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Projective construction of non-Abelian quantum Hall liquids
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Using projective construction, a generalized parton construction, we construct many non-Abelian quantum
Hall (QH) states, which include the Pfaffian state at filling fraction1/2. The projective construction allows
us to calculate bulk and edge effective theories for the constructed QH state. We illustrate how to use the bulk
effective theory to calculate the ground-state degeneracy of non-Abelian QH liquids on a torus. We point out
that a full description of the effective theory requires both an effective Lagrangian and the definition of electron
operators. The latter generates all physical states, and defines the gauge structure of the theory.
[S0163-182699)02836-3

[. INTRODUCTION theory for thev=1 bosonic Pfaffian state obtained here is
formally different from the SU(2) CS effective theory ob-
Quantum Hall(QH) liquids as a fundamentally new state tained in Ref. 17. Although both theories give three degen-
of matter contain an interesting kind of order—topologicalerate ground states on the torus, it is unclear if the two theo-
order™? The different topological orders in QH liquids can ries are equivalent on high genus Riemann surfaces. At least
be divided into two classes. The topological orders in thehe meaning of the gauge fields and their coupling to the
first class—the Abelian topological orders—are labeled by thexternal electromagnetic fiel, are quite different. The ef-
K matrix? and were believed to describe most of the ob-fective theory for thev=1/2 fermionic Pfaffian state ob-
served QH liquids. The second class of topological orders—tained in Ref. 17 is very unusuélhich cannot be regarded
the non-Abelian topological orders—also exists in QHas an ordinary CS theorylt is not clear if such an effective
liquids*® Quasiparticles in non-Abelian QH states carry theory is equivalent to our U(XSO(5), CS effective
non-Abelian statistics, and their edge states cannot be deheory for thev= 1/2 fermionic Pfaffian state. In particular, it
scribed by “edge phonons’(which is a collection of har- is not clear whether the effective theory in Ref. 17 repro-
monic oscillators duces the six degenerate ground states on the torus. Another
There are two ways to construct non-Abelian QH statesform of effective theory—the non-Abelian Ginzburg-Landau
oné~is through a correlation function in conformal field CS theory—was obtained in Ref. 18 to describe the Pfaffian
theory (CFT), and the othé® is through parton states. Since the ground state degeneracies were not calcu-
construction:**2Both constructions allow us to calculate the lated, the relation between the effective theories in Ref. 18
structures of edge statg$>***1°However, only the parton and the effective theories obtained in this paper is unclear at
construction allows us to calculate the bulk effective theothe moment.
ries, which turn out to be Chern-Simof&S) theories. We would like to point out that two topological theories
In this paper we introduce the projective construction(CS or Ginzburg-Landau CS theorjiewith very different
which generalizes parton construction. Using the projectivdorms could be equivalent. This is because the effective theo-
construction, we can construct many old and new nonries were written in terms of gauge fields that impose con-
Abelian (and Abelian QH states, which include both the  straint. One can reach the same QH state through different
=1 bosonic Pfaffian state and the=1/2 fermionic Pfaffian  projection schemes which lead to different forms of effective
state}1> 713148105 well as thed-wave paired state intro- theory. To really know whether the two topological theories
duced in Refs. 7 and 13. The projective construction allowsare equivalent or not, one needs to study their properties on
us to calculate both the bulk and edge effective theories fohigh genus Riemann surfaces.
the constructed QH states. The bulk effective theories are In Sec. Il we introduce the projective construction using
complete enough to allow us to calculate the ground-statéhe U(1)x SU(2), non-Abelian state as an example. In Sec.
degeneracies on a torus. Il we use the projective construction to construct the 1
Using the projective construction, we find the effective bosonic Pfaffian state and the=1/2 fermionic Pfaffian
theories for thev=1 bosonic Pfaffian state and the=1/2  state. This allows us to obtain the bulk and edge effective
fermionic Pfaffian state to be the SO¢5)and U(1) theories for the two states. The projective construction also
X SO(5), CS theories. From these effective theories, we calallows us to construct many new non-Abelian states and cal-
culated the ground state degeneracies for both states, whicllate their bulk and edge effective theories. In Sec. IV we
are 3 and 6 on the torus. We also calculated the edge effegive a general discussion of the projective construction. In
tive theories for the two states. The results agree with previparticular, we point out the importance of electron operators
ous results obtained through the wave functithts*>*31%  in defining the effective bulk theory. We illustrate how the
The effective theories for the=1 bosonic Pfaffian state discrete gauge structure in the effective theory can affect
and ther=1/2 fermionic Pfaffian state have been obtainedphysical quantities, such as the ground-state degeneracy. The
before using different approaches. The SQ(EF effective  projective construction is a very powerful construction which
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can be used to construct many different QH stébesh Abe- ~ whose ground state iBP40n). The effective theory for
lian and non-Abelian In Sec. V we illustrate how to use the state®" is obtained by combining the two kinds of partons
projective construction through some simple examples. in the above effective theory into electrons. Notice that the
effective theory for independent partons containg B3 éx-
Il. PROJECTIVE CONSTRUCTION AND U (1), xSU(2), citations created b}b;arlab(ﬂba, where7' are Pauli matrices.
NONABELIAN STATES We will call such a SWR) the “color” SU(2) to distinguish
. ) . o it from the SU?2) spin rotation. From Eq4) we see that the
~In this section we are going to use the projective Construcg|ectron operatoW ,(z) is a color SU2) singlet. All physi-
tion to construct the U(3X SU(2), non-Abelian state8We 3| excitations(created by electron operatrare color sin-
start with the simplest example, and then generalize to MOrglets. Thus, to combine the partons into electrons, we simply

complicated cases. _ . _ need to remove all the “colored” excitation from the parton
We start with a non-Abelian state of spin{bosoni¢  theory[Eq.(6)] and project into the local color singlet sector.
electrons’ The wave function is given by The projection can be realized, at the Lagrangian level, by

introducing a SW2) gauge field which couples to the current

b ) )
D°(z1,my;25,My; .. .) and the density of the color $P):

= > xszani. xSz B ) L=1y}[ 8260—1(a0) ab] ¥ba
ag.By; .- 5
my my 1 + . e )
XColp, Carpy () + omVPaa| SandiTi 5 AT (@)ab| Yba- (7)
wherem;=0,=1, Equation(7) is the effective theory foP. Only the gauge-

invariant operators, such as the electron operditgr corre-
1 spond to physical operators. To see that the effective theory
0 —= [Eq. (7)] describes a non-Abelian state, we integrate out the
NA 10 00 .
co— ctio clo 5 parton fieldsy,,. We note that the average of the QU
1 '~ 710 0 01/ @ gauge field is zero, and the two partons have such a density
E 0 that they formy=2 QH state. Thus, after integrating out the
parton fieldsy,,, we obtain an S(2) CS theory at levek

=2. kis given by the parton filling fraction
and x¢(z1,a4; . ..) is thewave function of spin-1/2 fermi-

ons with the first Landau level filled by the spin-up and k N 2i
spin-down particles. One way to see that the above state is a a7 e audant a8,y ). (8
non-Abelian state is to derive its low-energy effective theory.

