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Projective construction of non-Abelian quantum Hall liquids

Xiao-Gang Wen
Department of Physics and Center for Material Science and Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
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Using projective construction, a generalized parton construction, we construct many non-Abelian quantum
Hall ~QH! states, which include the Pfaffian state at filling fractionn51/2. The projective construction allows
us to calculate bulk and edge effective theories for the constructed QH state. We illustrate how to use the bulk
effective theory to calculate the ground-state degeneracy of non-Abelian QH liquids on a torus. We point out
that a full description of the effective theory requires both an effective Lagrangian and the definition of electron
operators. The latter generates all physical states, and defines the gauge structure of the theory.
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I. INTRODUCTION

Quantum Hall~QH! liquids as a fundamentally new sta
of matter contain an interesting kind of order—topologic
order.1,2 The different topological orders in QH liquids ca
be divided into two classes. The topological orders in
first class–the Abelian topological orders–are labeled by
K matrix,3 and were believed to describe most of the o
served QH liquids. The second class of topological order
the non-Abelian topological orders—also exists in Q
liquids.4,5 Quasiparticles in non-Abelian QH states car
non-Abelian statistics, and their edge states cannot be
scribed by ‘‘edge phonons’’~which is a collection of har-
monic oscillators!.

There are two ways to construct non-Abelian QH stat
One6–10 is through a correlation function in conformal fie
theory ~CFT!, and the other5,6 is through parton
construction.11,12Both constructions allow us to calculate th
structures of edge states.5,13,14,9,10However, only the parton
construction allows us to calculate the bulk effective the
ries, which turn out to be Chern-Simons~CS! theories.

In this paper we introduce the projective constructi
which generalizes parton construction. Using the projec
construction, we can construct many old and new n
Abelian ~and Abelian! QH states, which include both then
51 bosonic Pfaffian state and then51/2 fermionic Pfaffian
state,4,15,7,13,14,8–10as well as thed-wave paired state intro
duced in Refs. 7 and 13. The projective construction allo
us to calculate both the bulk and edge effective theories
the constructed QH states. The bulk effective theories
complete enough to allow us to calculate the ground-s
degeneracies on a torus.

Using the projective construction, we find the effecti
theories for then51 bosonic Pfaffian state and then51/2
fermionic Pfaffian state to be the SO(5)1 and U(1)
3SO(5)1 CS theories. From these effective theories, we c
culated the ground state degeneracies for both states, w
are 3 and 6 on the torus. We also calculated the edge e
tive theories for the two states. The results agree with pr
ous results obtained through the wave functions.16,9,15,13,14

The effective theories for then51 bosonic Pfaffian state
and then51/2 fermionic Pfaffian state have been obtain
before using different approaches. The SO(5)1 CS effective
PRB 600163-1829/99/60~12!/8827~12!/$15.00
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theory for then51 bosonic Pfaffian state obtained here
formally different from the SU(2)2 CS effective theory ob-
tained in Ref. 17. Although both theories give three deg
erate ground states on the torus, it is unclear if the two th
ries are equivalent on high genus Riemann surfaces. At l
the meaning of the gauge fields and their coupling to
external electromagnetic fieldAm are quite different. The ef-
fective theory for then51/2 fermionic Pfaffian state ob
tained in Ref. 17 is very unusual~which cannot be regarde
as an ordinary CS theory!. It is not clear if such an effective
theory is equivalent to our U(1)3SO(5)1 CS effective
theory for then51/2 fermionic Pfaffian state. In particular,
is not clear whether the effective theory in Ref. 17 rep
duces the six degenerate ground states on the torus. Ano
form of effective theory—the non-Abelian Ginzburg-Landa
CS theory—was obtained in Ref. 18 to describe the Pfaffi
states. Since the ground state degeneracies were not c
lated, the relation between the effective theories in Ref.
and the effective theories obtained in this paper is unclea
the moment.

We would like to point out that two topological theorie
~CS or Ginzburg-Landau CS theories! with very different
forms could be equivalent. This is because the effective th
ries were written in terms of gauge fields that impose c
straint. One can reach the same QH state through diffe
projection schemes which lead to different forms of effect
theory. To really know whether the two topological theori
are equivalent or not, one needs to study their properties
high genus Riemann surfaces.

In Sec. II we introduce the projective construction usi
the U(1)l3SU(2)n non-Abelian state as an example. In Se
III we use the projective construction to construct then51
bosonic Pfaffian state and then51/2 fermionic Pfaffian
state. This allows us to obtain the bulk and edge effect
theories for the two states. The projective construction a
allows us to construct many new non-Abelian states and
culate their bulk and edge effective theories. In Sec. IV
give a general discussion of the projective construction.
particular, we point out the importance of electron operat
in defining the effective bulk theory. We illustrate how th
discrete gauge structure in the effective theory can af
physical quantities, such as the ground-state degeneracy
projective construction is a very powerful construction whi
8827 ©1999 The American Physical Society
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8828 PRB 60XIAO-GANG WEN
can be used to construct many different QH states~both Abe-
lian and non-Abelian!. In Sec. V we illustrate how to use th
projective construction through some simple examples.

II. PROJECTIVE CONSTRUCTION AND U „1…L3SU„2…N

NONABELIAN STATES

In this section we are going to use the projective constr
tion to construct the U(1)l3SU(2)n non-Abelian states.5 We
start with the simplest example, and then generalize to m
complicated cases.

We start with a non-Abelian state of spin-1~bosonic!
electrons.6 The wave function is given by

Fb~z1 ,m1 ;z2 ,m2 ; . . . !

