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Two-terminal conductance fluctuations in the integer quantum Hall regime
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Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 15 March 1999!

Motivated by recent experiments on the conductance fluctuations in mesoscopic integer quantum Hall
systems, we consider a model in which the Coulomb interactions are incorporated into the picture of edge-state
transport through a single saddle point. The occupancies ofclassical localized states in the two-dimensional
electron system change due to the interactions between electrons when the gate voltage on top of the device is
varied. The electrostatic potential between the localized states and the saddle point causes fluctuations of the
saddle-point potential and thus fluctuations of the transmission probability of edge states. This simple model is
studied numerically and compared with the observation.@S0163-1829~99!11835-6#
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I. INTRODUCTION

Mesoscopic sample-to-sample fluctuations in the cond
tanceG are universal in the sense that the deviation from
average, (dG)25(G2^G&)2, is always about the order o
(e2/h)2 at very low temperature.1,2 In zero or weak externa
magnetic fields, this behavior can be understood in term
the quantum phase coherence of diffusive electrons.3 This
picture, however, is not expected to work in the quant
Hall regime since the trajectories of electrons are drastic
deformed in strong magnetic fields. In this situation, the
istence of extended states at sample edges makes the
port properties rather different from the weak-field case.4 In-
deed, magnetoconductance measurements on mesos
multiterminal devices5–8 seem to agree with this expectatio
To be consistent with these observations, explicit inclus
of the edge-channel effects in theories seems to
necessary.9–11

The appearance of the bulk delocalized states when
Fermi level is between two quantized Hall plateaus make
mesoscopic system in strong magnetic field even m
interesting.12 It is only recently, however, that experiment
data on the statistical behavior of the conductance in
regime have become available.13 Specifically, conductance
fluctuations have been studied in mesoscopicn-channel sili-
con metal-oxide-semiconductor field-effect transistors14 ~Si
MOSFETs! with two terminals. In these systems, condu
tance is quantized~in units of e2/h) at some values of the
gate voltage Vg and the complication due to th
Shubnikov–de Haas oscillation in multiterminal devices
absent in the two-terminal setting. It is found that the dis
bution of conductance below the first conductance platea
almost uniform betweenG50 and e2/h. This is in clear
contrast to the Gaussian distribution in the weak-field cas13

Theoretical studies have been carried out on models base
the single-particle interference effect, e.g., the tight-bind
Hamiltonian,15 Chalker-Coddington network model,16–18and
so on19 numerically, and also a renormalization grou
analysis.20 Some capture this feature of the conductance
tribution.

More recently, Cobden and collaborators demonstrate
ther that there is a great difference between conducta
fluctuations in the lowest few Landau levels and the we
PRB 600163-1829/99/60~12!/8839~6!/$15.00
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field case.21,22Using the same sets of Si MOSFET devices
described, they observed in strong fields strong correlati
of fluctuation peaks and dips at different magnetic fiel
This is achieved by studying explicitly the evolution of flu
tuation peaks and dips with magnetic fields in different fie
regimes. Using a gray scale plot ofdG/dVg as a function of
B and Vg , each bright or dark line can be viewed as t
‘‘history’’ line of a peak or a dip of the conductance at di
ferent combinations ofVg andB. The contrast between wea
and strong magnetic fields is very clear~see Fig. 2 in Ref.
21!.

For weak magnetic fields, no pattern can be seen wha
ever. AtB>10 T, we can see peaks and dips of conducta
fluctuations in a transition region between two success
conductance plateaus, which are wide and gray regions.
fluctuations ‘‘move’’ in gate voltage, in straight lines as th
magnetic field is varied. This pattern means that there e
strong correlations between fluctuation peaks and dips at
ferent gate voltages at high magnetic fields. A closer lo
reveals that there are two types of lines, with different slop
in a transition region. The slope of one set of lines is para
to that associated with the center of the plateau below, w
the slope of the other set of lines is parallel to that associa
with the center of the plateau above.

