COS¢y). wavelength Fourier harmonics of the perturbafigu. (23)],

In the CF problem, a charged impurity located at a dis-it is the analytical properties of the functi@q(t) and, there-
tanced from the plane occupied by the electron gas createfore, of the correlatof 5B(0)5B(r)) that are important. In
the axially symmetric perturbationsB(r)=58Bod3(r>  the CF problem, this correlator has branch points as a func-
+d?) %2 Because of the branch points et +id in this  tion of r at r==2id. However, in order to calculate the
expression, the integrand in E@L9) will contain the expo-  scattering probability, which is given by E23), one has to
nentially small factor exp- (2w, /eve) V[yo(t) — pi]?+d?].  find the singularities insB[r(t)] as a function otime tand

The lengthy general result reduces to average the result. For a given perturbati®B{(r) this purely
mechanical problem of finding the Fourier asymptotics of the
Ap—8 d@ \/R_cd E_ K _ @ integral along the path(t) may be quite complex, but we
P=oTE S s COSpoCO] C~ 7 /8% 5 can circumvent the difficulties by performing the configura-

(22) tional averaging first. As was already mentioned, the effec-
tive scatterers are characterized by anomalously large fluc-

at p;=0 in the limit d>R.. Equation(22) reflects the fea- tuations of the drift velocity
tures of the nonadiabatic shift discussed above: the exponen-
tial smallness, the oscillations with changiagand the os- v4(s)=Ve(R/2B)|VB(s)|, (25)
cillatory dependence on the phagg. These results were
confirmed by numerical simulations in Ref. 27. Note that Eq.
(22) implies that the drift trajectory is only slightly perturbed
by 6B(r).

wheres s the coordinate along the path. To see this, one can
use the exact solution of the single-scattering problem con-
sidered above. Let us first assume, for the purpose of illus-
tration, that the large 4(s) does not change appreciably on
the scale ofl. Equation(22) then tells us that a single impu-
rity located on the trajectory that passes through the fluctua-

In the transport problem one has to average over an ertion with largevy yields Ap(vgq)<exp(—dw./vg). One sees
semble of impurities. What is crucial for the averaging pro-that Ap(v4) grows exponentially with increasing;. Now,
cess is that the drift velocity is itself determined by the fluc-the linear density of the fluctuations with largg along the
tuations of the impurity field. The nonlinear problem gets,percolating path is of ordgs(vy), where the Gaussian prob-
therefore, much more involved as compared to the singleability that the drift velocity at a given point is larger thap
scattering model above, but the principal features of theeads

B. Optimum fluctuation
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P(Va) =exp(—Vi2(viy)); Corid o dx
WZZI(‘)CJ 0 Ll
3 ,[R:\?/Bg\? ~idv,(X,0)
(Véd=1gVF F) (?) : 20 and
Averaging[ Ap(vgq)]? with p(vg), we thus get hczmvZ|?

Fq:<VdXVdX>q:(W) nqsefzqd (32

dzwg 1/3
2<v2 ) is the Fourier transform of the drift-velocity correlation func-
dx tion T'(r) =(vgx(0)vgy(r)). Here,W, determines the prob-

The “optimum” drift velocity that determines this average is ability for the optimum fluc_:tuation3¥(r) to occur, whilew,
v8=(vﬁx)1’2(4d2w§/<vﬁx>)1’6. As is clear,v8><vﬁx)1’2 atB describes the nonadiabatic scattering on this fluctuation. The

. . . O _ .
>B,. The optimum fluctuations yield the Gaussian behavior/aational equatio®W/évg,=0 yields

of the scattering rate:

<[AP(Vd)]Z>°CeXF1_Smin); Smin:3(

0 ; 'd dx’ ’
Sun=c(BIBo)%, BIBo>1, @7 V““)'ledw&uxmﬁr“ 89
with the coefficientc=18"3=2.62 (here we assumed  which is a nonlinear integral equation fof,(x,0) with x
=1/y/2). This simple derivation of the exponential depen- € (—id,id). Its solution defines, by means of analytical con-
dence of ([Ap(vy)]?) captures the essential physics andtinuation, the optimum fluctuation on the real axisxofDi-
yields a correct parametric estimate ®r,,: however, it is mensional analysis of this equation shows that the solution
not exact in thawy4(s) in the optimum fluctuation is not, in  has the formlgx(r)=v,:(BO/B)g(r/d), whereg is a dimen-
fact, constant on the scale dfand for this reason it does not sjonless function of order unity, which leads again to Eq.
give the correct value of the numerical coefficienin Eq.  (27). To find the exact value of, one has to determine the
(27). To obtain the asymptotically exact numerical coeffi- functiong, which requires solving the integral equati@8).
cient in Sy,, we have to use the optimum-fluctuation we used a variational approach, choosing the trial function
method in the whole configurational space. The optimum, (r)=«I'(r) with the variational parametet. This trial
configuration is characterized by the functiog(s) and the  fynction is the optimal fluctuation for theslightly different
shape of the drift trajectory. We write the phase fact@r! problem of finding a large valuegx(O) at the point=0 and
in Eq. (23) ase'“!, where we introduce the dependent  gpiq give a good estimate far The result isc=2.28,

phase close to the value found above within the simplified consid-
q eration neglecting the spatial variation\gf, on the scale of
s ds’ d.
w@=w4' —, (29)
ovg(s')

. . ) C. Magnetotransport at a~1:
and notice that the expone8t,, is determined by the phase Conductivity of the composite fermions atw# 1/2
¢(s) picked up at the singular point of the perturbation

SB[ r(t)] regarded as a function of the longitudinal coordi- We are now prepared to calculate the conductivit;Eat
nates. As can be verified by varying the shape of the trajec-=B,. Similarly to the case of the snake-state percolation, the
tory, the minimum “action”S,,, is acquired along a straight nonadiabatic transitions create a conducting network with the

path and the quantity to be calculated is therefore elementary cell of sizet~d(d/Ry)*® and perimeterL
~¢d/Ry, whereRy, the width of the links of the network
. id ds composed of the drift trajectories, obeys the equation
Shin=— In{ ex lwe V_(S) ) (29
—id Vd

