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Two-terminal conductance fluctuations in the integer quantum Hall regime
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Motivated by recent experiments on the conductance fluctuations in mesoscopic integer quantum Hall
systems, we consider a model in which the Coulomb interactions are incorporated into the picture of edge-state
transport through a single saddle point. The occupancietassicallocalized states in the two-dimensional
electron system change due to the interactions between electrons when the gate voltage on top of the device is
varied. The electrostatic potential between the localized states and the saddle point causes fluctuations of the
saddle-point potential and thus fluctuations of the transmission probability of edge states. This simple model is
studied numerically and compared with the observafi80163-182€09)11835-4

. INTRODUCTION field case!*2Using the same sets of Si MOSFET devices as
described, they observed in strong fields strong correlations
Mesoscopic sample-to-sample fluctuations in the conducef fluctuation peaks and dips at different magnetic fields.
tanceG are universal in the sense that the deviation from itsThis is achieved by studying explicitly the evolution of fluc-
average, §G)?=(G—(G))?, is always about the order of tuation peaks and dips with magnetic fields in different field
(e?/h)? at very low temperatur&? In zero or weak external regimes. Using a gray scale plot ©06G/dV, as a function of
magnetic fields, this behavior can be understood in terms d8 and V,, each bright or dark line can be viewed as the
the quantum phase coherence of diffusive electfombis  “history” line of a peak or a dip of the conductance at dif-
picture, however, is not expected to work in the quantumferent combinations o, andB. The contrast between weak
Hall regime since the trajectories of electrons are drasticallyand strong magnetic fields is very cle@ee Fig. 2 in Ref.
deformed in strong magnetic fields. In this situation, the ex21).
istence of extended states at sample edges makes the transFor weak magnetic fields, no pattern can be seen whatso-
port properties rather different from the weak-field chse.  ever. AtB=10 T, we can see peaks and dips of conductance
deed, magnetoconductance measurements on mesoscoflictuations in a transition region between two successive
multiterminal device® seem to agree with this expectation. conductance plateaus, which are wide and gray regions. The
To be consistent with these observations, explicit inclusiorfluctuations “move” in gate voltage, in straight lines as the
of the edge-channel effects in theories seems to benagnetic field is varied. This pattern means that there exist
necessary. ! strong correlations between fluctuation peaks and dips at dif-
The appearance of the bulk delocalized states when thigrent gate voltages at high magnetic fields. A closer look
Fermi level is between two quantized Hall plateaus makes seveals that there are two types of lines, with different slopes,
mesoscopic system in strong magnetic field even morén a transition region. The slope of one set of lines is parallel
interesting'? It is only recently, however, that experimental to that associated with the center of the plateau below, while
data on the statistical behavior of the conductance in thishe slope of the other set of lines is parallel to that associated
regime have become availabfeSpecifically, conductance with the center of the plateau above.
fluctuations have been studied in mesoscopahannel sili- The strong contrast between the fluctuations onjé3
con metal-oxide-semiconductor field-effect transistbkSi  plots in weak and strong magnetic fields means that what
MOSFETS with two terminals. In these systems, conduc-occurs in two different field regimes is dramatically differ-
tance is quantizedin units of €2/h) at some values of the ent. The straight lines appearing in the strong-field results
gate voltage V; and the complication due to the make it no longer appropriate to treat the phenomenon as a
Shubnikov—de Haas oscillation in multiterminal devices issingle-particle one. Thus those modef€® we mentioned
absent in the two-terminal setting. It is found that the distri-before are obviously not compatible with strong correlations
bution of conductance below the first conductance plateau isf conductance fluctuations at different fields.
almost uniform betweerG=0 ande?/h. This is in clear In this paper, we consider a model taking into account the
contrast to the Gaussian distribution in the weak-field ¢Ase. electron-electron interactions. The conductance plateaus are
Theoretical studies have been carried out on models based amderstood in terms of the edge-state picture and the absence
the single-particle interference effect, e.g., the tight-bindingof backscattering between channels at opposite edges of the
Hamiltonian!® Chalker-Coddington network mod¥t;*and  sample. In the transition region between plateaus, we assume
so ort® numerically, and also a renormalization group that the paths followed by electron currents coming from two
analysis?® Some capture this feature of the conductance diseontacts(or terminal$ percolate into the bulk as the chemi-
tribution. cal potential is increased and eventually become connected
More recently, Cobden and collaborators demonstrate furby tunneling through a single saddle point. In addition to the
ther that there is a great difference between conductanaglectrons in these edge states, we also take account of elec-
fluctuations in the lowest few Landau levels and the weakirons in localized states. Conductance fluctuations arising
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from Coulomb interactions between both sets of electrons
are treated in a simple way.