The strong contrast between the fluctuations on theVg-B
plots in weak and strong magnetic fields means that w
occurs in two different field regimes is dramatically diffe
ent. The straight lines appearing in the strong-field res
make it no longer appropriate to treat the phenomenon a
single-particle one. Thus those models15–20 we mentioned
before are obviously not compatible with strong correlatio
of conductance fluctuations at different fields.

In this paper, we consider a model taking into account
electron-electron interactions. The conductance plateaus
understood in terms of the edge-state picture and the abs
of backscattering between channels at opposite edges o
sample. In the transition region between plateaus, we ass
that the paths followed by electron currents coming from t
contacts~or terminals! percolate into the bulk as the chem
cal potential is increased and eventually become conne
by tunneling through a single saddle point. In addition to t
electrons in these edge states, we also take account of
trons in localized states. Conductance fluctuations aris
8839 ©1999 The American Physical Society
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8840 PRB 60CHANG-MING HO
from Coulomb interactions between both sets of electr
are treated in a simple way.

As electrons are added to the system, the ones alread
the localized states will rearrange due to the interactio
Therefore, the occupation of a given localized state can fl
tuate several times between 0 and 1 when the chemica
tentialm is changed from2` to 1`. The total electrostatic
potential between the localized states and the saddle p
then also fluctuates asm is varied. Because of the fluctua
tions of the saddle-point potential, the tunneling of perco
tion paths fluctuates as a function of the chemical poten
In our model, fluctuations of the conductance are purely
to these interaction effects. Numerical study of this mo
shows that the conductance between plateaus as a functi
the chemical potential does indeed fluctuate significan
within the range betweenG50 ande2/h.

In the next section, we first develop our model, based
the transmission of edge-state channels through a si
saddle point in the transition region. Fluctuations of a sin
potential saddle point are related to the Coulomb interac
between localized states in the bulk of the disordered t
dimensional electron system~2DES!. These localized state
are treated using the Efros-Shklovskii Coulomb glass mo
Models at finite temperatureT with localized states arrange
on regular lattice points or random sites are then stud
numerically by Monte Carlo methods and exact enumerat
Results forG versusVg at different disorder configuration
and temperatures are obtained. After that, comparisons o
numerical results and experiments are discussed. We
clude with a summary.

II. THEORETICAL MODEL

Before introducing the model, we note that there are d
ferent electron states in a disordered 2DES system in a
magnetic field. The edge state exists on an equienergy
along the boundary of the sample connecting two conta
The width of each edge-state channel is about the orde
magnetic length,l B}1/AB. Therefore, in a high magneti
field the backscattering between edge states at opp
boundaries can be neglected. Since each of the edge-
channels is now one dimensional, we can apply the tw
terminal Landauer-Bu¨ttiker formula to calculate the conduc
tance. The current injected into each of the edge state
proportional to the difference of chemical potentials betwe
two contacts and also each edge-channel pair. In the con
of the measurements on Si MOSFETs,13,21,22the bias voltage
between two contacts is fixed, but the gate voltage of
metallic gate on top of the 2DES, therefore the Fermi ene
is varied. As the number of electrons is increased such
the Fermi level is between Landau levelsEn,EF,En11,
there aren edge channels at each boundary. In a high m
netic field with no interedge backscattering, the conducta
of the system is thus quantized and given byG5ne2/h.

In the transition region between two quantized plateau
is clear that the Fermi level is within a disorder-broaden
Landau level. For clarity, let us consider what happens w
the conductance is between the first and the second plat
~see Fig. 1!. At zero temperature, there are localized state
the bulk associated with closed local equipotential line12

shown as dashed and dotted closed lines in Fig. 1. A
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from them, we can imagine that, in the bulk of the syste
there are also directed extended states at the boundari
the regions which are occupied by electrons and connecte
one or the other contact. At some value of the chemi
potential, these extended states undergo large excursions
the bulk. Asm is increased further, the directed extend
states approach each other more closely and tunneling
tween them occurs~shown as the dotted line in Fig. 1!. Even-
tually, a second pair of edge states is formed in this way
the inner side near the system boundaries.