To construct the above wave function using a projectiveAlthough the levek=1 SWU2) CS theory contains only Abe-
construction, we start with the followinfyee fermion wave lian statistics, the levek>1 SU2) CS theory indeed has
function for two specieglabeled bya=1 and 2 of spin-1/2  quasiparticles carrying non-Abelian statistiés.
partonsy,,, : The edge states of the above non-Abelian state can also be

obtained from the projective construction. For independent
Dparton= Xs(z(ll),al; .. .)Xs(z(lz),ﬁl; ce), (3 partons described by E¢6), the edge theory is simply given

] o by free chiral fermions in one plus one dimensidn-1D):
where «;,B;=1,| are spin-1/2 indices. Then we combine

the two spin-1/2 partons into a spin-1 electron. In terms of il (9= V) Pan- (9)
the electron operato? ,(z) and the parton operatar,,(z),
the combination can be expressed as The above edge theory is also described by the U(1)
X SUspin(2)2X SUgoi0r(2),  Kac-Moody (KM) algebra?
WV n(2) = anl2) Yop(2) eabC’;‘B (4)  The charge associated with(1) is just the electric charge of

) ) the electrons. The combination of the partons into electron is
wherea,b=1,2. One can easily see that, after settilf  again realized by project into local Sis,(2) singlet sector,
=2z{?=z; and symmetrizingy; and 3 usingCg s, Pparon  which can be simply done by removing the sector generated
in Eq. (3) reduces tob® Eq. (1). Or, more precisely, by the SU,(2), KM algebra from the edge spectrum.
Thus the edge states of the non-Abelian stftds described
by the U(1) X SUs,in(2), KM algebra.
D02y, My 20, My . '):<O|H \Pmi(zi)|q)pa”°n>’ ) Here we have efssigned a level 1 to the ) KM algebra.
The level characterizes how the(1) charge is quantized.
where|® .1 is the independent parton state described byrhe definition of the level is the following. We know that the

D parton- _ _ ) edge theory contains electron operattfs,. The operators
To obtain the effective theory for statt®(z,,m;), we  that create quasiparticles are the operators which are local
start with the effective theory for independent partons, with respect to the electron operatdi=., their correlation

with the electron operators are single valuddet iy, be

1 e 2 . . . . .
_— I the SU,;,(2) singlet quasiparticle operator which carries the
'Waatbhaa 2m"baa<0' |2A'> Yaa © minimum (but nonzerd U(1) charge. The correlation of
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) has a form{ gl 1) (X) 1) (0))~1X". Then the level  ®™Y(z;,my;z,,m,;...)
of the U(1) KM algebra is defined ak=1/h. [According to

this definition, the W1) KM algebra that describes the edge =11 z-2)<> c™ c™

excitations of thev=1/m Laughlin state can be more spe- e e FIN-nN

cifically denoted as U(1) KM algebra] Since its edge state % ] )

is described by the U(4X SUspin(2), KM algebra, we wil Xs(Z1, @115 .. Zn Q) - -

call the non-Abelian staté® the U(1), X SUspin(2), state. X xXs(Z1,@n1s 2N AN (14)

Note that the U(1)X SUs;(2), non-Abelian state can have " ) _
a bulk effective theory which is a purely Sy),/(2), CS WhereCa1 ..... a, form a basis of rankr symmetric tensors,

theory. andm is the quantum number of the total sgi for each
A slightly more complicated non-Abelian state of spin-1 electron. In the bulk, the above state is described by the
fermionic electrons is given by [U(1)]%X SUse10r(n), effective CS theory. The edge excita-

tions are described by the U(dL)n2)X SUspin(2) KM al-

gebra. Such a state will be called a Ufl)y

X SUspin(2)n Non-Abelian state. The above result provides

an example that the group for the edge KM algebra,

=11 (z-2) U(1)k+ (n/2)X SUspin(2)n, and the group for the bulk CS ef-
fective theory[ U(1)]¥X SU,.10/(N),, can be quite different.

D' (zy,my;2,,my; .. .)

X Zi, a0 ... z1,B1; . ..
al.%... Xs(Zuei - Ixs(20Bai ) IIl. PROJECTIVE CONSTRUCTION AND THE

m m EFFECTIVE THEORY OF PFAFFIAN STATE
xCalﬁ ...CaNﬁ . (10 . .
i "N Using the U(1}, )X SUspin(2), non-Abelian states,
_ o _ _Wwe can construct non-Abelian states. Let us start with the
To obtain the projective construction, we need to split thesimplest U(1) x SUspin(2), state.

electron into one charge/2 partoni, and two charges/4 To construct a non-Abelian state from the U(1)
partonsi,|,=1 and 2: X SUspin(2), state, we simply make a further local projec-
tion S,=0, in addition to the local color singlet projection.
W (2) = 0(2) Yaa 2) Yiop(2) €a6C- (11  This S,=0 projection can be realized by identifying
1
Following arguments similar to those used above, we obtain V=—V, -0 (15
the effective theory forb': V2

as the only physical electron operatdf,,- ., are regarded
as unphysical sincg,# 0. The physical Hilbert space is gen-

1 e 2 =
ot ; ot g i DA o erated by¥ ,,—o only. Therefore after th&,=0 projection,
i ot 2ib + d,—izA+2ib m=0

Vol 2)¥%0 2m¢°< o2 O) Yo the wave function of the non-Abelian state is given[bge
Eg. (9]

il o (Sapdr—i(80) ap—1D08ap) ¥ba

+i¢;a(8i—iEAi—iai—ib0)2 Yo (12 Plr, - 2= (O] Vel Ppaon. (16
2m 4 ab

which can be regarded as a wave function of spinless elec-

Here an extra () gauge fieldb,, is introduced to combine trons. o ) .