Ri~D, L/vy. (34)
where the integral should be done along the straight lin
connecting the points=—id and s=id in the complex
plane of the variabls.?® This average determines, with ex-
ponential accuracy, the diffusion coefficientD,

ceXp(—Syin), Which is defined as me? 2 3
Oy~ 57 VgRg* ~—kgd exp( - —=Sui )
imt~Y[Ap(1)]?), (30 ok h 137mn

—

This equation is the condition of connectivity of the network.
The conductivity due to the nonadiabatic mixing of the drift
trajectories is thus given by

(35
t The dissipative transport is seen to be strongly suppressed

whereAp(t) is the nonadiabatic shift across the percolatingbeyond the scal@~ Bo.2% Let us emphasize that the cross-
drift trajectory in timet. The exponent can be written as a over to the adiabatic regime occurs in the CF system at a

sum of two termsSy,,=W,;+W,, where small deviation from half-fillingy= 1/2: B~ B, corresponds
) to the shift|v—1/2|~ 1/ked<1.

lzif d_qvg ;v (31) Calculation of the conductivity tensor componentsBat

2) (2m)2 Pa @ T <B, cannot be done analytically at~1. We have per-
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FIG. 8. Magnetoresistivity atv=0.2, 0.35, and 0.5; the cyclo-
tron frequency in the scaling of the axis refers to the external

magnetic fieldw,= eB/mc. The full, dashed, and dotted lines show
the experimental magnetoresistivity aroumd 1/2 according to the
data of Refs. 30, 31, and 25, respectivély this casew, refers to

the effective magnetic fiel=B—2hcn/e). The sample param-
eters(carrier densityn, undoped spacer widtthand zero-field mo-
bility ) are n=153x10"cm 2, d=80nm, u=
5x10° cn?/V's, (Ref. 30, n=0.86x10"cm 2, d=80nm, u=
10.5x 10° cn?/V s (Ref. 31, n=1.31x 10 cm ™2, d=120nm, u
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This result is valid ifB is large enough; namely, it requires
that the shift of the guiding center in the field of the optimum
fluctuation after one cyclotron revolutiod, and the Larmor
radius R, be both smaller thard. The conditionRR.<d

breaks down with decreasir@ atE/Bofva*l. Provideda
<1, the exponen(36) taken at the crossover point is large,
which means thaf<d and we are still deep in the adiabatic

regime. Next we consider the regin®/By<a ™ !. What

changes at smalléB is that the drift velocity of the guiding
center at point is now determined by an effective RMF
5B®f(r), the amplitude of which is smaller thdy, because

of the averaging of the fluctuations over the large cyclotron
radius. We defineéB®"(r) by writing the general expression

for the drift velocity to first order in5B/B in the form

e

va(r)=— = .

27Td(P
5-[8B(r+R)XR,]

(37

Re eff o
=Vg 2[V&B (ryxB],

2B"
whereR ,=R:(cosg,sing) and ¢ is the phase of the cyclo-
tron rotation around the poimt Stokes’ theorem then yields

5Bef(r) =

1
2] d’RSB(r+R). (39
REJR<R,

C

=3.5x10° cn?/V's (Ref. 25. _ o _
Equation(38) tells us thawB®" is given by the magnetic flux
formed extensive numerical simulations to study the overalfhrough the cyclotron orbit, so that the drift occurs along the
shape of the magnetoresistivity. The resultsder 0.2, 0.35, lines of constantlux (not the lines of constant magnetic field
and 0.5 are shown in Fig. 8, in comparison with experimentafveraged along the orhitlf 539) is a smoothly varying
data on the magnetoresistivity in the vicinity of 1/2 from  function on the scale dR., 6B*(r) coincides withéB(r),
Refs. 25, 30, and 31. We recall, that although a simple modeltherwise the averaging leads to a strong suppression of the
of uncorrelated impurities with the concentratigr=n gives ~ fluctuations of6B¥(r). More specifically, aR:>d the field
a=1/\/2, the actual value ofx may be somewhat smaller sB®(r) is characterized by two spatial scales: it has a short-
because of impurity correlations. As is seen, the experimer2nge component whose correlation radius remains of order
tal curves are reasonably close to the numerical data witl — it characteristic amplitude is
a~0.25+0.35. The numerical results show a positive mag- off a2
= Bo ~Bo(d/Rc)

netoresistance &=<B,, which is followed at largeB by a 39
falloff in agreement with the analytical predicti¢®7). Both ~ — and a long-range component which has a larger amplitude
these features are clearly observed in the experiment. Better Bod/R. but fluctuates on the much longer scale Ry.
agreement between the theory and the experiment is hardfince the drift velocity is given by the gradient 88°1(r), it
possible, taking into account the difference between the exs the short-range fluctuations that determigé). Applying
perimental data obtained by different groups and on differenthe optimum fluctuation method, we now have
(though nominally very clogesamples. Sufficiently far from
half-filling the experimental curves start to show magne-
tooscillations, which have not been included in the classical
model above. We will discuss the issue of the magnetooscilAt B/Bo~ o~ the factore™ Smin becomes of order unity and
lations below. at smallerB the adiabatic invariance does not hold anymore.
Let us briefly discuss the deviations from the Drude be-

havior at low-magnetic fields in the case of weak disorder
(a<1). The Drude theory predicts zero magnetoresistance,

We now turn to consider the case of weak disorder i ‘ :
Apy/py=0. Bending of the cyclotron trajectories on the
scale ofd leads to a small negative contribution to the

<1. The Gaussian behavior of the conductivity at Ia@lﬂs
Fhagnetoresistancé°
2
B

Sminfval/?’E/Bo, ail/SSE/BOScfl. (40

D. Magnetotransport at weak disorder, a<1

RMF. We can use the same optimum fluctuation method as

in fact a general property of the nonadiabatic transport in th =
for the CF system above to get