Let us consider the simplest tunneling process in wh
the two growing regions of electrons form a single poten
saddle point assumed to be located at about the center o
2DES. The transmission probabilityTi j 5ut i j u2 for the in-
coming channeli and outgoing channelj is already known,
for the saddle-point potential of the formV(x,y)5V0

2(1/2)mvx
2x21(1/2)mvy

2y2 with vx andvy characterizing
the shape of the saddle-point potential.23 It is given by

Ti j 5d i j

1

11exp~2pen!
, ~1!

where en5@E2E2(n11/2)2VSP#/E1 with E denoting the
total energy of the electron andVSP5V0 being the bare po-
tential strength. The two-terminal conductance is then giv
by G5(e2/h)( iTii .

In Eq. ~1!, E1 andE2 are in general complicated function
of vc ~cyclotron frequency!, vx , andvy . At high magnetic
fields, whenvc is much bigger thanvx andvy , en in Eq.
~1! is simply a dimensionless measure of the energy of
electron’s guiding-center motion relative toV0. For the edge
state of the percolating region with a guiding-center ene
EG5EF2\vc(n11/2), the transmission probability is 1 i
EG@V0. In the other limit thatEG!V0, the edge state is
completely reflected. The two-terminal conductance a
function of Fermi energy at various magnetic-field streng
has been obtained numerically by Bu¨ttiker.24 Interestingly,
although these results are for a 2DES with a point-con
constriction or split gates on top, the same structure is
served in a ‘‘macroscopic’’ Si MOSFET.22 From this, it
seems that considering only one potential saddle point in
mesoscopic Si MOSFET where measurements were ca
out may be reasonable.

FIG. 1. The formation of an edge-state channel pair as the
voltage is increased in the transition regime, here betweenG
5e2/h and 2e2/h. The lines with arrows represent the directe
trajectories of electrons or holes in the magnetic fields.
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Within the framework of the edge-state picture describ
above, fluctuations of the transmission of percolating sta
lead to the conductance fluctuations. Here the transmis
of electron currents depends solely on the potential energ
the saddle point. In general, this potential energy should h
a contribution from the interactions. It is our purpose to
late the interactions to the conductance fluctuations. E
trons in our model are separated into categories: thos
edge states and those in localized states. In principle, a
treatment of two interactions between electrons is v
complicated.25 For simplicity, we neglect interactions amon
electrons in edge states, and just consider interactions
tween different electrons in localized states and their ef
on the saddle-point potential. Equally, for simplicity, we n
glect tunneling processes that mix the states we term lo
ized with each other or with those we term edge states. T
is correct in a finite sample in the semiclassical limit, wh
for a given value of the Fermi energy tunneling is importa
only at one saddle point of the potential. More generally, o
expects states at the plateau transition to be delocalize
the tunneling processes we omit, at least within a sing
particle description. Note that, although interactions betw
extended electrons are left completely untreated in
model, it turns out, as we shall present later, that this way
including the Coulomb interaction does indeed produce d
matic fluctuations of the saddle-point potential as the che
cal potential of the system is varied.

The model Hamiltonian describing a system of localiz
states interacting with the Coulomb interaction is essenti
the one which was studied first by Efros and Shklovski26

The same Hamiltonian produces a gap in the single-elec
density of states at the Fermi level due to the Coulomb
teraction. In the ‘‘Coulomb-gap’’ system, electrons a
strongly localized on a discrete set of sites due to the im
rities. These quantum particles can thus be thought o
being in the regime where they behave classically. T
Hamiltonian for localized states onN sites at positions de
noted byi is

H5(
i 51

N

e i S ni2
1

2D1
1

2 (
iÞ j

N
e2

4p««0

S ni2
1

2D S nj2
1

2D
r i j

2m(
i 51

N S ni2
1

2D , ~2!