o and ¢, ,. Note that the electron operatdt,, carries no The prOJec_uve construction allows us to obtqm the low-
b, charge. After integrating out the parton fields, the effec-ENergy effective theory for the above non-Abelian state. At
tive theory becomes the U(X)SU(2), CS theory. The edge f[he Lagr_anglan level, th§,=0 prolegtlon can be realized by
states for independent partons are described by the U(aijtroducing an extra §(1) gauge fieldc, that couples to

X U(1)X SUspin(2)2X SUgoi0r(2), KM algebra. After the S,. This yields the effective theory for the non-Abelian state:
projection, the edge states for the fermion non-Abelian state

are described by the {78 o] SabBapdi—18,p(20)ab—1Co0S58an] g
L UL S )
U(L) X U(L) X SUspin(2)2% SUegior(2)2 Fame AmigATIRT G i (1D
U(l)XSUcolor(z)Z . . . .
After integrating out the fermions, we obtain aSZI(Jl)
=U(1)2X SUspin(2)2 (13 % SU.0/(2), CS theory.
The edge excitations of th&P' state can also be obtained

KM algebra. through projective construction. Since tHe’’ state is ob-

A more general non-Abelian state of spif2 electrons is  tained from the U(1)X SUs,;,(2), state by making an ad-
given by ditional local S,=0 projection, thus the edge states of the
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®Pf state can also be obtained from that of the (1)  To obtain an explicit expression of the wave function for
X SUspin(2), State by making a locé,=0 projection. Note ~ OU" non-Abelian state, let us first review a relation between
that the edge excitations that correspond to Sadluctua-  the edge theory and the bulk wave functidms we men-
tions is described by the%(l) KM algebra generated by tioned above, for independent partons the edge state is de-

I f . scribed by free chiral fermiong,, [see Eq.(9)]. This edge

ghezzigggen;' Thtl;fé th%?fﬁe[ Seécn_a(tg)ns/lj) f Eﬂf;}] Stii_ést theory and the independent-parton wave funcfiq. (3)]

5119 .y spil=J21 =S, ~ are closely related. As pointed out in Ref. 4, in the 1D
theory™™™* Since the Slhi(2),/Us (1) coset theory is free chiral fermion theory the correlation
nothing but an Ising modelor a Majorana fermion theoyy
with a central charge= 2,22 the edge theory for the non-
Abelian state can also be denoted as the WX1J theory. e IN¢(z) H W(z)) ~H (z—z) (21)

The second way to obtain the edge theory is to note that i=LN i

all edge excitations are generatedby in Eq. (15) andllfl.
Thus we can use the algebra C}Ifé,\]fl) to describe the is proportional to the analytic part of the spinless electron
edge excitation$® The algebra of ¥, W) can be obtained Wave function of the filled first Landau levell;(z
from their operator product expansio®PE), which can be —zj)e*EIZiI /4 Here ¢ is a free chiral fermion fieldz is
calculated easily sinc® . can be expressed as a product ofgiven by z=x—vt=x-+ivr for complex time r=it, and
free chiral fermion operatorfEq. (15)]. We would like to €' ?@=y(z) is the bosonized form of the free chiral fermion
mention that the OPE of electron operators was also used ioperator. One can show, through bosonization, that
Ref. 4 to construct a QH wave function. Using the OPE for(1/2m) d,¢= T (X) (X).
free chiral fermionsy(z) 4'(0)=1/z, we find the following Generalizing the above relation, we find that
closed OPE generated by¢,¥):

e—(1/2)iN¢(zx) Z-(l) Z_(2)
\P;(Zwe(o)=§+@+0(zo), 1 9102 2,27
~Xan(Z@n o Ixan(ZP Bri ) (22
T W) o . |
Ve(2)We(0)= 75— ——+0(2), where  xan(Zi,aq;...) is the analytic part of
z Xs(Zi a1 ...), and (1/2r)dxd= L (X) Pau(X), Which is
the total density operator of the fermioilg, . We see that
I(2)W(0)=— (0 +0(29), (18) (the analytic part ofthe independent-parton wave function
z can be expressed as a correlation of the independent-parton
operators.
t V. (0) 0 Similarly, after combining the partons into electrons, the
I2)Ve(0)=——+0(2), wave function®® for the U(1), X SUspin(2), non-Abelian

state can be expressed as a correlation of the electron opera-
tor. Actually from Eqgs.(4) and(22), we see that

1
J(2)J(0)= ;+O(z°).

—(12)iNé(z..) N .
It is not hard to see that € izl—ll__N Wi (z1) )~ Pan(ze, My ),

(23)
=3¢} Wan- (19)

. . where®® (z,,m,;...) is theanalytic part of theb® in Eq.
To obtain the Hilbert space generated by (W) [or, 1) Noteant(hz;t béthe‘Z?N‘b and ¥ y;repSLg 2) single?s
equivalently, to find the representation of the above OPE Eq1._ ' m; olori4 '
(18)], we note that in addition to E§15), another represen- Thus they are operators in the projected U(1)

tation of ¥, X SUspin(2), theory.
Now it is clear that the wave function of the non-Abelian

V=yn, Wi=ny (20) statedP’ can also be expressed as a correlation. The analytic
part of ®Pf is

also reproduces exactly the same JEH. (18)]. [Here ¢ is
a free chiral fermiony(z) 4" (0)=1/z, and 7 is a Majorana
fermion, (z) (0)=1/z.] ThusV¥ -, and ¢y have exactly e~ (1/2)iNg(z) H Vo(z) Nq)g;(zl, Cozy). (29
the same correlations, and we can identil,,_o= 7. i=LN
Since the electron operatdf, can be expressed as a product
of a free chiral fermiony in the U1) theory and a Majorana SinceW(z) is simply a product of free fermion operators,
fermion % in the Ising theory, and since all physical edge Eq. (24) can help us calculate the wave function. Note that
excitations are generated by electron operators, the edgk.(z) can also be expressed ws= /7. This allows us to
theory of the non-Abelian state is described by the U(1)calculate the wave function of our non-Abelian state more
XZ CFT theory. easily:
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<1>§L(21, e ,ZN)“<e_iN¢9(ZX)i=1_l[N ‘I’e(zi)>