5 (
a1 .b1 ; . . .

xs~z1 ,a1 ; . . . !xs~z1 ,b1 ; . . . !

3Ca1b1

m1 . . . Ca1bN

mN , ~1!

wheremi50,61,

C05S 0
1

A2

1

A2
0 D ,C115S 1 0

0 0D ,C215S 0 0

0 1D , ~2!

and xs(z1 ,a1 ; . . . ) is thewave function of spin-1/2 fermi-
ons with the first Landau level filled by the spin-up a
spin-down particles. One way to see that the above state
non-Abelian state is to derive its low-energy effective theo

To construct the above wave function using a project
construction, we start with the followingfree fermion wave
function for two species~labeled bya51 and 2! of spin-1/2
partonscaa :

Fparton5xs~z1
(1) ,a1 ; . . . !xs~z1

(2) ,b1 ; . . . !, ~3!

where a i ,b i5↑,↓ are spin-1/2 indices. Then we combin
the two spin-1/2 partons into a spin-1 electron. In terms
the electron operatorCm(z) and the parton operatorcaa(z),
the combination can be expressed as

Cm~z!5caa~z!cbb~z!eabCab
m ~4!

where a,b51,2. One can easily see that, after settingzi
(1)

5zi
(2)5zi and symmetrizinga i andb i usingCa ib i

m , Fparton

in Eq. ~3! reduces toFb Eq. ~1!. Or, more precisely,

Fb~z1 ,m1 ;z2 ,m2 ; . . . !5^0u) Cmi
~zi !uFparton&, ~5!

whereuFparton& is the independent parton state described
Fparton .

To obtain the effective theory for stateFb(zi ,mi), we
start with the effective theory for independent partons,

icaa
† ] tcaa1

1

2m
caa

† S ] i2 i
e

2
Ai D 2

caa , ~6!
-

re

a
.
e

f

y

whose ground state isuFparton&. The effective theory for
stateFb is obtained by combining the two kinds of parton
in the above effective theory into electrons. Notice that
effective theory for independent partons contains SU~2! ex-
citations created bycaa

† tab
l cba , wheret l are Pauli matrices.

We will call such a SU~2! the ‘‘color’’ SU~2! to distinguish
it from the SU~2! spin rotation. From Eq.~4! we see that the
electron operatorCm(z) is a color SU~2! singlet. All physi-
cal excitations~created by electron operators! are color sin-
glets. Thus, to combine the partons into electrons, we sim
need to remove all the ‘‘colored’’ excitation from the parto
theory@Eq. ~6!# and project into the local color singlet secto
The projection can be realized, at the Lagrangian level,
introducing a SU~2! gauge field which couples to the curre
and the density of the color SU~2!:

L5 icaa
† @dab] t2 i ~a0!ab#cba

1
1

2m
caa

† S dab] i2 i
e

2
Ai2 i ~ai !abD 2

cba . ~7!

Equation~7! is the effective theory forFb. Only the gauge-
invariant operators, such as the electron operatorCm , corre-
spond to physical operators. To see that the effective the
@Eq. ~7!# describes a non-Abelian state, we integrate out
parton fieldscaa . We note that the average of the SU~2!
gauge field is zero, and the two partons have such a den
that they formn52 QH state. Thus, after integrating out th
parton fieldscaa , we obtain an SU~2! CS theory at levelk
52. k is given by the parton filling fraction

k

4p
Tr emnlS am]nal1

2i

3
amanalD . ~8!

Although the levelk51 SU~2! CS theory contains only Abe
lian statistics, the levelk.1 SU~2! CS theory indeed has
quasiparticles carrying non-Abelian statistics.19

The edge states of the above non-Abelian state can als
obtained from the projective construction. For independ
partons described by Eq.~6!, the edge theory is simply given
by free chiral fermions in one plus one dimension~111D!:

icaa
† ~] t2v]x!caa . ~9!

The above edge theory is also described by the U
3SUspin(2)23SUcolor(2)2 Kac-Moody ~KM ! algebra.20

The charge associated with U~1! is just the electric charge o
the electrons. The combination of the partons into electro
again realized by project into local SUcolor(2) singlet sector,
which can be simply done by removing the sector genera
by the SUcolor(2)2 KM algebra from the edge spectrum
Thus the edge states of the non-Abelian stateFb is described
by the U(1)13SUspin(2)2 KM algebra.

Here we have assigned a level 1 to the U~1! KM algebra.
The level characterizes how the U~1! charge is quantized
The definition of the level is the following. We know that th
edge theory contains electron operatorsCm . The operators
that create quasiparticles are the operators which are l
with respect to the electron operators~i.e., their correlation
with the electron operators are single valued!. Let cU(1) be
the SUspin(2) singlet quasiparticle operator which carries t
minimum ~but nonzero! U~1! charge. The correlation o
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cU(1) has a form^cU(1)
† (x)cU(1)(0)&;1/xh. Then the level

of the U~1! KM algebra is defined asl 51/h. @According to
this definition, the U~1! KM algebra that describes the edg
excitations of then51/m Laughlin state can be more sp
cifically denoted as U(1)m KM algebra.# Since its edge state
is described by the U(1)13SUspin(2)2 KM algebra, we will
call the non-Abelian stateFb the U(1)13SUspin(2)2 state.
Note that the U(1)13SUspin(2)2 non-Abelian state can hav
a bulk effective theory which is a purely SUcolor(2)2 CS
theory.

A slightly more complicated non-Abelian state of spin
fermionic electrons is given by

F f~z1 ,m1 ;z2 ,m2 ; . . . !