As electrons are added to the system, the ones already in
the localized states will rearrange due to the interactions.
Therefore, the occupation of a given localized state can fluc-
tuate several times between 0 and 1 when the chemical po-
tential u is changed from-o to +9. The total electrostatic
potential between the localized states and the saddle point
then also fluctuates as is varied. Because of the fluctua-
tions of the saddle-point potential, the tunneling of percola-
tion paths fluctuates as a function of the chemical potential.
In our model, fluctuations of the conductance are purely due
to these interaction effects. Numerical study of this model , ,
shows that the conductance between plateaus as a function of /G- 1. The formation of an edge-state channel pair as the gate
the chemical potential does indeed fluctuate significantly/®/29¢ IS increased in the transition regime, here bet@en
within the range betweeG =0 ande?/h. =e /h qnd 2</h. The lines W|th arrows repre_se_nt the directed

In the next section, we first develop our model, based Ort]ra]ectorles of electrons or holes in the magnetic fields.
the transmission of edge-state channels through a sing
saddle point in the transition region. Fluctuations of a singl
potential saddle point are related to the Coulomb interactio
between localized states in the bulk of the disordered two
dimensional electron systef@DES. These localized states
are treated using the Efros-Shklovskii Coulomb glass mode

rom them, we can imagine that, in the bulk of the system,
IJ;'here are also directed extended states at the boundaries of
the regions which are occupied by electrons and connected to
one or the other contact. At some value of the chemical
potential, these extended states undergo large excursions into
Models at finite temperatur€ with localized states arranged the bulk. Asu is increased further, the directed extended
tates approach each other more closely and tunneling be-

on regular lattice points or random sites are then studie ~)
numerically by Monte Carlo methods and exact enumeration™Vé€n them occursshown as the dotted line in Fig). Even-

Results forG versusV, at different disorder configurations tuall_y  a se_((:jond pa|{hof edgte stzgtes :js f(_)rmed in this way at
and temperatures are obtained. After that, comparisons of ou.tllPe INner side near the systém boundaries.

numerical results and experiments are discussed. We CO([F Lft us CO’?S'der t.he S|nf1pllestt tunn(;zllng prqcelss 'ntWht'.CT
clude with a summary. e two growing regions of electrons form a single potential

saddle point assumed to be located at about the center of the
2DES. The transmission probabiliff;; =|t;|? for the in-
Il. THEORETICAL MODEL coming channel and outgoing channglis already known,

) i _for the saddle-point potential of the fornv(x,y)=V,
Before introducing the model, we note that there are d'f'—(1/2)mw)2<x2+(1/2)mw§y2 with w, and e, characterizing