! )H (z-7)),

2y~ 2y Z3— Z4 )

(29
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2
i¢$(ﬁt+2ib0)¢/lo A +2|b0) Yo

l/’o(
L[ Sapdan(di—00) —1 8,5(80) an—1CoBab0 5 Wi
2

iCiO'S

lvbba . (28)

aa,bp

1o e
+ﬁ¢aa ai—|ZAi—|ai—|bi—

where A is the total antisymmetrization operator. The first Comparing to Eq(12), we introduced an additional 4(1)

factor

P
A
21_2223_24

comes from then correlation, and the second oifik;;,(z;
—z;) from the ¢ correlation. From the explicit form of the

wave function, we find that our non-Abelian state is actually

not new. It is nothing but the Pfaffian statéor bosonic
electrons first introduced by Moore and Re&dHowever,

we did obtain some new results. Let us summarize these

here:

(1) Using an algebraic method, we find that the Pfaffian

state can be obtained from the projective construction.

gauge fieldc, to perform theS,=0 projection. After inte-
grating out the fermions, we obtain the U(>19JSZ(1)
X SU;010r(2)2 CS theory. This effective theory, at least for-
mally, is quite different from another effective theory ob-
tained in Ref. 17 for the same fermionic Pfaffian state.

(3) The edge effective theory obtained from the projective
construction is the

U(l) X U( 1) X SUspin(z)Z>< SUcoIor(z)Z
U( 1) S USZ( 1) X SUcolor(2)2

—U(1),XT

(29

KM algebra.
Making the S,=0 projection for the U(lg+(n,2)
X SUspin(2)n=even State [with wave function®™¥ in Eq.

(2) The projective construction allows us to derive the (14)], we obtain the following results.

bulk low-energy effective theoryEq. (17)], which is a
USZ(1)><SUCO|0r(2)2 CS theory.

(1) The bulk low-energy effective theory of the con-
structed state is given HyJ(1)]%x Us (1) X SUgoi0r(N)2 CS

(3) The projective construction also allows us to obtaintheory.

the edge effective theory, the U(YZ CFT theory. This

agrees with the old
methodslf’ 13,14,9,10

The projective construction can also be applied to OtheFmo
(non-)Abelian states, which allows us to generate many non-
Abelian states. In the following, as examples, we will only
give the final results of several other non-Abelian states ob-

tained using the projective construction. Making tBg=0
projection for the U(1)X SUsyin(2), non-Abelian state, we
obtain the following results.

(1) The Pfaffian state foffermionic) electrons can be ob-
tained from the projective construction. L#t, be equal to
V-0 in EqQ. (11), or

WV o(2) = o( D[ Ya1(2) Yp2(2) + a2(2) Yp1(2) J €ap s 28

results obtained using differentconstruction is

(2) The edge effective theory obtained from the projective
the U(Jk)+(n/2)><[Suspin(z)n/USZ(l)]
U(L)i+ (n2 ><7? CFT theory. HereP, is the Z,, parafer-
n theory”® Note thatZ=P,.
(3) The electron operator is given by, =\e'?¢ in the
U(1)ic+ (ni2) X Py theory, wheren is the Z, parafermion cur-
rent operatory,(see Refs. 23, 22, and).6Therefore the
wave function for the constructed non-Abelian state is a cor-

relation function of the parafermions timés; (z; — zj)“/z. We
would like to point out that this state is not the parafermion
non-Abelian state studied in Ref. 24 whe# 2. The latter is
constructed using the parafermion current opergtor

We note that whem=4, the ¢, has the following OPE:

1
Va2l 0)~ 7. (30

then the wave function of the fermionic Pfaffian state can berhus the above U(l()rZX ’P4 state is jUSt thel-wave pa”'ed

expressed as

1
21— 2y Z3— 24

| \Ife<zi>>ocA(
i=1.N

(27)

state introduced in Ref. 7.

IV. PROJECTIVE CONSTRUCTION—A GENERAL
DISCUSSION

The low-energy effective theory of QH liquid, for ex-
ample the one for the bosonic Pfaffian stgeg. (17)], has a
finite-energy gap for all its excitation®n a space with no
boundary. Thus, naively, one might expect the low-energy

The above result implies that the fermionic Pfaffian waveeffective theories for QH liquids are trivial since there are

function can be obtained from the wave functidh(z
—2;)x2 of the U(1),X SUspin(2), state through theS,=0

simply no low-energy excitations. Certainly this point of
view is incorrect. The effective theories for QH liquids have

projection. nontrivial ground-state degeneracies which depend on the
(2) The bulk low-energy effective theory for the fermionic topology of the spactSuch theories are called topological
Pfaffian state is given by theoriest® Different QH liquids (or topological ordensare
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described by different topological theories. Thus we can sayhe gauge structur@.e., to project onto the physical Hilbert
that the topological orders in QH liquids are characterized byspacg, we need to include gauge fields in E§1) so that it
topological theories, just like symmetry broken phases aréas a proper gauge invariance.

characterized by Ginzburg-Landau theories. In many cases, In general the gauge groypcan contain several discon-
topological theories can take many different forms. Thus tmnected pieces. Le§. be the connected piece ¢ which
know whether two topological theories are equivalent or notcontain the identity @ itself is a subgroup ofj). Then the
it is important to compare their physical properties, such agjauge structure associated wifh can be realized through
the ground-state degeneracies. It is those physical propertigguge fields,(x) which take value in the Lie algebra 6f,,
that define a topological theory. Lo a.(X) elg. [e.g., if Go=SU(n), thena,(x) are trace-

One important issue is how to derive the effective theoryjess Hermitian matricel After including the gauge fields,
which describes the topological order in a given QH liquid. e parton theory becomes
From the discussion in the above sections, we see that if a
QH liquid can be obtained through projective construction, 1
then there is a way to calculate its effective topological il/f;[ﬁab&t—i(ao)ab]z,[/b-i- ﬁwg(&i—iQAi—iai)gbzpb.
theory. In the following, we will give a general discussion of (36)
the projective construction.