Apxx_ 3

= - T
Pxx

; (41

Snn=C(2a?)?%BIBy)%, BIB>a ' (36
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10’ . T T of B=B, below which the snake states form a continuous
<14.0 1 | ¢
4149 I : network and can percolate through the entire system. The
I —
oo o | il 3[; critical field B, is of the order oByp./d, i.e.,
002 | o3 _
! = l B.~B —-2/3
I x c o ) (42)
— | |
NQ 10° L | 'y i which is the characteristic amplitude of the magnetic field at
£, ! [ the critical saddle points. It is worth stressing that there is a
| | p g
A w.e}. A . clear separation of the adiabatic and snake-state regimes: the
=< nonadiabatic scattering within the finite clusters only leads to
iﬁs—: K3 g y
& , | an exponentially narrow uncertainty in the position of the
' bR critical point. If one neglects this nonadiabatic smearing of
the transition, the conductivity can be expressed as
0 p
_1 | 1 %
107 T | 1 o
! % e2 ked [ B
1 | 1 [ ! O-XX:F% =, (43)
-3 -2 -1 .0 1 2 3 a'2L |\ B,
o B/B,

where F(x) is a dimensionless function, such that0)~1

FIG. 9. Magnetoresistivity at=0.2, 0.35, 0.5, 1.5, and 4. The and F(x=1)=0, ando,, at zeroB coincides with that in
dashed lines show the critical fieB,;, at which the exponential Eq. (16). The magnetoresistivity fow=1.5 anda=4 is
falloff begins fora=1; see Eq(42). shown on a logarithmic scale in Fig.(8r completeness, we

also included the data for smaller valuesafwhich have
However, our numerical results demonstrate a pronouncebleen already displayed in Fig).8NVe see that the resistivity
positive magnetoresistance in the ragj@,=< a3, so that indeed shows an exponential falloff beyond a characteristic

e , poy . field consistent with Eq(42).
the resistivity shows a maximum &/B,~ «~*® before it i » a(42) . - =, —
starts to drop exponentially according to E®S5), (36), and To find the critical behavior ofr,,=(B.—B)" nearB,
(40). This positive magnetoresistance remains foraalbe- W€ formulate an auxiliary percolation problem in more con-
low ~0.5, see Figs. 8 and 9, and is strikingly similar to the ventional terms. Consider equipotential contours in a random

experimentally observed positive magnetoresistance of confotential with a characteristic amplitudg and the correla-
posite fermions near=1/2. A detailed theoretical analysis 10N lengthd and pick up all contours within the energy band
of this positive magnetoresistanéehich is determined by (~4,4), whereA<V,. These contours form a percolation

returns of a particle to a vicinity of the starting poimtill be  Network, tu,es size of the elementary cell of whichd@)
given elsewherd? ~d(Vo/A)™. The characteristic width of the links of the

network is of orderdA/V,. This is a standard percolation
problem. Now, let us shift the energy band corresponding to
the percolation network: namely, we introduce a parameter
and consider all contours within the band A +&,A+¢).
Clearly, the system undergoes a percolation transitioa at
==*A. In this new percolation problem, the leng#tA)
plays a role of the elementary scale, so that the characteristic
radius of the percolation cluster is now

E. Magnetotransport at strong disorder, a>1:
Localization of the snake states aB>B,

Let us address now the finitg—transport in the opposite
limit of strong disordere>1. The asymptotic§36) remains

unmodified at sufficiently larg®, namely, atB>B,/a'?,

where R;<R. At smaller B, the trajectories close to the
zeroB lines become localized in trjle adiabatic trdSec. £(A,2)~£(A,0(A/|A—5])*

[I] and start to transform into the snake states. A new featurgor positivee). Next, let particles propagate along the equi-
is thus the appearance of a competing mechanism of thgotential contours “ballistically.” As we know already from
conduction — the snake-state percolation. Indeed, the snakggcs. 1| and Ill, the conductivity of such a network scales
state trajectories are tied to the lines B{r)=0, where  gag the typical width of the conducting link§A —£)/Vo, i.e.,
B(r)=B+ 6B(r) is thetotal field. On the other hand, the ox<(A—¢). Assuming that our original problem can be
percolating trajectories are those that follow the lines ofmapped onto the problem above, we will get the critical ex-

5B(r)=0, independent oB. At IargeE>Bolal’2 the per- ponent for the conductivity of the snake-state netwiorkl,

colating and snake-state trajectories are therefore separatkfi 7(X)~1—-x atx—1.
in space: the snake states are closed orbits localized deep
inside the elementary cells of the conducting network. Now,

at B=By/a'? the nonadiabatic scattering is due to two  Until now, we have dealt with the transport properties of
mechanisms: the exponentially weak nonadiabatic correcelassical particles. The classical description is justified by
tions to the dynamics of the snake-state angl@nd the the large value of the parametard> 1: first, this parameter
breakdown of the adiabaticity of the snake states at thenabled us to calculate the conductivity by examining the
saddle points. The latter mechanism leads to the formation ahicroscopic dynamics in terms of classitaljectories sec-
percolation clusters. Thus, there exists a well-defined valuend, it guaranteed the existence of a wide range of the fields

F. Magneto-oscillations
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By and B in which the thus-calculated conductivity,, oy, is determined with growin@ by a progressively smaller
>e?/h [cf. Egs.(2) and(16)]. It is the latter condition that fraction of the total number of trajectories. In the adiabatic
allowed us to neglect the quantum interference of multiplylimit, only trajectories close to the ze@B contours contrib-
scattered waves and related localization effects. In this sedie tooy,. It follows that the oscillations ofr,, are associ-

tion, we discuss the small quantum oscillationsogf, as a ated with the oscillations of the density of these conducting
statesonly. In particular, this means that the SdH effect and

the magnetooscillations of thermodynamic quantitiele
Haas-van Alfve effec will be characterized by completely
different damping factors.