ferent electron states in a disordered 2DES system in a high - shape of the saddle-point potentlt is given by
magnetic field. The edge state exists on an equienergy line
along the boundary of the sample connecting two contacts.
The width of each edge-state channel is about the order of T
magnetic IengthJBocll\/E. Therefore, in a high magnetic
field the backscattering between edge states at opposite
boundaries can be neglected. Since each of the edge-stambere e,=[E—E,(n+1/2)—Vgp|/E; with E denoting the
channels is now one dimensional, we can apply the twototal energy of the electron andsp=V, being the bare po-
terminal Landauer-Bttiker formula to calculate the conduc- tential strength. The two-terminal conductance is then given
tance. The current injected into each of the edge states By G=(e*/h)=;T;; .
proportional to the difference of chemical potentials between In Eq.(1), E; andE, are in general complicated functions
two contacts and also each edge-channel pair. In the contegf o (cyclotron frequency w,, andw,. At high magnetic
of the measurements on Si MOSFE?$??the bias voltage ~fields, whenaw, is much bigger tham, andw,, €, in Eq.
between two contacts is fixed, but the gate voltage of thél) is simply a dimensionless measure of the energy of the
metallic gate on top of the 2DES, therefore the Fermi energyelectron’s guiding-center motion relative . For the edge
is varied. As the number of electrons is increased such thattate of the percolating region with a guiding-center energy
the Fermi level is between Landau levélg<Er<E, 4, Ec=Er—7iw:(n+1/2), the transmission probability is 1 if
there aren edge channels at each boundary. In a high magEg>V,. In the other limit thatEg<V,, the edge state is
netic field with no interedge backscattering, the conductanceompletely reflected. The two-terminal conductance as a
of the system is thus quantized and given®y ne?/h. function of Fermi energy at various magnetic-field strengths
In the transition region between two quantized plateaus, ihas been obtained numerically by tBker?* Interestingly,
is clear that the Fermi level is within a disorder-broadenedalthough these results are for a 2DES with a point-contact
Landau level. For clarity, let us consider what happens wheonstriction or split gates on top, the same structure is ob-
the conductance is between the first and the second plateassrved in a “macroscopic” Si MOSFE®. From this, it
(see Fig. L At zero temperature, there are localized states irseems that considering only one potential saddle point in the
the bulk associated with closed local equipotential litfes, mesoscopic Si MOSFET where measurements were carried
shown as dashed and dotted closed lines in Fig. 1. Apaxut may be reasonable.
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Within the framework of the edge-state picture describedials between thé\ localized states and the saddle-point po-
above, fluctuations of the transmission of percolating statetential will also fluctuate. Hence we have a fluctuating total
lead to the conductance fluctuations. Here the transmissiosaddle-point potential
of electron currents depends solely on the potential energy at

the saddle point. In general, this potential energy should have _1
a contribution from the interactions. It is our purpose to re- N 2 N 2
late the interactions to the conductance fluctuations. Elec- V=2 Vo, ()]

. . . ; T 4dmee 2 2
trons in our model are separated into categories: those in ' 0 \/rI,SPJ“h

edge states and thpse in Ipcalized states. In principl.e, a fullith r, sp representing the distance between sitend the
treatment 321; two interactions between electrons is veryaqqe point, wheré is the perpendicular distance between
complicated.” For simplicity, we neglect interactions among the inversion layer containing localized states and the center
eIectron_s in edge states,_and just consider interactions b8t the saddle point. Again, the occupation at si®given by
tween different electrons in localized states and their effec{ni—1/2) to take into account background charges. Note that
on the saddle-point potential. Equally, for simplicity, we ne- ¢ finite temperaturd, in Eq. (3) we need the thermal aver-

glect tl_JnneIing processes that mix the states we term Ioca_‘Lj-lge of the occupation numbén;), instead of; at each site
ized with each other or with those we term edge states. This"aq 5 result. the transmission probability given by Eb.
is correct in a finite sample in the semiclassical limit, wheng i ates as ,a function of the gate voltage.

for a given value of the Fermi energy tunneling is important
only at one saddle point of the potential. More generally, one
expects states at the plateau transition to be delocalized by . NUMERICAL RESULTS AND COMPARISONS
the tunneling processes we omit, at least within a single- WITH EXPERIMENTS
particle description. Note that, although interactions between | this section, we present the results obtained numeri-
extended electrons are left completely untreated in theajly at finite temperature. The 2DES is chosen to have a
model, it turns out, as we shall present later, that this way ofectangular shape with length and width W in units of
including the Coulomb interaction does indeed produce drapttice spacing. The localized states are chosen to be fixed at
matic fluctuations of the saddle-point potential as the chemisjtes arranged on a regular lattice with positions given by
cal potential of the system is varied. _(xy). At fixed temperaturd@, we computen(x,y)), at each