One starts with a few parton fieldg, (where a  The above Lagrangian is the low-energy effective theory of
=1,...n), each with electric charg®,. Thus, for an the QH liquid. We would like to stress that E(B6) alone
independent-parton model, the effective theory is does not provide a complete description of the QH liquid. In
particular, Eq(36) only includes the gauge structure associ-
ated withG,. Only Eq. (36) together with the definition of
electron operators [Eq. (32)]provides a complete descrip-

) _ tion of the QH liquid The invariance of the electron opera-
Howe\{er,. the Hilbert space generated by the parton fieldg, s and the electrical current operatpgives rise to the full
(Ya,42) is simply too large. The physical Hilbert space, gauge groupg which may contain discrete gauge transfor-
generated by electron operator¥ {, W) and the electrical mations, in addition to the continuous transformatinde-
current operatorsJy, J;) = (Sa1/2Qatha . IM=,04Qadi 1), s scribed by the gauge fields, . We will see below that dis-

a subspace of the parton Hilbert space. Thus it is extremelgrete gauge transformations are important and can affect
important the give the definition of electron operators, inphysical properties of the theory, such as the ground-state
order to even define the theory. The importance of electromegeneracies.

operators in describing the structures of QH states was also There is an important issue that we have overlooked in the
pointed out in Ref. 4 for non-Abelain states and in Ref. 25above discussion. The Lagrangian in general may not de-
for Abelian states. In general, there can be several electrogcribe a state with a finite-energy gap. One way to obtain a
operators. Here, for simplicity, we will only consider the state with a finite gap is to assume that each kind of partons

ot 1 - 2
Leti=1130 5+ ﬁ%(ﬁi_'QaAi) a- (31

case with one electron operator, which takes the form form an integral QH state with filling fractiom,=m,. In
- the following we will examine when this assumption can be
v=>c g 7). 32 self consistent. Under the assumptir'aanz m,, we can inte-
€ zm: ml;[ va' (2 32 grate out the parton fields and obtain a CS theory
wheren{™=0,1. The total charge of the electron operator is . 1 R
e, hence L= EEM Tr(Ma,d,ay)+ ZGW A, Tr(MQJd,a,)
Qan{"=e (33 1

, , , , +— e A L0, A TIMQ?), (37

for anym. Since the physical Hilbert space is generated only 4

by the electron operators and the electrical current operator.
our model is actually a gauge theory. Lgbe the group of
transformations on the parton fieldgs,— W,,¢, that leave
the electron operator and the electrical current operators u
changed. By definition,

\?\ihere M =diag(m;,m,, ...). Here we have assumed that
there is no gauge symmetry breakifmy no Higgs mecha-
Ip_ism). Therefore,M and MQ must be invariant under the
gauge transformatio@#, which requires

WIQW=Q, Weg, (34) W'MW=M, Weg. (38)
where Q is a diagonal matrix with diagonal elements  Equation(37) is obtained in the following way. First we
(Q1.Qz,...). Such a matrix is denoted as assume, to be diagonal, which can be regarded as a gauge
diag(@Q;,Q3, . ..). Note that the electron operator is invari- field for the maximum Abelian subgroup 6f . In this case
ant even under a local transformation one can obtain Eq37) easily. Since we assume there is no

gauge symmetry breaking, the effective theory has il
Pa(X) = Wap(X) ¥p(X), Wap(X) € G. (39  gauge invariance. This allows us to show that Ef) is

Because all the physical states are generated by the eIectrXﬁ“d for gengrlcaﬂ n gC_‘ e
operators and the electrical current operators, the transforma- The equation of motiorvL/da, leads to a solutiors;
tion W,,(x) is actually a gauge transformation. To realizewhich can be chosen to be diagonal:a,
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=diag@”,a?, ...). Wenote thata!® are proportional to

1
. T NN | T . ol N2
_ i —ia ot — J— Q A —ia; W
A ai(a)——faAi. If we shift a, to a,=a,+FA; whereF Ha(r—ia'pa) 2m¢a(a' QoA ~12i0a) ¥,

=diag(f;,f,, ...),then the equation of motion will give us (42
a;=0. The shift changeQ,. We see that one can redefine where =1, ... x. The electron operator is given by Eq.
Q, through a shift ofa,, to makea; =0. In the following we  (32). The gauge invariance of the electron operator requires
will assume thatQ, are chosen such thai;=0. This re- (M)l _
quires Na"Pa=0 (43)
for any m and | [see Eq.(32)]. In addition to the Abelian
Tr(tMQ)=0 (39  gauge structure described k@), , there are also discrete

gauge transformation generated W e G which leave the

for any matrixt in the Lie algebra ofi.. FromdLl/d(ag)aa  apelian subgroup unchanged:

=pa, We obtain the density of thath parton:
W Gap Wi = Gap (44)

1 N
paZEmaQaﬁiAj €. (40 The aboveW,’s form a discrete group. Equatiqd4) can be
reduced to the following matrix equatiolV; is a discrete
SinceQ,A; happen to be the total gauge field “seen” by the 9aUge transformation if and onlyW¥/; € G, and there exists a
ath parton, thus thath parton always has a filling fraction <>« matrixT; such that
m, regardless of how we choose,. Here we only require

thatm, are chosen such th satisfies Eq(38); this leads 2 (W) paPa(W)ao(T) 1= Ph S (45)
to a;=0 as a solution of the equation of motion, gnglare a
all positive. The Lagrangian in Eq42) and the electron operator in Eq.

Equations(36), (32), (34), (38), and(39) form a complete  (35) are invariant under the discrete gauge transformations
description of the QH liquids. One can calculate all physical

properties, such as the ground-state degeneracies, of the QH Wa— (Wi) ap¥p » (46)
liquids from those equations.
In the above discussion we only have one-electron opera- a'M_>(Ti),JafL_ 47

tors. In general, there can be several electron operators, and

the above discussion can be generalize in a straightforward After integrating out the parton fields from E@2), we
way to cover those more general cases. For example, thebtain a Y1) CS effective theory

gauge groug; is formed by transformations that leave all the

electron operators invariant. Ki; a ve?
After setting up the bulk effective theory, it is easy to 7, 21xdv@n€umT 5 Audv@n€unt 27— Aud AN€pn
obtain the edge effective theory. For independent partons the (48)

edge states contaim,qq==,/m,| branches. Each branch is
described by a free chiral fermion theory or &1WJKM al-
gebra. Thus the edge effective theory for the independent

where

partons is given by Kiy=2>, maphpl,
a
ﬁedge: [ ’pgl(‘?t_va&x) al (41
|
= m s
wherel=1,...]m,| andv, has the same sign as,. The o Ea: aQaPa

above theory is denoted as thé'etsq1) theory. The true
edge effective theory for the physical states is obtained

through the coset constructidnas the Ueds{1)/G coset ; MaQaQa
theory. Note that we not only need to remove excitations vE . (49
associated with theg KM algebra [which give us the e

Ueds{1)/G. coset theory we also need to require the gince we requirea;=0 to be a solution to the equation of
physical states to be invariant under all the discrete gaugg,etion m, must be chosen to satisfy

transformations ing. Another way (which is conceptually

bette) to obtain the edge theory is to setup the OPE algebra |

of the electron and the current operators, and generate the é MaQaPa=0q,=0 (50
edge states through the algebra.