We now turn to the Dingle factor fosr,,. Quite gener-
ally, the SdH effect is due to the quantum interference of two
waves propagating along quasiclassical trajectories for which
the number of cyclotron revolutions is different kyN for
the Nth harmonic of the oscillation$:*%''The Dingle factor
Sor the first (and most promineitharmonic withN=1 can
therefore be represented as

function of B, which are conventionally termed the
Shubnikov-de Haa&SdH) effect. We argue that the physical
picture of the magneto-oscillations in the smooth RRd,
in fact, in the limit of a long ranged random potential as
well) is rather peculiar from the conventional point of view.
We first recall the standard results for the case of a ra
dom scalar potential with a sufficiently short correlation
length. Within the usual approadf®* the magnetooscilla-
tions of o, are related to those of the total density of state
P Ol owxpTpe, whereoly  and p*° denote the oscil-
lating parts ofo,, and pe. The damping of the oscillations
in low fields is described in terms of the single-particle re-
laxation time 7 (also termed sometimes the quantum relax-

ation tima,>*~31"which is equal to the transport mean-free
time 7, for the white-noise random potential and is

~ 1y /(ked)? for the random potential with correlation wherea labels trajectories in a given realization of disorder,
lengthd=kg*. Specifically, the exponent of the Dingle fac- G, is the weight with which the trajectory contributes to
tor exp(—Ssgr) is Sggu= 7/ w75, SO that atw.7s~1 the o, =,G,=1,®, is the phase that is acquired by a particle
oscillations of both the density of states at the Fermi leveimoving along the trajectory after one cyclotron revolutign,
and the conductivity become strong. We note that this crosss the phase of the SdH oscillations, afd) denotes en-
over to the strong oscillations occurs in the case of shortsemble averaging. In general, the phase factodcsbould
range disorder aby,/(e?/h)~Kkel(7s/m;)?>1, assuming be averaged both ovatifferent trajectories and alongne
that the ratior, / 75 is not too large. With further increasing trajectory. However, in the limit of smooth disorder, the ac-

B, atw.7>1, the density of states exhibits a series of peakstion @, , which is the dimensionless magnetic flux through
well separated from each other, so that in the centers of th#e cyclotron orbit, is the adiabatiovariant characterizing
valleys between the peaks the quantum localization starts &€ trajectory. A subtle point here is that the van Atfarift
develop rapidly, which leads in turn to the appearance ofccurs along the lines of constant fldx — not the lines of
quantum plateaus in the Hall conductivity. The full Hall constant field3 [see Eq(38)]. At first glance, this difference
quantization takes place, however, at much IarEewhen might seem to be irrelevant in the case of long-range RMF

the value of the conductivity in the center of the peak dropé,["r’]"[h d>|>RIC .t_ln fa(f:t:[hhowevel_r{ 'é IS off ::hruual |_r|:1ptprtancLe {or
to a value~e?/h. Therefore, in the short-range random po- € calcuiation of the ampiitude of the osciiations. Let us

tential, there exists a parametrically broad region betweeillus'trate this point by first derivings along the following

the appearance of the SdH oscillations and the fully devel;N€ of argument. We know already that the extended trajec-

oped quantum Hall effect. tories form a percolating network along the contours of zero

In the case of a white-noise RMF the situation is diﬁerent.5B(r)' Since the width of the links of the conducting net-

The short-range fluctuations of the magnetic field are accomv-vork is much smalletin fact, as shown above, exponentially

panied by long-range fluctuations of the random vector—SmaIIeD thanRg, it is a good approximation to place the

potential. As a result, the single-particle relaxation rate nov@mdinf(i:J ceﬁr:lt)erhon thhe ﬁontoulr of zeﬂg(r), cc:jalculateié:cge
diverges due to the strong small-angle scattefitigrhe di- ~ RMF flux 50 through the cyclotron orbit, and averag

vergence is cut off by the characteristic length scale in th&Ver different positions of the guiding center on the z&B-

problem, which is the cyclotron radius. As a consequenc ine. This would g|ve2a contribution 2to t2he Ial?sgle-factor ex-

the damping factorSey, takes a different form,Seyy  PONENt Ssar=((6P))/2~(eBy/Ac)*(Rc/d)". " In fact,

—47Ep | wir, =4mo,, J(€2/h).1 It follows that at Sy however, the actual trajectory of the guiding center is
c : . .

~1, where the oscillations become observaltg,~e?/h. slightly shifted from the contour of zeréB(r) — by an

This is, therefore, a marginal case: the SdH oscillations be@Mount that exactly cancels the above contributioBdg, -

. . . since it is the flux that is the adiabatic invariant. It follows
come appreciable in the same regiorBovhere the quantum ¢ the average over the flux should be done only alifer
localization effects get strong. . ferenttrajectories:®, in Eq. (44) is, in the adiabatic limit,

Now, let us consider the limit of the long-range RMF. In . jo«tant for a given.

this case, the oscillations of the total density of states are Having established the conservation of the fillx along
damped exponentially strongly in the whole region where thqhe trajectory we can rewrite E¢44) in the following form
classical conductivity is=e?/h, and are thus of no impor-

tance. However, the crucial thing to notice is that the oscil-
lations of o,, and of the total density of statgs are no
longer directly related to each other. Indeed, as shown above,

exp( — Sgq) COSYr= < > G, cosd>a> , (44)

exp(—SSdH)cosdxzf ddG(d)cosd, (45)
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where G(®)=(=,G,5(®—-d,)) is understood as the en- 20
semble average takesrcrossa link of the conducting net-
work. The functiong(®) is represented as a narrow peak of
width A® centered atb = 2w(mv2/2%iw.). The dimension- o
less magnetic fluxA® can be expressed in terms of the —
width Ry [Eq. (34)] of the link of the conducting network by w’f 10
A®~(elfic)ABRZ, whereAB~BgRy/d is the characteris- &
tic change of the RMF across the link. We, thus, see that the
broadeningA® is related to the conductivity of the network 05T
[Eqg. (35)] and obeys the equation /\

e %030 20 10 00 10 20

Oyx™ FACI) (46) E [Tesla]

This rather remarkable result implies that the Dingle factor FIG. 10. Composite-fermion conductivity,, as a function of
e Sis a function of the single variablg= o, /(e?/h): the effective magnetic field extracted from the data of Ref. 25. The

magneto-oscillations start to develop when the conductivity
% units of e2/h) drops down to a value-1.
qu_SSdl—(g)]zf dxQ(x)cog2mgx). (47
- ber of oscillations observed in the best samples wkitd
Here, we have expressedG(®)=(27g) Q[(P ~15isp.=7—9. The oscillations start indeed to develop at
—®4)/27g] in terms of the parameterless functi@(x), g=1, as shown in Fig. 10, where the experimental data of
which falls off at |[x|~1 and is normalized according to Ref. 25 are represented in terms of the CF conductivity. Fi-