The model Hamiltonian describing a system of localizedsite | with coordinates X,y) for each chemical potentigt.
states interacting with the Coulomb interaction is essentially\gte that, here and in all the following computation, we have
the one which was studied first by Efros and Shklov&kii. get the electric chargem ¢, and the Boltzmann constaky
The same Hamiltonian produces a gap in the single-electrog, pe 1. For each configuration of impurities, a random en-
density of states at the Fermi level due to the Coulomb ing(qy is attached to each localized state. The random site en-
teraction. In the “Coulomb-gap” system, electrons ar€ergy ¢ at sitei is some value in the intervii- W2 WI2].
strongly localized on a discrete set of sites due to the impuagar (n(x,y)) is obtained, Eq(3) determines the value of
rities. These quantum particles can thus be thought of a5, at this « and temperaturd. The corresponding trans-

bemg |n.the regime where they bghave clas's'lcally. Thénission probability is then given by E¢L), rewritten here as
Hamllton]an for localized states dN sites at positions de- T, =1/1+exy — (Vsp+ €)/Eo], wherec is a constant repre-
noted byi is senting the energy of the electron’s guiding cer(tar the
equipotential ling? ¢, however, is always set to be equal to
1 1 V in our numerical studyk, here is an energy scale, chosen
)(nJ ) a}rbltrarlly, which in pn_nqple can depend on the magnetic
field and the characteristics of the saddle point. The conduc-
7 4meeg rij tances at different chemical potentials are calculated in this
way by employing the same set of random energied at
N . . . . N
1 sites. For different sets of random site energies which essen-
_“2 (”I_ ) 2 tially represent different disorder realizations, sample-to-
sample fluctuations can then be compared. Numerical studies
have been carried out using different thermal-averaging
where ¢; is the random site energyy; is the occupation methods: the Metropolis Monte Carlo algorithm and exact
number which can be either 0 or 1, angl is the distance enumeration.
between sites andj. The subtraction of 1/2 from; repre- Due to the probabilistic nature of the Metropolis Monte
sents neutralizing background chargeande are dielectric ~ Carlo algorithm, it is important to ensure that the system has
constants for the silicon and the vacuum, respectively. Theeached equilibrium, and that the Monte Carlo average in-
last term in the Hamiltonian is crucial to model the experi-deed gives the thermal average. Due to the long-range inter-
mental variation in the chemical potential in the system asaction term, we expect that a large system will need an ex-
the gate voltage is varied. More explicitly, as the voltage oftremely long time to reach equilibrium. At higher
the gate electrode on top of the 2DES is varied, there will beemperature, stronger disordére., larger), and larger
electrons brought in or pulled out of the 2DES in the inver-| |, this difficulty may be avoided since the contribution of
sion layer in the silicon. The occupancy in each of the localthe Coulomb interaction is then small. It turns out that at low
ized states will then fluctuate as a functiongof due to the temperature fluctuations due to lack of equilibration are
Coulomb interaction. Accordingly, the electrostatic poten-rather large up to the biggest ¥&) system we have
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FIG. 2. Conductance versus chemical potential onat3attice chemical potential

atT=0.03,W=0.2,E,=5, andh=0.3. The saddle point is chosen
to be at &,y)=(3,2). Two lines are for different realizations of
impurity configuration.