5) ~zi2zj !

3 (
a1 .b1 ; . . .

xs~z1 ,a1 ; . . . !xs~z1 ,b1 ; . . . !

3Ca1b1

m1 . . . Ca1bN

mN . ~10!

To obtain the projective construction, we need to split
electron into one chargee/2 partonc0 and two chargee/4
partonscaua51 and 2:

Cm~z!5c0~z!caa~z!cbb~z!eabCab
m . ~11!

Following arguments similar to those used above, we ob
the effective theory forF f :

ic0
†~] t12ib0!c01

1

2m
c0

†S ] i2 i
e

2
Ai12ib0D 2

c0

1 icaa
† ~dab] t2 i ~a0!ab2 ib0dab!cba

1
1

2m
caa

† S ] i2 i
e

4
Ai2 iai2 ib0D

ab

2

cba . ~12!

Here an extra U~1! gauge fieldbm is introduced to combine
c0 and c1,2. Note that the electron operatorCm carries no
bm charge. After integrating out the parton fields, the effe
tive theory becomes the U(1)3SU(2)2 CS theory. The edge
states for independent partons are described by the U
3U(1)3SUspin(2)23SUcolor(2)2 KM algebra. After the
projection, the edge states for the fermion non-Abelian s
are described by the

U~1!3U~1!3SUspin~2!23SUcolor~2!2

U~1!3SUcolor~2!2

5U~1!23SUspin~2!2 ~13!

KM algebra.
A more general non-Abelian state of spin-n/2 electrons is

given by
e

in

-

1)

te

F (n,k)~z1 ,m1 ;z2 ,m2 ; . . . !

5) ~zi2zj !
k(

aai

Ca11 ..an1

m1 . . . Ca1N ..anN

mN

3xs~z1 ,a11; . . . ;zN ,a1N! . . .

3xs~z1 ,an1 ; . . . ;zN ,anN!, ~14!

whereCa1 , . . . ,an

m form a basis of rank-n symmetric tensors,

and m is the quantum number of the total spinSz for each
electron. In the bulk, the above state is described by
@U(1)#k3SUcolor(n)2 effective CS theory. The edge excita
tions are described by the U(1)k1(n/2)3SUspin(2)n KM al-
gebra. Such a state will be called a U(1)k1(n/2)
3SUspin(2)n non-Abelian state. The above result provid
an example that the group for the edge KM algeb
U(1)k1(n/2)3SUspin(2)n , and the group for the bulk CS ef
fective theory,@U(1)#k3SUcolor(n)2, can be quite different.

III. PROJECTIVE CONSTRUCTION AND THE
EFFECTIVE THEORY OF PFAFFIAN STATE

Using the U(1)k1(n/2)3SUspin(2)n non-Abelian states,
we can construct non-Abelian states. Let us start with
simplest U(1)13SUspin(2)2 state.

To construct a non-Abelian state from the U(11
3SUspin(2)2 state, we simply make a further local proje
tion Sz50, in addition to the local color singlet projection
This Sz50 projection can be realized by identifying

Ce[
1

A2
Cm50 ~15!

as the only physical electron operator.Cm561 are regarded
as unphysical sinceSzÞ0. The physical Hilbert space is gen
erated byCm50 only. Therefore after theSz50 projection,
the wave function of the non-Abelian state is given by@see
Eq. ~5!#

Fp f~z1 , . . . ,zN!5^0u)
i

Ce~zi !uFparton&, ~16!

which can be regarded as a wave function of spinless e
trons.

The projective construction allows us to obtain the lo
energy effective theory for the above non-Abelian state.
the Lagrangian level, theSz50 projection can be realized b
introducing an extra USz

(1) gauge fieldcm that couples to

Sz . This yields the effective theory for the non-Abelian sta

icaa
† @dabdab] t2 idab~a0!ab2 ic0sab

3 dab#cbb

1
1

2m
caa

† S ] i2 i
e

2
Ai2 iai2 ic0s3D

aa,bb

2

cbb . ~17!

After integrating out the fermions, we obtain a USZ
(1)

3SUcolor(2)2 CS theory.
The edge excitations of theFp f state can also be obtaine

through projective construction. Since theFp f state is ob-
tained from the U(1)13SUspin(2)2 state by making an ad
ditional local Sz50 projection, thus the edge states of t
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8830 PRB 60XIAO-GANG WEN
Fp f state can also be obtained from that of the U(11

3SUspin(2)2 state by making a localSz50 projection. Note
that the edge excitations that correspond to theSz fluctua-
tions is described by the USz

(1) KM algebra generated b

the Sz current. Thus the edge excitations of theFp f state is
described by the U(1)13@SUspin(2)2 /USz

(1)# coset

theory.21,12 Since the SUspin(2)2 /USz
(1) coset theory is

nothing but an Ising model~or a Majorana fermion theory!
with a central chargec5 1

2 ,22 the edge theory for the non
Abelian state can also be denoted as the U(1)13I theory.

The second way to obtain the edge theory is to note
all edge excitations are generated byCe in Eq. ~15! andCe

† .
Thus we can use the algebra of (Ce ,Ce

†) to describe the
edge excitations.13 The algebra of (Ce ,Ce

†) can be obtained
from their operator product expansion~OPE!, which can be
calculated easily sinceCe can be expressed as a product
free chiral fermion operators@Eq. ~15!#. We would like to
mention that the OPE of electron operators was also use
Ref. 4 to construct a QH wave function. Using the OPE
free chiral fermionsc(z)c†(0)51/z, we find the following
closed OPE generated by (Ce ,Ce

†):

Ce
†~z!Ce~0!5

1

z2
1

J~0!

z
1O~z0!,

Ce~z!Ce
†~0!5

1

z2
2

J~0!

z
1O~z0!,

J~z!Ce~0!52
Ce~0!

z
1O~z0!, ~18!