JdxQ(x)=1. According to Eq.(47), the Dingle factor is nally, the damping of oscillations with decreasiBgis ex-
represented as the Fourier transform of the smooth functioftemely fast, so that the Dingle plot is strongly nonlin&:°>
Q(x). Itis worth noting that Eq(47) can be interpreted also  To summarize, in contrast to the text-book example of a
in terms of the local Landau levels. In the language of theshort-range potential, the damping of the magnetooscillations
quasiclassical quantization, the contributiGy of the Nth iy 3 smooth RMF has the form b3~ —S(g); i.e., the
Landau level to the conductivity,=Z\Gy falls off be-  pingle factor is a function of the dimensionless conductivity

yond the band of widtlA\N~g>1 aroundN=mvZ/2A ., only [hereS(g) = min{Ssgn, Sonet]- The explicit form of the
where the number of effectively conducting Landau levels isunction S(g) warrants further study.

determined by the change of the flux across the lik
=A®/27. Represented in terms dfN, Eq. (46) takes the
familiar form: the conductivity is of the order &?/h times
the number of the conducting channels in the effective net- The frequency-dependent dissipative conductivity in-
work. Applying Poisson’s formula to the sumyGy we  volves the Fourier transform of the retarded velocity-velocity
again arrive at Eq(47). correlator:o,,(w) = €?pe(|vy|2), where

Hence, the SdH oscillations due to the oscillations of the
density of states of the “conducting” particles become ob- o “ it
servable ag~ 1. However, as has been already mentioned, <|VX|w>_Refo dte (v (0)vx(D)). (49)
there exists another effect that leads to the appearance of the
magnetooscillations: the quantum localization. According toln the quasiclassical limit, which we consider here, the inte-

IV. AC TRANSPORT

the scaling theory of the quantum Hall effétt, gral overt is understood as the integral along a classical
trajectory, characterized by the velociiyt), while { ) de-
Sone(9)=27g, g>1, (48)  notes the averaging over the trajectories. The average is

. . . . S . taken over all trajectories of electrons at the Fermi level.
irrespective of any microscopic details, in particular, the

value of . Equationg47) and(48) tell us that both types of Howevgr, as discussed above, if th.e magnetic field, eBher
oscillations become observable gt-1. To decide which ©F Bo, is strong enough, most trajectories do not make a
oscillations are stronger, one should calculate the Fouriepignificant contribution to the dc conductivity and the trans-
asymptoticg47). This requires knowing the precise shape ofPOrt 1S governed by the pgrcolatlon of a small portion of .th.e|r
the functionQ(x). It appears that in the case of the percola-tOta| number. In this section, we turn to the ac conductivity.
tion networkQ(x) can be obtained only by means of a nu- Wé will show that changing the frequency, one effectively
merical simulation. Here, we restrict ourselves to concluding?"0P€s the motion on the percolating network on different
that the number of oscillations observed scales in the cppatial scales. This results in a strong non-Drude frequency
problem asp.~ked/InY3(ked). Since dispersion of the conductivity.

gocked exd — (pe/p)?l, A. ac conductivity at a~1, B>By;

wherep=E¢ /% w, the oscillations disappear extremely fast application to the composite fermions aroundy =1/2

with increasingp (i.e., decreasin@). These findings are in We start with the ac conductivity at~1 in a strong
agreement with experimental observations. The typical numexternal fieldB> B, (which is relevant to the CF problem at
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sufficiently strong deviation frorw=1/2, Av>1/kgd). Our d2a’
ion +f (09" )Dg_g/Nyg =1. (53

analysis in Sec. Il relies on the characterization of the elec- 2
. T

tron dynamics aB>B, by three degrees of freedom with
different frequency scales: the fast cyclotron rotation, thewe now writeD(r)=D + 8D (r), whereD is the mean value
slow drift, and the still slower nonadiabatic diffusion acrossof D(r), expand the propagator in powers &b, and aver-
the drift trajectories. It is the slowest degree of freedom, theage Eq. (53) over the fluctuations with the correlator
nonadiabatic diffusion, that yields unboundéextended  (5D(0)6D(r))=AD?g(r), whereg(r) is a dimensionless
paths. Let us first consider the contribution to the velocity-function of order unity, which falls off on the scale dj,.
velocity correlator(49) which comes from these extended The use of the diffusion equation implies that the correlation
trajectories(v,(0)vy(t))exq. Following the approach devel- radiusd,>1, wherel is the mean-free path. To first order in
oged in Sec. Ill, we parametrize it as a function of two vari- A we have for the correction to the average diffusion propa-
ables gator

d th th d2 ’
(VA OV(D)ex=Vg ( - &0 Mg ADDE, | —q)zgquqq')zmqn (54)

F -

d )

¢ L (2m

Wherevd:(3/8)1’2v R Bo/dB is the r.m.s. drift velocity ¢ whereD,,,=(—iw+Dg?) ' From Eq.(54) we deduce the
xRy " andLxRy "™ ! are the characteristic size and perim- o dependent correcuon to the conductivitgo,(w)
eter of the elementary cell of the percolation network, and=e?p w? I|m o9 2Re MNyq

v=4/3. The factord/ ¢ gives the partial density of the per-

colating statesi.e., the portion of the are&x & occupied by Sor (w) Dg?
the trajectories of sizeé, LRy/&2~d/&). At dlvg<t X - —f ~0q (55)
<L/vq, the scaling function exhibits a power-law behavior Txx (2m)? " —iw+Dg*’

F.(7,0)~ 7 * reflecting the fractal dimensionality of the
links of the network. The exponertcan be found by equat-
ing {v,(0)v,(t))ext and the effective diffusion coefficient
£2(t)/t, where&(t) ~d[ L(t)/d]”"* 1) andL (t) ~v4t, which
yields x=2/(v+1)=6/7. The network model we have used
is justified by the conditiorx<<1 (the Harris criterion,v
>1), so that the integral overin Eq. (49 at =0 is deter-
mined byt~L/vy. We, thus, have

i.e., 8oy (w)loyy=Ago|w|/16D at smallw [we drop here an
o independent term ido(w)], which implies at~? long-
time tail in the velocity-velocity correlator in E¢49).