FIG. 3. Fluctuations of the saddle-point potenti&ls at (X,y)
=(3,2) versus chemical potentiér gate voltageon 5X4 sys-
tems.h=0.3 for all results here.
reached. In order to study the fluctuations due to interactions
in more detail, we turn to calculate the thermal average usingnore realistic representation of real devices. We use the ex-
exact enumeration. In doing so, what occurs in lower tem-act enumeration for the thermal averaging. The positions of
perature can be investigated more explicitly. the localized states are chosen independently with a uniform

Exact enumeration means that the thermal averages adistribution over the system. For the same number of local-
achieved by finding explicitly all possible state configura-ized states as that in the lattice system, we conclude that
tions and calculating their Boltzmann factors. From the com{inite-size effects are stronger than on the lattice. Although
parison of results using two different methods, it is clear thahot shown here, results for different disorder strengths show
those small-amplitude fluctuations obtained in using theno significant fluctuations. Comparing with the results for the
Monte Carlo algorithm are due to the nonequilibration, in-lattice system, fluctuations are much smaller. In order to ob-
stead of the interaction. tain prominent interaction-driven fluctuations off lattice, it

With reasonable computing time, we obtain results forseems possible that we need to study very large random-site
systems of sizes up to>54. Here, only the results for 5 systems.

X 4 systems are presented. Figure 2 clearly exhibits signifi- We now turn to describe the comparison between the nu-
cant conductance fluctuations ranging from Getoh as the  merical results from our model on a lattice and the experi-
chemical potential is varied. The amplitudes of the fluctua-ments. First, let us focus on the conductance as a function of
tions, however, depend on the value of the energy d€gle the gate voltage at some fixed magnetic field. The conduc-
We can choose different sequences of random numbers ance fluctuations produced from our model are sample de-
the program to change the random site energy at each site @endent, and varying the saddle-point potential with chemi-
the lattice. For the same disorder strengile., V), the cal potential can produce conductance fluctuations between
sample-to-sample fluctuations due to different realizations 06=0 ande?/h. Both of these features are consistent with
impurities can then be studied. In the two cases shown imvhat has been observed in experiménits:??However, the
Fig. 2, there are large-amplitude fluctuations and the detailuctuation patterns are rather different for our model and the
are sample dependent. experiments. It is observed in experiments that the conduc-

To avoid the confusions due to the arbitr&ty, only plots  tance fluctuates in sharp peaks and dips in the transition re-
of Vgp versusy, instead ofG versusu, are shown in Fig. 3 gion between two platead$*?*By contrast, at least up to
whereh is the only free parameter to obtaify,. We then  the system sizes for which we have done the computation, it
compare results at different disorder strengths. Fluctuationiss observed that, from Figs. 2 and 3, sharp spikes of the
due to the Coulomb interaction should be suppressed as thikictuations are obviously absent in our results. Instead, steps
strength of the disorder is increased. This is more or leswith rounded or flat tops or bottoms occur as we vary
consistent with what is demonstrated in Fig. 3. Finite tem-This feature can be understood in terms of the total electro-
perature is another source in our model which can smear ostatic potential energy changing slowly or even remaining
the amplitudes of the fluctuations. This is because, with aonstant for some finite interval of the chemical potential. It
fixed chemical potential, different thermal energies give dif-is also true that the systems we have studied show a rela-
ferent averaged occupation numbers on the same lattice sitively small number of conductance fluctuations.asaries,

At higher temperature, each electron gains more thermal esompared with experiments. However, we should expect
ergy on average and thus the effect of Coulomb interaction isnore fluctuations in a bigger system. Our model seems to
again suppressed. The temperature dependence of the sodidow this behavior as the system size is increased. It is there-
and dashed lines shown in Fig. 3 with the same disordefore not appropriate to analyze the distribution of
strength clearly shows this behavior. conductancE from our results which only contain small

Finally, we discuss the results on a system which containgaumbers of independent conductance values.

randomly distributed localized states. This seems to be a Another important comparison is the temperature depen-
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dence of the conductance fluctuations. Finite temperature rgpossible if the localized states belong to the Landau levels of
duces the amplitudes of the fluctuations because the fluctuhe 2DES. Following this argument, as the chemical poten-
tion of the occupation number in each localized state idial crosses the center of a disordered-broadened Landau
smoothed out by the finite thermal energy. In our model, itlevel in the transition region, localized states at two tails of
can be observed that the width of each fluctuation “step”the Landau level then give the two slopes of straight lines
does not vary with temperatufeee Fig. 3. In experiments, corresponding to two different energies of the states at two
dat&? demonstrate indeed that the amplitudes of peaks anplateau centers.
dips are enhanced as the temperature is lowered. No obvious
Shrinking of their widths can be seen there. IV. CONCLUSIONS