J~z!Ce
†~0!5

Ce~0!

z
1O~z0!,

J~z!J~0!5
1

z2
1O~z0!.

It is not hard to see that

J5 1
2 caa

† caa . ~19!

To obtain the Hilbert space generated by (Ce ,Ce
†) @or,

equivalently, to find the representation of the above OPE
~18!#, we note that in addition to Eq.~15!, another represen
tation of Ce ,

Ce5ch, Ce
†5hc†, ~20!

also reproduces exactly the same OPE@Eq. ~18!#. @Herec is
a free chiral fermion,c(z)c†(0)51/z, andh is a Majorana
fermion,h(z)h(0)51/z.# ThusCm50 andch have exactly
the same correlations, and we can identifyCm505ch.
Since the electron operatorCe can be expressed as a produ
of a free chiral fermionc in the U~1! theory and a Majorana
fermion h in the Ising theory, and since all physical ed
excitations are generated by electron operators, the e
theory of the non-Abelian state is described by the U(
3I CFT theory.
at

f

in
r

q.

t

ge
)

To obtain an explicit expression of the wave function f
our non-Abelian state, let us first review a relation betwe
the edge theory and the bulk wave function.13 As we men-
tioned above, for independent partons the edge state is
scribed by free chiral fermionscaa @see Eq.~9!#. This edge
theory and the independent-parton wave function@Eq. ~3!#
are closely related. As pointed out in Ref. 4, in the 111D
free chiral fermion theory the correlation

K e2 iNf(z`) )
i 51..N

c~zi !L ;)
i j

~zi2zj ! ~21!

is proportional to the analytic part of the spinless electr
wave function of the filled first Landau level,) i j (zi

2zj )e
2(uzi u

2/4. Here c is a free chiral fermion field,z is
given by z5x2vt5x1 ivt for complex timet5 i t , and
eif(z)5c(z) is the bosonized form of the free chiral fermio
operator. One can show, through bosonization, t
(1/2p)]xf5c†(x)c(x).

Generalizing the above relation, we find that

K e2~1/2!iNf(z`) )
i 51..N

c1,a i
~zi

(1)!c2,b i
~zi

(2)!L
;xan~z1

(1) ,a1 ; . . . !xan~z1
(2) ,b1 ; . . . !, ~22!

where xan(z1 ,a1 ; . . . ) is the analytic part of
xs(z1 ,a1 ; . . . ), and (1/2p)]xf5caa

† (x)caa(x), which is
the total density operator of the fermionscaa . We see that
~the analytic part of! the independent-parton wave functio
can be expressed as a correlation of the independent-pa
operators.

Similarly, after combining the partons into electrons, t
wave functionFb for the U(1)13SUspin(2)2 non-Abelian
state can be expressed as a correlation of the electron o
tor. Actually from Eqs.~4! and ~22!, we see that

K e2(1/2)iNf(z`) )
i 51..N

Cmi
~zi !L ;Fan

b ~z1 ,m1 ; . . . !,

~23!

whereFan
b (z1 ,m1 ; . . . ) is theanalytic part of theFb in Eq.

~1!. Note that bothe22iNf andCmi
are SUcolor(2) singlets.

Thus they are operators in the projected U(11
3SUspin(2)2 theory.

Now it is clear that the wave function of the non-Abelia
stateFp f can also be expressed as a correlation. The ana
part of Fp f is

K e2~1/2!iNf(z`) )
i 51..N

Ce~zi !L ;Fan
p f ~z1 , . . . ,zN!. ~24!

SinceCe(z) is simply a product of free fermion operator
Eq. ~24! can help us calculate the wave function. Note th
Ce(z) can also be expressed asCe5ch. This allows us to
calculate the wave function of our non-Abelian state mo
easily:
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Fan
p f ~z1 , . . . ,zN!}K e2 iNfe(z`) )

i 51..N
Ce~zi !L

5AS 1

z12z2

1

z32z4
••• D )̂

i j &
~zi2zj !,

~25!

whereA is the total antisymmetrization operator. The fir
factor

AS 1

z12z2

1

z32z4
••• D

comes from theh correlation, and the second one)^ i j &(zi
2zj ) from the c correlation. From the explicit form of the
wave function, we find that our non-Abelian state is actua
not new. It is nothing but the Pfaffian state~for bosonic
electrons! first introduced by Moore and Read.4 However,
we did obtain some new results. Let us summarize th
here:

~1! Using an algebraic method, we find that the Pfaffi
state can be obtained from the projective construction.

~2! The projective construction allows us to derive t
bulk low-energy effective theory@Eq. ~17!#, which is a
USz

(1)3SUcolor(2)2 CS theory.
~3! The projective construction also allows us to obta

the edge effective theory, the U(1)13I CFT theory. This
agrees with the old results obtained using differe
methods.15,13,14,9,10

The projective construction can also be applied to ot
~non-!Abelian states, which allows us to generate many n
Abelian states. In the following, as examples, we will on
give the final results of several other non-Abelian states
tained using the projective construction. Making theSz50
projection for the U(1)23SUspin(2)2 non-Abelian state, we
obtain the following results.