On the percolation network, the size of the effective scat-
terers and the effective mean free path are both of the order
of &, i.e., dy~I~¢&. Furthermore, strong fluctuations of the
geometry of the percolating cluster imply that~1. We
expect that the 17 tail, the existence of which has been
x g L demonstrated above in the phenomenological model with

—=<t<—. (51 do>l andA<1, will not disappear if we sedo~I and A
Vg Vd ~1. Substituting these estimates into E§5) we get

) d
<Vx(0)Vx(t)>ext~VdE ﬁ

Now, to calculate the frequency-dependent correction to the Solw)  |o|L
dc conductivity atw=<vg4/L, we need to know the behavior e (56)
of the correlaton50) at t>L/vq4. If the diffusion over the Txx Vd
percolation network were completely uncorrelatégiwould  which corresponds to Eq52).*® We recall that the charac-
decay exponentially with increasitgWe will argue below teristic scalel entering Eq(56) is given by
that in factF, falls off as a power law

713
meZVdd
hZ

Fo(r,7)~— (71072, 7m>71>1. L~d

7
ocd exp(— i ) 5
- T3 Smin (57)
For the correlatof50) this gives
It is worth noting that theclassical kinetic correlations
dé L compete with the quantum ones and win, unless the fre-
(Vx(0)Vy(1) )exi™ — 7 B (520 quency is exponentially small. Specifically, as is well known,
d the quantum localization effects in 2D lead td & tail in
This long-time tail in the correlation function is similar to the the correlatof49) and, correspondingly, to alts| correction
one found in the Lorentz ga@oninteracting classical par- to the conductivity. This quantum correction is of special
ticles scattered by a random array of hard diéésVe will interest because of its divergence for-0, in the thermo-
study the long-time correlations microscopically for the real-dynamic limit. The classical correction, proportional|te|,
istic case of a weak long-range disorder elsewliefeere, does not diverge, but it is also interesting, both theoretically
we introduce a simple phenomenological model suitable foand experimentally, since it isonanalyticalin w and is
the qualitative description of the percolation network. much larger than the quantum one even at very {ewrlhe
Consider the diffusion equation with an inhomogeneougoint is that the localization correction is a series in powers
diffusion coefficientD(r). The diffusion current is then of the small parameter B#l, wherekg is the Fermi wave
given byD(r)Vn(r,t), wheren is the concentration of par- vector, while the relevant parameter for the classical correc-
ticles. The diffusion propagatan,, in (w,q) space obeys tions isd/l, whered is the correlation radius of disorder. If
the equation the disorder is long-rangeck{d>1), the classical correc-
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tions are dominant in a wide range @f We will discuss the
classical corrections in more detail elsewh&re.

Note thato,,(w) behaves nonanalytically at half-filling
also in theintegerquantum Hall regime. At the integer quan-
tum Hall transition,
S0y~ | w|Y"? is related to corrections to scaling. The leading
irrelevant scaling exponentat the quantum phase transition
was found numerically to be equal to 0:88.04 and 0.35
+0.05 in Refs. 44 and 45, respectively. In Ref. 46yas
argued to be equal tg, where =0.4 (Refs. 47,44 is the
critical exponent of eigenfunction correlations. However, in
a long-range random potential there exists a classic
nonanalytic terméo,~|w|Y<’? with y,=2,*® which domi-
natesdo,,(w) in a wide range of frequencies.

Coming back to Eq.(56), we see that the frequency-
dependent correction becomes strongvatvy/L. We now
turn to higher frequencies. The scaling fo(&1) implies that
the contribution tar,,(w®) from the extended trajectories be-
haves aso ™% at w>vy/L, i.e., it slowly decreases as
o~ Y7 with increasing frequency. Let us show that the ex-
tended trajectories do not determine the conductivity an
more and the main contribution t®,,(w) comes now from
localized drift trajectories. We will show that in faet,(w)
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velocity-velocity correlator can be parametrized as
(vX(O)vX(t))zvﬁf\,(vdt/d), wheref,(7) is a dimensionless
function of order unity[cf. Eq. (50)]. Note that it is not
sufficient atw>v4/d to know the behavior of the correlator

the frequency-dependent correctiony; t— 1, Since the conductivity is expressed in terms of

the high-frequency Fourier component &f,(0)v,(t)),
which is an even function df o, will fall off exponentially
with increasingw (until @ reaches the low-frequency wing
of the cyclotron resonangeTherefore, to get the asymptotic
behavior ofo,,(w), we need to know the analytical proper-
tLes of the correlator as a function pfi.e., the exact shape of
the functionf,(7), which requires a numerical simulation.
We expect, however, that the functidp(r) has a simple
analytical structure with singular points at lm- =1, which
yields the exponential falloff of the form

In oy~ —|w|d/vy. (62

MI'his exponential decay of,, is limited from the side of

large frequencies by the disorder-broadened cyclotron reso-

growswith w. We neglect the weak nonadiabatic scatteringnance, which dominates,,(w) at w~wc=eE/mc.

between the closed drift trajectories and represent th
velocity-velocity correlator49) for the periodic drift orbits
in the form

(58

Here,r(t) is a closed trajectory with the period and the
angular brackets denote the average over biotand the
shape of the trajectory at givéhn The average is determined
by trajectories withT~ w2, their perimeter and size are
L,~Vg/o and &,~d(L,/d)""" 1, respectively. The par-
tial density of states corresponding to these trajectories i
~pras¢, [see the paragraph after E§0)]. The estimate for

the correlaton(58) thus reads

2mn
w— —

T

°s 5(

Tdt :
<|Vx|i>loc:77w2<’j ?X(t)(-}“”t
0

<|Vxli>|oc~w2§ixd/§wx|w|7l! (59)

where the factod/¢, stands for the partial density of states
and the last facto®n ~! comes from the averaging of the delta
functions in Eq.(58). This yields theac conductivity of the
form

(60)

whereR,~d(d/&,) = |w|¥" is the characteristic width of
the links of the conducting network. We §&t

Txx(@)~ ezpFVde )

|w|L

) 3/7

Vd

Vd

L

< <V 61
slo[=y. (6D

Oyx( @)~ 0y (0)

Equationg56) and(61) describe the behavior of the con-
ductivity at w=<vq4/d. At still higher frequenciesg,, () is

e The arguments of the last paragraph concerning the expo-
nential falloff at largew are also applicable to thac con-

ductivity in zero(or low) B, with the only substitution of the
Fermi velocityvg for the drift velocityvy. In contrast to the
Drude (white-noise disorder case, where the velocity-
velocity correlation function has a cusptatO leading to the
slow 1kw? decrease obr,,(w), in the case of smooth disor-
der(v,(0)v(t)) is an analytic function of att=0, which
implies an exponential decay of,,(w) at w>vg/d.