where e i is the random site energy,ni is the occupation
number which can be either 0 or 1, andr i j is the distance
between sitesi and j. The subtraction of 1/2 fromni repre-
sents neutralizing background charge.« and«0 are dielectric
constants for the silicon and the vacuum, respectively.
last term in the Hamiltonian is crucial to model the expe
mental variation in the chemical potential in the system
the gate voltage is varied. More explicitly, as the voltage
the gate electrode on top of the 2DES is varied, there will
electrons brought in or pulled out of the 2DES in the inv
sion layer in the silicon. The occupancy in each of the loc
ized states will then fluctuate as a function ofm, due to the
Coulomb interaction. Accordingly, the electrostatic pote
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tials between theN localized states and the saddle-point p
tential will also fluctuate. Hence we have a fluctuating to
saddle-point potential

VSP5(
i

N
e2

4p««0

S ni2
1

2D
Ar i ,SP

2 1h2
2V0 , ~3!

with r i ,SP representing the distance between sitei and the
saddle point, whereh is the perpendicular distance betwe
the inversion layer containing localized states and the ce
of the saddle point. Again, the occupation at sitei is given by
(ni21/2) to take into account background charges. Note t
at finite temperatureT, in Eq. ~3! we need the thermal aver
age of the occupation number,^ni&, instead ofni at each site
i. As a result, the transmission probability given by Eq.~1!
fluctuates as a function of the gate voltage.

III. NUMERICAL RESULTS AND COMPARISONS
WITH EXPERIMENTS

In this section, we present the results obtained num
cally at finite temperature. The 2DES is chosen to hav
rectangular shape with lengthL and width W in units of
lattice spacing. The localized states are chosen to be fixe
sites i arranged on a regular lattice with positions given
(x,y). At fixed temperatureT, we computê n(x,y)&, at each
site i with coordinates (x,y) for each chemical potentialm.
Note that, here and in all the following computation, we ha
set the electric charge 4p««0 and the Boltzmann constantkB
to be 1. For each configuration of impurities, a random
ergy is attached to each localized state. The random site
ergy e i at site i is some value in the interval@2W/2,W/2#.
After ^n(x,y)& is obtained, Eq.~3! determines the value o
VSP at this m and temperatureT. The corresponding trans
mission probability is then given by Eq.~1!, rewritten here as
Tii 51/11exp@2(VSP1c)/E0#, wherec is a constant repre
senting the energy of the electron’s guiding center~or the
equipotential line!;23 c, however, is always set to be equal
V0 in our numerical study.E0 here is an energy scale, chose
arbitrarily, which in principle can depend on the magne
field and the characteristics of the saddle point. The cond
tances at different chemical potentials are calculated in
way by employing the same set of random energies aN
sites. For different sets of random site energies which es
tially represent different disorder realizations, sample-
sample fluctuations can then be compared. Numerical stu
have been carried out using different thermal-averag
methods: the Metropolis Monte Carlo algorithm and ex
enumeration.

Due to the probabilistic nature of the Metropolis Mon
Carlo algorithm, it is important to ensure that the system
reached equilibrium, and that the Monte Carlo average
deed gives the thermal average. Due to the long-range in
action term, we expect that a large system will need an
tremely long time to reach equilibrium. At highe
temperature, stronger disorder~i.e., largerW), and larger
umu, this difficulty may be avoided since the contribution
the Coulomb interaction is then small. It turns out that at lo
temperature fluctuations due to lack of equilibration a
rather large up to the biggest (636) system we have



on
in
m

a
a
m
ha
th
in

fo

ni

a

s
te

s o

ta

io
t

es
m
o

h
if
s
e

n
s
d

in
e

ex-
of

orm
al-
that
gh
ow
he
ob-
it
-site

nu-
ri-

n of
uc-
de-
mi-
een
ith

the
uc-
re-

n, it
the
teps

tro-
ing
. It
ela-

ect
to

ere-
of
ll

en-

n
f

8842 PRB 60CHANG-MING HO
reached. In order to study the fluctuations due to interacti
in more detail, we turn to calculate the thermal average us
exact enumeration. In doing so, what occurs in lower te
perature can be investigated more explicitly.