~1! The Pfaffian state for~fermionic! electrons can be ob
tained from the projective construction. LetCe be equal to
Cm50 in Eq. ~11!, or

Ce~z!5c0~z!@ca1~z!cb2~z!1ca2~z!cb1~z!#eab ;
~26!

then the wave function of the fermionic Pfaffian state can
expressed as

K e2 iNfe(z`) )
i 51..N

Ce~zi !L }AS 1

z12z2

1

z32z4
••• D

3)̂
i j &

~zi2zj !
2. ~27!

The above result implies that the fermionic Pfaffian wa
function can be obtained from the wave function)(zi

2zj )xs
2 of the U(1)23SUspin(2)2 state through theSz50

projection.
~2! The bulk low-energy effective theory for the fermion

Pfaffian state is given by
t

y

se

t

r
-

-

e

ic0
†~] t12ib0!c01

1

2m
c0

†S ] i2 i
e

2
Ai12ib0D 2

c0

1 icaa
† @dabdab~] t2 ib0!2 idab~a0!ab2 ic0dabsab

3 #cbb

1
1

2m
caa

† S ] i2 i
e

4
Ai2 iai2 ibi2 ic is

3D
aa,bb

2

cba . ~28!

Comparing to Eq.~12!, we introduced an additional USz
(1)

gauge fieldcm to perform theSz50 projection. After inte-
grating out the fermions, we obtain the U(1)3USz

(1)

3SUcolor(2)2 CS theory. This effective theory, at least fo
mally, is quite different from another effective theory o
tained in Ref. 17 for the same fermionic Pfaffian state.

~3! The edge effective theory obtained from the project
construction is the

U~1!3U~1!3SUspin~2!23SUcolor~2!2

U~1!3USz
~1!3SUcolor~2!2

5U~1!23I
~29!

KM algebra.
Making the Sz50 projection for the U(1)k1(n/2)

3SUspin(2)n5even state @with wave functionF (n,k) in Eq.
~14!#, we obtain the following results.

~1! The bulk low-energy effective theory of the con
structed state is given by@U(1)#k3USz

(1)3SUcolor(n)2 CS
theory.

~2! The edge effective theory obtained from the project
construction is the U(1)k1(n/2)3@SUspin(2)n /USz

(1)#
5U(1)k1(n/2)3Pn CFT theory. HerePn is the Zn parafer-
mion theory.23 Note thatI5P 2.

~3! The electron operator is given byCe5leigf in the
U(1)k1(n/2)3Pn theory, wherel is theZn parafermion cur-
rent operatorcn/2~see Refs. 23, 22, and 6!. Therefore the
wave function for the constructed non-Abelian state is a c
relation function of the parafermions times) i j (zi2zj )

g2
. We

would like to point out that this state is not the parafermi
non-Abelian state studied in Ref. 24 whennÞ2. The latter is
constructed using the parafermion current operatorc1.

We note that whenn54, thec2 has the following OPE:

c2~z!c2~0!;
1

z2
. ~30!

Thus the above U(1)k123P4 state is just thed-wave paired
state introduced in Ref. 7.

IV. PROJECTIVE CONSTRUCTION—A GENERAL
DISCUSSION

The low-energy effective theory of QH liquid, for ex
ample the one for the bosonic Pfaffian state@Eq. ~17!#, has a
finite-energy gap for all its excitations~on a space with no
boundary!. Thus, naively, one might expect the low-ener
effective theories for QH liquids are trivial since there a
simply no low-energy excitations. Certainly this point
view is incorrect. The effective theories for QH liquids ha
nontrivial ground-state degeneracies which depend on
topology of the space.1 Such theories are called topologic
theories.19 Different QH liquids ~or topological orders! are
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described by different topological theories. Thus we can
that the topological orders in QH liquids are characterized
topological theories, just like symmetry broken phases
characterized by Ginzburg-Landau theories. In many ca
topological theories can take many different forms. Thus
know whether two topological theories are equivalent or n
it is important to compare their physical properties, such
the ground-state degeneracies. It is those physical prope
that define a topological theory.

One important issue is how to derive the effective the
which describes the topological order in a given QH liqu
From the discussion in the above sections, we see that
QH liquid can be obtained through projective constructio
then there is a way to calculate its effective topologi
theory. In the following, we will give a general discussion
the projective construction.

One starts with a few parton fieldsca ~where a
51, . . . ,n), each with electric chargeQa . Thus, for an
independent-parton model, the effective theory is

Le f f5 ica
†] tca1

1

2m
ca

†~] i2 iQaAi !
2ca . ~31!

However, the Hilbert space generated by the parton fie
(ca ,ca

†) is simply too large. The physical Hilbert spac
generated by electron operators (Ce ,Ce

†) and the electrical
current operators (J0 ,Ji)5((aca

†Qaca ,Im (aca
†Qa] ica), is

a subspace of the parton Hilbert space. Thus it is extrem
important the give the definition of electron operators,
order to even define the theory. The importance of elect
operators in describing the structures of QH states was
pointed out in Ref. 4 for non-Abelain states and in Ref.
for Abelian states. In general, there can be several elec
operators. Here, for simplicity, we will only consider th
case with one electron operator, which takes the form

Ce5(
m

Cm)
a

c
a

na
(m)

~z!, ~32!

wherena
(m)50,1. The total charge of the electron operator

e, hence

Qana
(m)5e ~33!

for anym. Since the physical Hilbert space is generated o
by the electron operators and the electrical current opera
our model is actually a gauge theory. LetG be the group of
transformations on the parton fieldsca→Wabcb that leave
the electron operator and the electrical current operators
changed. By definition,

W†QW5Q, WPG, ~34!

where Q is a diagonal matrix with diagonal elemen
(Q1 ,Q2 , . . . ). Such a matrix is denoted a
diag(Q1 ,Q2 , . . . ). Note that the electron operator is invar
ant even under a local transformation

ca~x!→Wab~x!cb~x!, Wab~x!PG. ~35!