Figure 11 shows the results of the numerical calculation
of the ac conductivity for «=0.35. Significant deviations
from the Drude theory fit are seen, which become stronger

With increasing external magnetic fieRl For zero(or low)

B the results are still relatively close to the Drude theory,
except in the tail(for >vg/d), where the conductivity
starts to drop exponentiallisee inset in qualitative agree-
ment with the theoretical expectatipgqg. (62)]. In the inter-

mediate fieldsB (see the curves corresponding dQd/vg
=0.2 and 0.3y the nonanalytic dig56) aroundw=0 gets
clearly observed. Finally, in a large magnetic field, the shape
of the ac conductivity is completely different: it increases
nonanalytically at smallv in agreement with Eq(61), see
Fig. 12, and then drops exponentially in a higher frequency
range in agreement with E¢62), see Fig. 13; at still higher
frequencies, the cyclotron resonariseeared by disordgis
observed. It becomes difficult to resolve reliably the leading
nonanalytic correctiodo,,*|w| at w—0 in high magnetic
fields, since it is shifted to the very low range and is
masked by the statistical noise present in the numerical data.
Note that in Figs. 12 and 13 we used the frequency scale
vq4/d, which is a natural scale in the regime of high-magnetic

determined by the velocity-velocity correlations in the crossfield. The value ofa in Fig. 11 is approximately the one

over region between the “ballistic” drift on the spatial scale
much smaller thard and the “diffusive” motion over the

appropriate for the CF system. Therefore, this figure repre-
sents our prediction for thac conductivity of the CF’s at

fractal network on larger scales. At the crossover, thehalf filling (EZO) and away from it B#0).
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FIG. 11. ac conductivity atr=0.35 and for different values of
the magnetic fieldB. The number near each curve indicates the
value of the cyclotron frequency.=eB/mc in units of v /d; to

convert these values inIE/BO, one has to multiply them by &/
The result of Drude theory is also showaptted lineg. The statis-
tical noise in the data ab.d/ve=1.22 is due to fluctuations of the

local cyclotron frequency. Inset: the loBrdata (cd/ve=0.01) on
a logarithmic scale.

B. ac conductivity at a>1, B=0
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FIG. 12. Low-frequency behavior of the ac conductivity

S0y (@)= ayy(w) — 04, (0) in strong magnetic field forx=4.04,

B/By=1.00 (which corresponds tav.d/ve=4.04). The straight
line corresponds to the theoretical predictiéa, | w|®’, see Eq.
(61). The same nonanalytic behavior @f,(w) in the low-w range
in strong magnetic fiel® takes place for smalk and is in particu-
lar seen in Fig. 13 forr=0.2.

cancels out in this expression ang,(w) turns out to be of
ordero,,(0) [Eq. (16)]. We put|w|~Veps/d®~ve/da?? as

the upper limit for the frequency range where E§4) is
valid: strictly speaking, the decrease lof at higher|w| is
accompanied with a growth of the phase volume of the snake
states that participate in thac transport by escaping the
adiabatic traps. This means that the angjl@hich should be
substituted forés, Eq. (13), now increases withw| as
£,;Y2, wherel ,~InY4(vg/|w|d). It follows that

Let us now consider the frequency dispersion of the

snake-state percolationv®1,B=0). Since the mechanism

of the percolation was of no importance in the derivation of

Eq. (56), we get

Vg

Ls

o0y () _

Oxx

|w||-s
VF

o ol= (63)

(we substituted hereg for v as the effective drift velocity
of the snake states ard,~da'** for the perimeter of the
elementary cell of the conducting netwrk’he correction
becomes strong &i|~ve /L. Atlargerw, the conductivity

is determined by the snake states that are bounded to the

closed zerd@ contours of size much smaller th&g. Spe-
cifically, the main contribution tar,,(w) now comes from
the trajectories of the length,,~v:/w. We estimate their
contribution atlw|=vg /L as

ZPRst s

&, (69

f 0~ 0y(0),

oy w)~e

whereé,~d(L,/d)”"* 1) The first factor gives the density

VE
d L

VEPs
d =

=|o[= (65

Oyx(®)~ 0y (0) ? )

w

i.e., the conductivity grows with increasing (but extremely
slowly), until |w| becomes of the order af/d.
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FIG. 13. ac conductivity atv=0.2 and strong magnetic field,

of states for the snake-state orbits with the periods IargeB/E;O 4.38 (which corresponds ta.d/ve=0.88), shows the ex-

1 while the last factor is the effectlve diffusion co-
. We see thatw

thanw™
efficient on the time scale of orden™

ponential falloff(62) in the intermediate range of frequencies. The
dotted line corresponds to &,=—2.2w|d/vy4.
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Note that, in the derivation of Eq$64) and (65), we 0.4 T . . . 20
restricted ourselves to the snake states and were not con- |
cerned about the contribution of the drift trajectories, which

requires comment. Indeed, one might think that the argu- 0.3
ments that led to the power-law behavior @f,(») in Eq.