In the following we will outline how to calculate ground- for all I. [Note that Eq(50) is just a special case of E(R9).]
state degeneracy on a torus. From Ref. 26, we see that to, should also satisfy Eq38). For suchm,, v becomes the
obtain the ground state degeneracy on a torus we may redutatal filling fraction of the QH liquid.
the non-Abelian gauge fields to Abelian ones, i.e., to reduce Now let us use the Abelian version of the effective theory
the gauge groug, to the maximum Abelian subgrou,,,  to calculate the ground-state degeneracy on the torus. Fol-
which is formed by diagonal matrices. The Abelian versionlowing Refs. 27 and 26, the low-energy degrees of freedom
of the effective Lagrangian has a form are described by andv:
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| U|(t)
al(xl,xz,t)=27-rT,

vi(t)

a'z(xl,xz,t)=27rT,
(51

wherelL is the size of the torus. Substituting E§1) into Eq.
(48), we obtain

L=27TR|‘]VJ|..J|, (52)
which leads to the following commutator:
[up vyl=i(K™1),y/2m. (53

. |
The large gauge transformatiaf,— e'2™"PaX/t enerate
a
an equivalence relation

u~u+n, (54
andn satisfies

npy= (intege) (55)

for all a. The vectors that satisfy the above condition form

a lattice whose basis vectors are denote@ asThis lattice
will be called thee lattice. The physically distincti points
are all in the unit cell of the lattice.

Since the conjugate variableg also have the same

equivalence relation Eq54), the allowed value olu are
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degeneracy is given bydet(K)|.2?® However, for non-
Abelian states, there are additional equivalent relatféns:

u~T,u, ue(d lattice), i=1.2,..., (58

where T, are linear maps which map @lattice point to
anotherd-lattice point. Under the equivalence relatifq.
(58)], differentd-lattice points in the unit cell of the lattice

can represent the same ground state. Thus only the points in
the folded unit cell represent distinct ground stafeBhere-
fore, to calculate the ground-state degeneracy on a torus, we
need to knowK andT;.

Now let us describe how to obtain the maps Recall
that in addition to the Abelian gauge transformation§ g,
there are additional discrete gauge transformatitéhas de-
fined in Eq.(45). SinceW; is a gauge transformation, the
physical states must satisf;|phys =|phys. The gauge
transformationsVV; induces a gauge transformation ab:
a,—(T;);a,, whereT; is obtained from Eq(45). There-
fore,a' and (T;),;a’; henceu andT,u, are equivalent points.

We would like to point out that the above result for the
ground-state degeneracy on a torus is correct only when
has no disconnected pieces. Whghas disconnected parts,
the above result needs to be modified. Let us assuimas a
form G=G.® G4 whereg, is a discrete group. Then the low-
energy effective theory is agf CS theoryXx(Gy gauge

quantized. To describe this quantization, let us use the symheory). The above calculation only calculates the ground

metric matrix K to define an inner productu;-u,
=u,,K,;U,; (Which may not be positive definiteWe intro-
duce a dual latticéwhich will be called thed lattice) with
the basis vectord :

di-e=4;. (56)

Then the allowedi’s all lie on thed lattice, and the ground
states are labeled by the lattice points on the dual laftic8 .

However, the points connected by vectors in ¢fattice are
gauge equivalent:
u~u+eg, ue(d lattice.

(57)

Thus only thed-lattice points which lie inside the unit cell of

the e lattice can represent independent ground states.

For ease of calculation, let us redefine the gauge fields
to make the basis of the lattice the standard basis vector
[i.e., (§);=5,;]. We will call such a basis the primary basis.
For the primary basispf.;l have the following two properties.

(1) p are all integers.
(2) When viewed as-dimensional vectors, the vectqrs

states from th&j. CS theory. We know that the discrefg
gauge theory halgjy|?% degenerate ground states on a genus
g surface, wherégGy| is the number of elements . Thus
the total number of the ground states is given by the number
of ground states of thg, CS theory timegGy|%.

Before ending this section let us summarize the steps of
the projective construction as follow:

(1) Introduce a few partong,|,—1 -

(2) Introduce a few electron operators

' . (m)
=2 Pl vy @

[which generalizes Eq32)].

(3) Assign charg&), to each parton such that the electron
operators all have charge

(4) Find the gauge groug [see Eq(35)] that leaves the
electron operator¥’ . and Q unchangedsee Eq.(34)].

(5) Find the filling fractionsm, of partons which satisfy
Eqgs.(38) and (39).

This leads to a QH state with wave function

(59

span ak-dimensional “volume” in n-dimensional space. d({z", ___,Z(h}i)})

This k-dimensional

new set ofp'|,_, . that span a smaller cube.

From Eq.(49), it is clear thatK is a symmetric integer

matrix. This K matrix is similar to theK matrix in the
K-matrix description of Abelian QH statéd-or the primary

basis, the basis vectors of thdattice are given by the col-

umns of K~1. The number of thel-lattice points that lie
inside the unit cell of thes lattice is given by/det(K)|.