Because all the physical states are generated by the ele
operators and the electrical current operators, the transfo
tion Wab(x) is actually a gauge transformation. To reali
y
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the gauge structure~i.e., to project onto the physical Hilber
space!, we need to include gauge fields in Eq.~31! so that it
has a proper gauge invariance.

In general the gauge groupG can contain several discon
nected pieces. LetGc be the connected piece ofG which
contain the identity (Gc itself is a subgroup ofG). Then the
gauge structure associated withGc can be realized through
gauge fieldsam(x) which take value in the Lie algebra ofGc ,
LGc

: am(x)PLGc
. @e.g., if Gc5SU(n), thenam(x) are trace-

less Hermitian matrices.# After including the gauge fields
the parton theory becomes

ica
†@dab] t2 i ~a0!ab#cb1

1

2m
ca

†~] i2 iQAi2 iai !ab
2 cb.

~36!

The above Lagrangian is the low-energy effective theory
the QH liquid. We would like to stress that Eq.~36! alone
does not provide a complete description of the QH liquid.
particular, Eq.~36! only includes the gauge structure asso
ated withGc . Only Eq. (36), together with the definition o
electron operators [Eq. (32)], provides a complete descrip
tion of the QH liquid. The invariance of the electron opera
tors~and the electrical current operators! gives rise to the full
gauge groupG which may contain discrete gauge transfo
mations, in addition to the continuous transformationGc de-
scribed by the gauge fieldsam . We will see below that dis-
crete gauge transformations are important and can af
physical properties of the theory, such as the ground-s
degeneracies.

There is an important issue that we have overlooked in
above discussion. The Lagrangian in general may not
scribe a state with a finite-energy gap. One way to obtai
state with a finite gap is to assume that each kind of part
form an integral QH state with filling fractionna5ma . In
the following we will examine when this assumption can
self consistent. Under the assumptionna5ma , we can inte-
grate out the parton fields and obtain a CS theory

L5
1

4p
emnlTr~Mam]nal!1

1

2p
emnlAmTr~MQ]nal!

1
1

4p
emnlAm]nAlTr~MQ2!, ~37!

where M5diag(m1 ,m2 , . . . ). Here we have assumed th
there is no gauge symmetry breaking~or no Higgs mecha-
nism!. Therefore,M and MQ must be invariant under the
gauge transformationG, which requires

W†MW5M , WPG. ~38!

Equation~37! is obtained in the following way. First we
assumeam to be diagonal, which can be regarded as a ga
field for the maximum Abelian subgroup ofGc . In this case
one can obtain Eq.~37! easily. Since we assume there is n
gauge symmetry breaking, the effective theory has fullGc
gauge invariance. This allows us to show that Eq.~37! is
valid for genericam in Gc .

The equation of motion]L/]a0 leads to a solutionāi

which can be chosen to be diagonal:āı



s
e

e
n

ca

er
a
a
t
e

to
t

is

e

e

n

e
ug

b
t

-
at
du
uc

on

.
ires

e

.
ns

f

ry
Fol-
om

PRB 60 8833PROJECTIVE CONSTRUCTION OF NON-ABELIAN . . .
5diag(āi
(1) ,āi

(2) , . . . ). Wenote thatāi
(a) are proportional to

Ai : āi
(a)5 f aAi . If we shift am to ãm5am1FAi where F

5diag(f 1 , f 2 , . . . ), then the equation of motion will give u
ãi50. The shift changesQa . We see that one can redefin
Qa through a shift ofam to makeāi50. In the following we
will assume thatQa are chosen such thatāi50. This re-
quires

Tr~ tMQ!50 ~39!

for any matrixt in the Lie algebra ofGc . From ]L/](a0)aa
5ra , we obtain the density of theath parton:

ra5
1

2p
maQa] iAje

i j . ~40!

SinceQaAi happen to be the total gauge field ‘‘seen’’ by th
ath parton, thus theath parton always has a filling fractio
ma regardless of how we choosema . Here we only require
that ma are chosen such thatM satisfies Eq.~38!; this leads
to ai50 as a solution of the equation of motion, andra are
all positive.

Equations~36!, ~32!, ~34!, ~38!, and~39! form a complete
description of the QH liquids. One can calculate all physi
properties, such as the ground-state degeneracies, of the
liquids from those equations.

In the above discussion we only have one-electron op
tors. In general, there can be several electron operators,
the above discussion can be generalize in a straightforw
way to cover those more general cases. For example,
gauge groupG is formed by transformations that leave all th
electron operators invariant.

After setting up the bulk effective theory, it is easy
obtain the edge effective theory. For independent partons
edge states containnedge5(aumau branches. Each branch
described by a free chiral fermion theory or a U~1! KM al-
gebra. Thus the edge effective theory for the independ
partons is given by

Ledge5 ical
† ~] t2va]x!cal , ~41!

where l 51, . . . ,umau and va has the same sign asma . The
above theory is denoted as the Unedge(1) theory. The true
edge effective theory for the physical states is obtain
through the coset construction21 as the Unedge(1)/G coset
theory. Note that we not only need to remove excitatio
associated with theG KM algebra @which give us the
Unedge(1)/Gc coset theory#, we also need to require th
physical states to be invariant under all the discrete ga
transformations inG. Another way~which is conceptually
better! to obtain the edge theory is to setup the OPE alge
of the electron and the current operators, and generate
edge states through the algebra.