(61) could be used here as well. However, there is a new

feature that makes the percolation at largeand zeroB

distinct from that ax~1 and largeB. Namely, now there is
no characteristic drift velocity 4, which is the same for all
trajectories. Specifically 4 at largea depends on the typical 0.1
distanceR between the drift trajectory and the zeBoeon-

tour. We parametrize4(R) as

- Jgi"% ;‘M“ 4

Y

0.2

o, (w)/kd [*/h]

0.0

Vo(R)=VeFd 7], (66) odle
S

5 . FIG. 14. ac conductivity in zerg ata=0.5 anda=4.04. The
where FS(0)~1_ anq F§(X)~ __X _at x>1. The S|OWIng scaling of they axis is different for the two curves, as indicated by
down of the drift with increasingR is related to the linear he arrows. Inset: nonanalytic dip arours=0 [Eq. (63)] at «
growth of the magnetic field as one moves away from the— 4 o4,

line B=0. Equation(60) tells us that the contribution to the
ac conductivity of trajectories separated by the distaite pigher frequencies a broad distribution of cyclotron reso-

- 71 - .
from the zeroéB lines scales agy(R)R*R ", i.e., itde-  nances in the localrandom magnetic field is observed. A
creaseswith R. It follows that the drift orbits that surround hump atwd/ve=1.7 marks the onset of this regime and

the snake-state trajectories do not contributer{f(w) even  corresponds to the characteristic snake state frequency

50
at largew. ~a¥(ve/d). To see the exponential falloff in a broader

Thus, the overall picture in the snake-state percolationrequency range more clearly, one would have to consider
regime is as followso,,(w) exhibits a narrow dip around larger values ofx.

=0, increasing linearly with growing; this increase is
saturated ab~ v /L where thew-dependent correction be-
comes strong; finally, on th@arametrically largerscale of V. CONCLUSIONS

@~V /d, oy w) starts to fall off_exponentiallf}.l The latter We have presented a detailed analytical and numerical
regime is similar to that at largB [see the paragraph after study of the conductivity of a 2D fermion gas in a smooth
Eq. (61)]. random magnetic field, in the whole range of the parameters

We finally comment on the case~1,B=0 relevantto 4 (strength of the random fieldB (mean magnetic fiek
the CF problem. In this casks~d, so that the range of andw (frequency. While special emphasis has been put on
applicability of Egs.(64) and (65) shrinks away and thac  the application of our results to the composite-fermion de-
conductivity becomes a function of the single variablescription of the half-filled Landau level, they may be equally
wd/veg: relevant to the electron transport in a real random magnetic
field. Below, we summarize the main findings.

O'xx(w)NO'XX(O)Fw(w_d)’ (67) _ (1) At zero magnetic fieIcE_, thedc transport has a totally
VF different character in the regimes of weak<€1) and strong
(a>1) disorder. While in the former case, = 1/a? [Eq.

. . (2)] is correctly given by the Born approximation, in the
ponen(';latlgy at Iargev;.(:anaﬁ~—.|x|).t\|Ne ha\t/he alrea(%/ d'fj' latter the conductivity is determined by the percolation of
cussed the exponential behavior at farge the ConsICEred  gnaye states yielding > 1/a? (up to a negligibly weak
regimea~1,B=0 in the end of Sec. IV Ajitis clearly seen |ogarithmic correctiop see Eq(16). Numerical simulations
in Figs. 11 and 14. As to the nonanalytic dip at smallour  confirm these analytical findings and allow us to fimg, in
numerical simulations indicate that it is almost unobservablghe crossover region~1, see Fig. 7.

at the values of describing the CF conductivity(<0.7) at (2) In strong mean magnetic field the particle motion

B=0. Apparently, the corresponding numerical coefficienttakes the form of an adiabatic drift of the cyclotron orbits. A
gets very small for such values ef With increasing either nonzero value ofr,, in this regime is entirely due to expo-

a (Fig. 14 or B (Fig. 11) the nonanalytic structure gets nentially weak nonadiabatic scattering processes. As a con-
resolved very clearly. sequence, the conductivity falls off exponentially)n o,

In Fig. 14, we show thac conductivity at relatively large chZ, see Eqs(27), (35), and(36). [At a<1, an intermediate

a=4.04 in comparison with that ak=0.5. The «=4.04 regime appears—In o,,<B, see Eq.(40).] The numerical

curve is strikingly dlfferent from the Drude behav_lor_ and simulations have allowed us to find the shape of the magne-
shows the features discussed above: the nonanalytic increase

in the smallw region, followed by a rapid decay consistent toresistance in a wide range Bffor the values ofx ranging
with the theoretically predicted exponential falloff. At still from 0.2 to 5, see Fig. 9. The magnetoresistapcgB)

whereF ,(x) —F,(0)~|x| at|x|=<1 andF ,(x) falls off ex-
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shows a sharp falloff at Iarggin agreement with the ana- Figs. 11-14, re_lated to _the long-time _tails in the velocity-
lytical results. Furthermore, at<0.5 this falloff is preceded velocity correlation function and reflect!ng the strongly non-
by a positive magnetoresistance in the intermediate range &oltzmann character of the transport in the percolating re-

B. The whole shape obxx(E) at «~0.35 (as well as its
absolute valugis surprisingly similar to the experimental

gime. At higher frequencies,o,,(w) starts to drop
exponentially(which reflects the “ballistic” dynamics of the

magnetoresistivity in the fractional quantum Hall effect Snake states or drifting orbits on short spatial soalestil it

aroundv=1/2 (Fig. 8.

reaches the low-frequency wing of the disorder-broadened

(3) In contrast to the case of a short-range random potergyclotron resonance peak, see E6) and Fig. 13. Theac
tial, the quantum magnetooscillations of the conductivityconductivity ata=0.35(which is in the range of relevant

start to develop in the range of the magnetic fisldvhere
the dimensionless conductivity= o, /(€%/h) drops to a
value ~1, in agreement with experimeifFig. 10. These

to the composite—fermign problenand different values of

the mean magnetic fielB shown in Fig. 11 clearly demon-
strates the anomalies which we expect to be observed in the

oscillations are not related to those of the total density ofC transport around-=1/2.

states(which are damped much more strongliput are de-

termined by the oscillations of the density of states of the

particles moving on the percolating network, as well as by

the quantum localization effects.

(4) The ac conductivity also shows distinct features re-
lated to the deviations of the particle kinetics from the be-

havior following from the Boltzmann equation. While at

<1 andB=0 theac conductivity o,,( ) is relatively close
to the Drude form(except in the tail, where it drops expo-

nentially), at largea and/orB the shape ofr,,(w) becomes
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