Exact enumeration means that the thermal averages
achieved by finding explicitly all possible state configur
tions and calculating their Boltzmann factors. From the co
parison of results using two different methods, it is clear t
those small-amplitude fluctuations obtained in using
Monte Carlo algorithm are due to the nonequilibration,
stead of the interaction.

With reasonable computing time, we obtain results
systems of sizes up to 534. Here, only the results for 5
34 systems are presented. Figure 2 clearly exhibits sig
cant conductance fluctuations ranging from 0 toe2/h as the
chemical potential is varied. The amplitudes of the fluctu
tions, however, depend on the value of the energy scaleE0.
We can choose different sequences of random number
the program to change the random site energy at each si
the lattice. For the same disorder strength~i.e., W), the
sample-to-sample fluctuations due to different realization
impurities can then be studied. In the two cases shown
Fig. 2, there are large-amplitude fluctuations and the de
are sample dependent.

To avoid the confusions due to the arbitraryE0, only plots
of VSP versusm, instead ofG versusm, are shown in Fig. 3
whereh is the only free parameter to obtainVSP. We then
compare results at different disorder strengths. Fluctuat
due to the Coulomb interaction should be suppressed as
strength of the disorder is increased. This is more or l
consistent with what is demonstrated in Fig. 3. Finite te
perature is another source in our model which can smear
the amplitudes of the fluctuations. This is because, wit
fixed chemical potential, different thermal energies give d
ferent averaged occupation numbers on the same lattice
At higher temperature, each electron gains more thermal
ergy on average and thus the effect of Coulomb interactio
again suppressed. The temperature dependence of the
and dashed lines shown in Fig. 3 with the same disor
strength clearly shows this behavior.

Finally, we discuss the results on a system which conta
randomly distributed localized states. This seems to b

FIG. 2. Conductance versus chemical potential on a 534 lattice
at T50.03,W50.2, E055, andh50.3. The saddle point is chose
to be at (x,y)5(3,2). Two lines are for different realizations o
impurity configuration.
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more realistic representation of real devices. We use the
act enumeration for the thermal averaging. The positions
the localized states are chosen independently with a unif
distribution over the system. For the same number of loc
ized states as that in the lattice system, we conclude
finite-size effects are stronger than on the lattice. Althou
not shown here, results for different disorder strengths sh
no significant fluctuations. Comparing with the results for t
lattice system, fluctuations are much smaller. In order to
tain prominent interaction-driven fluctuations off lattice,
seems possible that we need to study very large random
systems.

We now turn to describe the comparison between the
merical results from our model on a lattice and the expe
ments. First, let us focus on the conductance as a functio
the gate voltage at some fixed magnetic field. The cond
tance fluctuations produced from our model are sample
pendent, and varying the saddle-point potential with che
cal potential can produce conductance fluctuations betw
G50 ande2/h. Both of these features are consistent w
what has been observed in experiments.13,21,22However, the
fluctuation patterns are rather different for our model and
experiments. It is observed in experiments that the cond
tance fluctuates in sharp peaks and dips in the transition
gion between two plateaus.13,21,22By contrast, at least up to
the system sizes for which we have done the computatio
is observed that, from Figs. 2 and 3, sharp spikes of
fluctuations are obviously absent in our results. Instead, s
with rounded or flat tops or bottoms occur as we varym.
This feature can be understood in terms of the total elec
static potential energy changing slowly or even remain
constant for some finite interval of the chemical potential
is also true that the systems we have studied show a r
tively small number of conductance fluctuations asm varies,
compared with experiments. However, we should exp
more fluctuations in a bigger system. Our model seems
show this behavior as the system size is increased. It is th
fore not appropriate to analyze the distribution
conductance13 from our results which only contain sma
numbers of independent conductance values.