In the following we will outline how to calculate ground
state degeneracy on a torus. From Ref. 26, we see th
obtain the ground state degeneracy on a torus we may re
the non-Abelian gauge fields to Abelian ones, i.e., to red
the gauge groupGc to the maximum Abelian subgroupGabl
which is formed by diagonal matrices. The Abelian versi
of the effective Lagrangian has a form
l
QH

a-
nd
rd
he

he

nt

d

s

e

ra
he

to
ce
e

ica
†~] t2 iaIpa

I !ca1
1

2m
ca

†~] i2 iQaAi2 iai
Iqa

I !2ca ,

~42!

where I 51, . . . ,k. The electron operator is given by Eq
~32!. The gauge invariance of the electron operator requ

na
(m)pa

I 50 ~43!

for any m and I @see Eq.~32!#. In addition to the Abelian
gauge structure described byam

I , there are also discret
gauge transformation generated byWiPG which leave the
Abelian subgroup unchanged:

Wi
†GablWi5Gabl . ~44!

The aboveWi ’s form a discrete group. Equation~44! can be
reduced to the following matrix equation:Wi is a discrete
gauge transformation if and only ifWiPG, and there exists a
k3k matrix Ti such that

(
a

~Wi
†!bapa

I ~Wi !ac~Ti ! IJ5pb
Jdbc . ~45!

The Lagrangian in Eq.~42! and the electron operator in Eq
~32! are invariant under the discrete gauge transformatio

ca→~Wi !abcb , ~46!

am
I →~Ti ! IJam

J . ~47!

After integrating out the parton fields from Eq.~42!, we
obtain a U~1! CS effective theory

K̃ IJ

4p
aIm]naJlemnl1

qI

2p
Am]naIlemnl1

ne2

4p
Am]nAlemnl ,

~48!

where

K̃ IJ5(
a

mapa
I pa

J ,

qI5(
a

maQapa
I ,

n5

(
a

maQaQa

e2
. ~49!

Since we requireai50 to be a solution to the equation o
motion,ma must be chosen to satisfy

(
a

maQapa
I 5qI50 ~50!

for all I. @Note that Eq.~50! is just a special case of Eq.~39!.#
ma should also satisfy Eq.~38!. For suchma , n becomes the
total filling fraction of the QH liquid.

Now let us use the Abelian version of the effective theo
to calculate the ground-state degeneracy on the torus.
lowing Refs. 27 and 26, the low-energy degrees of freed
are described byu andv:
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a1
I ~x1 ,x2 ,t !52p

uI~ t !

L
, a2

I ~x1 ,x2 ,t !52p
v I~ t !

L
,

~51!

whereL is the size of the torus. Substituting Eq.~51! into Eq.
~48!, we obtain

L52pK̃ IJvJu̇I , ~52!

which leads to the following commutator:

@uI ,vJ#5 i ~K̃21! IJ/2p. ~53!

The large gauge transformationca→ei2pnI pa
I x/Lca generate

an equivalence relation

u;u1n, ~54!

andn satisfies

nIpa
I 5~ integer! ~55!

for all a. The vectorsn that satisfy the above condition form
a lattice whose basis vectors are denoted aseI . This lattice
will be called thee lattice. The physically distinctu points
are all in the unit cell of thee lattice.

Since the conjugate variablesv also have the sam
equivalence relation Eq.~54!, the allowed value ofu are
quantized. To describe this quantization, let us use the s
metric matrix K̃ to define an inner productu1•u2

[u1I K̃ IJu2J ~which may not be positive definite!. We intro-
duce a dual lattice~which will be called thed lattice! with
the basis vectorsdI :

dI•eJ5d IJ . ~56!

Then the allowedu’s all lie on thed lattice, and the ground
states are labeled by the lattice points on the dual lattice .27,26

However, the points connected by vectors in thee lattice are
gauge equivalent:

u;u1eI , uP~d lattice!. ~57!

Thus only thed-lattice points which lie inside the unit cell o
the e lattice can represent independent ground states.

For ease of calculation, let us redefine the gauge fieldaI

to make the basis of thee lattice the standard basis vect
@i.e., (eI)J5d IJ]. We will call such a basis the primary basi
For the primary basis,pa

I have the following two properties
~1! pa

I are all integers.
~2! When viewed asn-dimensional vectors, the vectorspI

span ak-dimensional ‘‘volume’’ in n-dimensional space
This k-dimensional ‘‘volume’’ does not contain an
n-dimensional integer vectors.~Otherwise, we can choose
new set ofpI u I 51..k that span a smaller cube.!

From Eq.~49!, it is clear thatK̃ is a symmetric integer
matrix. This K̃ matrix is similar to theK matrix in the
K-matrix description of Abelian QH states.3 For the primary
basis, the basis vectors of thed lattice are given by the col
umns of K̃21. The number of thed-lattice points that lie
inside the unit cell of thee lattice is given byudet(K̃)u.

For Abelian QH liquids, each point in the unit cell of th
e lattice labels a distinct ground state, and the ground-s
-

te

degeneracy is given byudet(K̃)u.1,28 However, for non-
Abelian states, there are additional equivalent relations:26

u;Tiu, uP~d lattice!, i 51,2, . . . , ~58!

where Ti are linear maps which map ad-lattice point to
anotherd-lattice point. Under the equivalence relation@Eq.
~58!#, differentd-lattice points in the unit cell of thee lattice
can represent the same ground state. Thus only the poin
the folded unit cell represent distinct ground states.26 There-
fore, to calculate the ground-state degeneracy on a torus
need to knowK̃ andTi .