“volume” does not contain any
n-dimensional integer vectorgOtherwise, we can choose a

=] [v&@)- - vP @D Pparion, (60

where® .o is the free parton wave function in which the

ath kind of partons form a=m, QH state:

q)parton:E[ )(ma(Z(la), ca ,Zf\fg)- (61)

For Abelian QH liquids, each point in the unit cell of the Here y; is the fermion wave function with filled Landau
e lattice labels a distinct ground state, and the ground-statkevels. The bulk effective theory of the above state is given
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y=lm 1)/G coset theory. The filling fractiow is given by
r=3,m,Q%/e’
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by E?. (36) [or Eq. (37)]. The edge effective theory is the with K=1,+C,, wherel, is thel x| identity matrix andC,
al(

is thel X1 matrix with all its elements equal to 1. However,
according to the projective construction, they, state is

To obtain the Abelian version of the effective theory, we described by
also need to find a set of linearly independent integer vectors

p'| =1, such thatP'=diag(p},p5,....pL) is in the Lie
algebra ofG,. We also requirg' to span ax-dimensional

“volume” in the n-dimensional space that does not contain

L= _al,uava\]}\e,u,v)\!

4 (68)

any integer vectors. Givep', Eqs.(44) and (45) determine  yith a 1x 1 matrixK = (I +1). Actually, there is no contra-

the T, matrix. Equation49) determines th& matrix. T;, K,

diction here.£ andZ are equivalent topological theorié®r

and|Gy| allow us to determine the ground-state degeneracyéxamme, they have the same number of degenerate ground

on the torus.

V. APPLICATIONS OF PROJECTIVE CONSTRUCTION

Now let us apply the above general results to some simpl
cases to gain a better understanding of the projective co

struction. First let us split an electron into two partons,

Vo= 11, (62

with chargesQ; =e[l,/(1,+1,)] andQ,=e[l,/(1,+1,)]. If
l,#1, the gauge group is A): G={e'’"3}. The effective

theory is Eq.(42) with k=1 andp'=(1,—1). Itis clear that

p' forms a primary basis, since the line frof@,0) to (1,

statey. £ can be regarded as a dual form of

We would like to remark here that showing that thgy,

state can be described by a bulk effective CS theory with
nly one U1) gauge field does not imply that the x, state

1as only one branch of edge excitations. Actually fhe;

state hag branches of edge excitations.

When m=—-1,=1 andl;=I, we obtain a sequence of
hierarchical states with filling fractions 2, 3/2.,1/(1-1),
... [which are similar to the 2/3, 3/5.., 1/(21-1), ...
states for the fermionic electropsThe ground-state degen-
eracies for those states are given INp=1,2,...]
-1,....

If I,=1,=1, the gauge group is SB): G={e'* 7. Now

—1) does not contain any integer points. Let us consider &1 @ndm, must be equalsee Eq(38)]: my=m,=m. The
QH state in which the two partons form integral QH states'®sulting state is nothing but the SU(Zhon-Abelian state

with filling fraction m; andm,. m, must satisfy Eq(39) [or
Eq. (50)]:

myl;—m,l,=0. (63
Thus
(64)

m;=ml,, my,=ml;

for an integem. The filling fraction of the QH liquid is

ml, |2 ml, 12 i
v= 21 112 =m 12 . (65)
(I3+1,)%2  (I4+1,)2 it
The K matrix is a 1X 1 matrix:
K=ml+mly=m(l;+1,). (66)

Since there is no additional discrete gauge transformations,

the ground-state degeneracy on the toruss; +1,).

Whenm=1,=1 andl,=I, we obtain a sequence of hier- (which is Eq. (15 if we identify (iy,.

archical states with filling fractions 1/2, 2/3., 1/(1+1),
... [which are similar to the 1/2, 2/5..,1/(2I+1), ...

states for the fermionic electrohsThe ground-state degen-

eracies for those states are given WNp=2,3,...]
+1,... . Since the first parton has a filling fraction=1

and the second parton has=1, the electron wave function

has a formyx; .
According to the K-matrix descriptior?, the effective
theory of they,x, state is given by

(67)

1J
L= A alp.&VaJ)\Ep.v)\ ’

discussed in Ref. Bhem=2 case was discussed in detail in
Sec. ). Its wave function is given byﬁq. The filling frac-
tion is v=m/2.

In the Abelian version of effective theof¥eq. (42)], we
havex=1 andg'=(1,—1) as a primary basis. In addition to
the Abelian gauge transformation, we also have a discrete
gauge transformatiolV=ir,. Such a discrete gauge trans-
formation induces a “gauge” transformation in the Abelian
gauge fielda,— —a;, (i.e., T=—1 in Eq.(45)]. TheK ma-
trix is K=2m. The 2n d-lattice points in the unit cell of the
e lattice are 0,1/&h,...,1/2m,..., (2n—1)/2m. The T=
—1 transformation leads to an equivalence relafit2m~
—1/2m~(2m—1)/2m. Thus the SU(2), non-Abelian state
hasm+1 degenerate ground states on the torus.

Next we start with four different partons, all with the
same charg®,=1/2. The electron operator is chosen to be

1
‘I’e:E[ $1(2)ha(2) = h3(2) P2(2) ] (69

A
=(11 ¢, .21 ,12)) . The gauge groug, is generated by
ten generatorsr,® o, Ti® 01, Ti® 05, and 7y® o3, Where
To= 0 are the X2 identity matrix. It turns out thag, is
the SA@5) (or Sp,) group in its four-dimensional representa-
tion. It appears thaty has no disconnected pieces, a@d
=G, . To be consistent with the gauge invarianEey. (38)],
the partons must all have the same integer filling fraction
v,=m. The effective theory is given by E(36) with a,, in
the Lie algebra of the S(B) gauge group. . After integrat-
ing out the fermions, we obtain a SO(5LS theory.

The Abelian version of the effective thediq. (42)] has
k=2 and
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(p}, . ,p}l)z(lyo,o,_l), (pi, L ,pﬁ)z(O,—l,l,O). In_Sec. [, the bLfJ|k effective theory for the=1 bosonic
(70 Pfaffian state ®P' was found to be the gZJ(l)