Another important comparison is the temperature dep

FIG. 3. Fluctuations of the saddle-point potentialVSP at (x,y)
5(3,2) versus chemical potential~or gate voltage! on 534 sys-
tems.h50.3 for all results here.
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dence of the conductance fluctuations. Finite temperature
duces the amplitudes of the fluctuations because the fluc
tion of the occupation number in each localized state
smoothed out by the finite thermal energy. In our model
can be observed that the width of each fluctuation ‘‘ste
does not vary with temperature~see Fig. 3!. In experiments,
data22 demonstrate indeed that the amplitudes of peaks
dips are enhanced as the temperature is lowered. No obv
shrinking of their widths can be seen there.

We now come to the behavior of fluctuation peaks a
dips at different magnetic fields. Although there is no e
plicit magnetic-field dependence in our model, we arg
here, by noting that straight lines on theVg-B plane22 are
obtained provided the system preserves the filling fac
along each line, the occurrence of straight lines is consis
with the spirit of our model.

As mentioned in the Introduction, the slopes of two s
of lines are parallel to those associated with the centers o
neighboring plateaus. More explicitly, it is actually observ
that each of these straight lines follows the equationVg
5CB1D with C andD being constants. This behavior ca
be understood in terms of the physics of the Si MOSFET14

as has been discussed in Ref. 22. With the filling factor gi
by the relationn5(Vg2V)««0h/de2B as a perpendicula
magnetic fieldB is applied, we have

Vg5
e2d

««0h
nB1V. ~4!

HereV is some constant and represents a threshold volt
andd is a distance of the order of the thickness of the Si2
layer. To describe thei th straight line on theVg-B plot,
another constantVi , for example, is needed. For differen
parallel lines on theVg-B plane, we have differentVi ’s.
Along each line, the filling factor andVi are constants. This
means that, asVg and B are both varied along the line, th
fluctuation peaks and dips evolve in such a way that
filling factor of the system is unchanged for a given fluctu
tion. More explicitly, the value ofn is observed to be eithe
i or i 11 for the (i 11)th transition region, depending o
which plateau region the lines belong to.

In our model, conductance fluctuations are associa
with the occupancy of localized states in the 2DES. For
occupancy to fluctuate, the state must have energy nea
chemical potential. Hence, along each straight line, wh
connects peaks or dips for different (Vg ,B), the localized
states are at the chemical potential. The fact thatn along the
straight line is the same asi, for example, associated with th
i th plateau center means that the localized states in
cases must have the same total~kinetic plus electrostatic!
energy as the states in thei th Landau level. This is indeed
l
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possible if the localized states belong to the Landau level
the 2DES. Following this argument, as the chemical pot
tial crosses the center of a disordered-broadened Lan
level in the transition region, localized states at two tails
the Landau level then give the two slopes of straight lin
corresponding to two different energies of the states at
plateau centers.

IV. CONCLUSIONS

In this paper, we have constructed a simple semiclass
model which produces conductance fluctuations in stro
magnetic fields due to the Coulomb interaction between e
trons. The inclusion of the long-range Coulomb interacti
causes the occupation number in each localized state in
bulk to fluctuate as the chemical potential is varied. By ta
ing into account the influence of the electrostatic poten
between localized states and the saddle point, the energ
the saddle point in the potential affecting mobile electro
then also varies with the chemical potential. Through t
saddle point, the conductance due to the transmission of e
states from one contact to the other thus fluctuates with
chemical potential. We study the model at finite temperat
by numerical simulation using the Monte Carlo methods a
exact enumeration. At low temperature, the Monte Carlo
sults suffer slow equilibration. Strong fluctuations due to t
nonequilibration of the system in this case make it difficult
extract interaction-driven fluctuations. By contrast, resu
obtained using exact enumeration clearly exhibit signific
fluctuations as a function of the chemical potential.

In comparing these results with the experiments, o
model shows qualitatively consistent behaviors with the
periments as the gate voltage and the magnetic field are
varied. There are, however, some features that differ in
results and experiments. In particular, although our simu
tions indeed exhibit fluctuations depending on realizations
disorder, they give fluctuations which are like steps inste
of the sharp peaks and dips observed in experiments. T
discrepancies could arise because we have neglected int
tions between bulk extended electrons and many specific
tails in the Si MOSFET.
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