We now come to the behavior of fluctuation peaks and
dips at different magnetic fields. Although there is no ex- In this paper, we have constructed a simple semiclassical
plicit magnetic-field dependence in our model, we argugmodel which produces conductance fluctuations in strong
here, by noting that straight lines on thg-B plané? are  magnetic fields due to the Coulomb interaction between elec-
obtained provided the system preserves the filling factofrons. The inclusion of the long-range Coulomb interaction
along each line, the occurrence of straight lines is consisterfiduses the occupation number in each localized state in the
with the spirit of our model. bulk to fluctuate as the chemical potential is varied. By tak-

As mentioned in the Introduction, the slopes of two setgng into account the influence of the electrostatic potential
of lines are parallel to those associated with the centers of theetween localized states and the saddle point, the energy of
neighboring plateaus. More explicitly, it is actually observedthe saddle point in the potential affecting mobile electrons
that each of these straight lines follows the equatign then also varies with the chemical potential. Through this
=CB+D with C andD being constants. This behavior can saddle point, the conductance due to the transmission of edge
be understood in terms of the physics of the Si MOSEET, states from one contact to the other thus fluctuates with the
as has been discussed in Ref. 22. With the filling factor giverghemical potential. We study the model at finite temperature
by the relationvz(vg—V)ssoh/dezB as a perpendicular by numerical simulation using the Monte Carlo methods and
magnetic fieldB is applied, we have exact enumeration. At low temperature, the Monte Carlo re-
sults suffer slow equilibration. Strong fluctuations due to the
nonequilibration of the system in this case make it difficult to
Vg:@VBJFV- (4 extract interaction-driven fluctuations. By contrast, results

. obtained using exact enumeration clearly exhibit significant
HereV is some constant and represents a threshold voltagq,ctuations as a function of the chemical potential.

andd is a distance of the order of the thickness of the SiO | comparing these results with the experiments, our
layer. To describe theth straight line on theVy-B plot,  model shows qualitatively consistent behaviors with the ex-
another constan¥/;, for example, is needed. For different periments as the gate voltage and the magnetic field are both
parallel lines on theV-B plane, we have differenVi’s.  yaried. There are, however, some features that differ in our
Along each line, the filling factor andl; are constants. This results and experiments. In particular, although our simula-
means that, a¥; andB are both varied along the line, the tions indeed exhibit fluctuations depending on realizations of
fluctuation peaks and dips evolve in such a way that thejisorder, they give fluctuations which are like steps instead
filling factor of the system is unchanged for a given fluctua-of the sharp peaks and dips observed in experiments. These
tion. More explicitly, the value of is observed to be either discrepancies could arise because we have neglected interac-
i ori+1 for the (+1)th transition region, depending on tions between bulk extended electrons and many specific de-
which plateau region the lines belong to. tails in the Si MOSFET.

In our model, conductance fluctuations are associated
with the occupancy of localized states in the 2DES. For the
occupancy to fluctuate, the state must have energy near the
chemical potential. Hence, along each straight line, which The author is greatly indebted to Dr. John Chalker for
connects peaks or dips for differenV{,B), the localized numerous discussions. Special thanks to Dr. David Cobden
states are at the chemical potential. The fact thatong the  for discussions and providing his experimental results prior
straight line is the same asfor example, associated with the to publication, Dr. Derek Lee for help with programming,
ith plateau center means that the localized states in botand Dr. Chi-Te Liang for consultation on the general experi-
cases must have the same tofleihetic plus electrostatjic  mental details. This work was supported in part by the ORS
energy as the states in théh Landau level. This is indeed Award from the CVCP in the United Kingdom.
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