5 . X SU.p10r(2), CS theory[see Eq(17)]. From the above dis-
The.parallelog.ram spanr;gd In/ .and P dqes no~t contfam cussion, we see that the correct bulk effective theory should
any integer points. Thys"?is a primary basis. ThE matrix  pe the SO(5) CS theory. If the two effective theories are
is [see Eq.(49)] K=((2)m gm). Thed lattice is generated by inequivalent, the SO(3)CS theory is the correct effective
the basesd'=(1/2m,0) and d°=(0,1/2m). The 4m? theory for ther=1 bosonic Pfaffian state, since the SO(5)
d-lattice points in the unit cell of thee lattice are CS theory has full gauge symmetry. However, it is also pos-
(ka/2m,kp/2m), with kq,k, =0, ...,2m—1. The electron op- sible that the d (1) X SU0((2), effective CS theory is
erator is invariant under the following three transformationsequiva|em to the SO(5)CS theory. On the torus both theo-
ries give three degenerate ground states. Also, the edge ex-
citation for the v=1 bosonic Pfaffian state should be de-
scribed by the (1)/SO(5), coset theory. Note that4¢1)
=U(1) X SUgpin(2)2X SUgo10r(2), theory can be described
by eight free Majorana fermions. The(1) KM algebra can
be described by two Majorana fermions (Rém ), the
SUpin(2), KM algebra by three Majorana fermions
(72 m=1.29, and the Sldy0,(2), KM algebra also by three
Majorana (73,=1.2. The S@5) gauge field couples to
71) (7223, 7% and the projection to the $6) singlet sector
gives us U(1)/SO(5)=U(1)xZ theory described by
(¢, ng). Thus effective edge theory—the U(XY theory—
obtained in Sec. Il is still valid.

We can also start with five different partons with four
partons i , 5 4 carrying chargeel,/2(1,+1,), and the fifth
parton carrying chargel,/(l1;+15). The electron operator
can be chosen to be

o » O O
O O O
o O O -
o O +—» O

o
o O +—» O
o » O O
S O O Bk

=2
I
O O O
o r O O
|
'_\
~ o © o

1
‘I’e=ﬁ[¢1(2) Pa(2) + Y3(2) ha(2) 195 (73
This induces three mappings onsee Eq.(58)]:

[which is Eq. (26) if we identify (¢q,...,¥s)

(O l) =(11 .41, .21 .92, ,p0)]. The gauge grouf, is gener-

Ti=\1 o ated by 11 generators. The first ten generatosog, 7
®0;, Ti® 0y, andry® o3 act only ony, ;34 The last gen-
erator is given by diag(1,1,1;22). G. is the SO(5)

T.— -10 72 XU(1) group. AgainG has no disconnected pieces agd
2l o 1) (72 =G, . To be consistent with the gauge invariah&g. (38)],
the first four partons all have the same integer filling fraction
1 0 v,=my, and the last partotig has filling fractionms. Equa-
To=lo —1]- tion (39) [or Eqg. (50)] requiresm;l;—1,ms=0. Therefore,

m]_:mlz, m5:m|1. (74)
T,3 leads to the equivalence relations f2m,k,/2m) . o . _ _
~[ (2m—ky)/2m, Ko/2m] ~[ky/2m, (2m—ks)/2m]. Thus  The effective theory is given by E¢36) with a,, in the Lie
ky,k,=0,...m label all the independent statds, gives rise ~ &/9ebra of the SO(53U(1) gauge groug; . After integrat-
to an equivalence relatiork{/2m,k,/2m) ~ (k,/2m,k,/2m). ~ ing out the fermions, we obtain a SOERKU(1) CS
Therefore, the QH state obtained through the above projedheory.
tive construction has [(m+1)%2]+[(m+1)/2] The Abelian version of the effective theory is E@2)
=[(m+1)(m+2)/2] degenerate ground states on a torusWith
[represented by pointk{/2m,k,/2m) with k;,k,=0,...m

andk, <kg]. (P1,---P3)=(1,0,0-10),
Note that wherm=1 the above projective construction is
just the construction used in Sec. Il to construct the filling (p?,...,p3=(0,—1,1,0,0, (75
fraction v=1 bosonic Pfaffian state with wave functidr®’
in Eq. (25). We see that the=1 bosonic Pfaffian state has (p3,....pd)=(0,1,0,1-1).

three degenerate ground state on the torus. This result agrees

with a previous result obtained from the wave functf. The “volume” spanned by"*® does not contain any inte-
When m>1, the above construction produces other nonger points, ancp>>2 is a primary basis. Th& matrix be-
Abelian states. comes
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2m, 0 -my sponding QH state is just the fermionic Pfaffian state at a
filling fraction 3 with wave function equatiofi27). From
g=| 0 2m -m | (76)

_ml _ml 2ml+ m5

The electron operator is invariant under the following K-1=%
three transformations which also leave the Abelian gauge
structure unchanged:

N = Ol
N Ol -
A NN

we find that thed lattice is generated by the base$
=(5/8,1/8,1/4), d’=(1/8,5/8,1/4), andd®=(1/4,1/4,1/2).
The eightd-lattice points in the unit cell of the lattice are
(5/8,1/8,1/4), (1/8,5/8,1/4), (7/8,3/8,3/4), (3/8,7/8,3/4),
(0,0,0), (1/4,1/4,1/2), (1/2,1/2,0), and (3/4,3/4,1/2) 3 do
not lead to any new equivalence relations. HoweVvey,
gives rise to two equivalence relations (5/8,1/8,1/4)
~(1/8,5/8,1/4) and (7/8,3/8,3/4)(3/8,7/8,3/4). Thus the
fermionic v= 1/2 Pfaffian state has six degenerate states on a
77) torus. This result again agrees with a previous result obtained
’ from wave function>°

o O »r O O
o »r O O O
o O O » O
~ O O O O

o

2
I
o
o O O ~» O

VI. SUMMARY

In this paper we introduced a powerful method—the pro-
jective construction—to construct many non-Abeliéand
Abelian) states, which include the fermionic=1/2 and the
bosonic v=1 Pfaffian states, and thé-wave-paired non-
Abelian state. What is more significant is that the projective
construction allows us to calculate bulk and edge effective
o . theories. We find that the bluk effective theory is a SQ(5)
This induces three mappings onsee Eq(58)]: CS theory for the bosonie=1 Pfaffian state, and a U(1)

X SO(5), CS theory for the fermionie=1/2 Pfaffian state.

O r OO0 OO0 o o o
»r O O © o p O O O O

o O »r O O
o

010 Using the bulk effective theory, the ground-state degeneracy
T,= 1 0 O , on a torus was calculated.
0 0 1 However, it is unclear if the projective construction can
produce all the QH states or not. We still do not known how
-1 1 to use the projective construction to construct the Haldane-
Rezayi staté® Although we understand a lot of physical
T,= 0 0] (78  properties of the Haldane-Rezayi staté;*°we still do not
0O 0 1 know its bulk effective theory.
0 O
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