Now let us describe how to obtain the mapsTi . Recall
that in addition to the Abelian gauge transformations inGabl ,
there are additional discrete gauge transformationsWi as de-
fined in Eq. ~45!. SinceWi is a gauge transformation, th
physical states must satisfyWi uphys&5uphys&. The gauge
transformationsWi induces a gauge transformation onam

I :
am

I →(Ti) IJam
J , whereTi is obtained from Eq.~45!. There-

fore,aI and (Ti) IJaJ; henceu andTiu, are equivalent points
We would like to point out that the above result for th

ground-state degeneracy on a torus is correct only wheG
has no disconnected pieces. WhenG has disconnected parts
the above result needs to be modified. Let us assumeG has a
form G5Gc^ Gd whereGd is a discrete group. Then the low
energy effective theory is a (Gc CS theory!3(Gd gauge
theory!. The above calculation only calculates the grou
states from theGc CS theory. We know that the discreteGd
gauge theory hasuGdu2g degenerate ground states on a gen
g surface, whereuGdu is the number of elements inGd . Thus
the total number of the ground states is given by the num
of ground states of theGc CS theory timesuGdu2g.

Before ending this section let us summarize the steps
the projective construction as follow:

~1! Introduce a few partonscaua51..n .
~2! Introduce a few electron operators

Ce
( i )5(

m
Cm

( i ))
a

c
a

na
(m)

~z! ~59!

@which generalizes Eq.~32!#.
~3! Assign chargeQa to each parton such that the electro

operators all have chargee.
~4! Find the gauge groupG @see Eq.~35!# that leaves the

electron operatorsCe andQ unchanged@see Eq.~34!#.
~5! Find the filling fractionsma of partons which satisfy

Eqs.~38! and ~39!.
This leads to a QH state with wave function

F~$z1
( i ) , . . . ,zNi

( i )%!

5^0u)
i

@Ce
( i )~z1

( i )!•••Ce
(2)~zNi

( i )!#uFparton&, ~60!

whereFparton is the free parton wave function in which th
ath kind of partons form an5ma QH state:

Fparton5)
a

xma
~z1

(a) , . . . ,zNa

(a)!. ~61!

Here x l is the fermion wave function withl filled Landau
levels. The bulk effective theory of the above state is giv
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by Eq. ~36! @or Eq. ~37!#. The edge effective theory is th
U(umau(1)/G coset theory. The filling fractionn is given by
n5(amaQa

2/e2.
To obtain the Abelian version of the effective theory, w

also need to find a set of linearly independent integer vec
pI u I 51..k , such thatPI5diag(p1

I ,p2
I , . . . ,pn

I ) is in the Lie
algebra ofGc . We also requirepI to span ak-dimensional
‘‘volume’’ in the n-dimensional space that does not conta
any integer vectors. GivenpI , Eqs.~44! and ~45! determine
theTi matrix. Equation~49! determines theK̃ matrix.Ti , K̃,
and uGdu allow us to determine the ground-state degener
on the torus.

V. APPLICATIONS OF PROJECTIVE CONSTRUCTION

Now let us apply the above general results to some sim
cases to gain a better understanding of the projective c
struction. First let us split an electron into two partons,

Ce5c1c2 , ~62!

with chargesQ15e@ l 1 /( l 11 l 2)# andQ25e@ l 2 /( l 11 l 2)#. If
l 1Þ l 2 the gauge group is U~1!: G5$eiut3%. The effective
theory is Eq.~42! with k51 andp15(1,21). It is clear that
p1 forms a primary basis, since the line from~0,0! to (1,
21) does not contain any integer points. Let us conside
QH state in which the two partons form integral QH sta
with filling fraction m1 andm2 . ma must satisfy Eq.~39! @or
Eq. ~50!#:

m1l 12m2l 250. ~63!

Thus

m15ml2 , m25ml1 ~64!

for an integerm. The filling fraction of the QH liquid is

n5
ml2l 1

2

~ l 11 l 2!2
1

ml1l 2
2

~ l 11 l 2!2
5m

l 1l 2

l 11 l 2
. ~65!

The K̃ matrix is a 131 matrix:

K̃5ml21ml15m~ l 11 l 2!. ~66!

Since there is no additional discrete gauge transformati
the ground-state degeneracy on the torus ism( l 11 l 2).

Whenm5 l 251 andl 15 l , we obtain a sequence of hie
archical states with filling fractions 1/2, 2/3, . . . , l /( l 11),
. . . @which are similar to the 1/2, 2/5, . . . , l /(2l 11), . . .
states for the fermionic electrons#. The ground-state degen
eracies for those states are given byND52,3, . . . ,l
11, . . . . Since the first parton has a filling fractionn51
and the second parton hasn5 l , the electron wave function
has a formx1x l .

According to the K-matrix description,3 the effective
theory of thex1x l state is given by

L5
KIJ

4p
aIm]naJlemnl , ~67!
rs

y

le
n-

a
s

s,

with K5I l1Cl , whereI l is the l 3 l identity matrix andCl
is the l 3 l matrix with all its elements equal to 1. Howeve
according to the projective construction, thex1x l state is
described by

L̃5
K̃ IJ

4p
aIm]naJlemnl , ~68!

with a 131 matrix K̃5( l 11). Actually, there is no contra
diction here.L andL̃ are equivalent topological theories~for
example, they have the same number of degenerate gro
states!. L̃ can be regarded as a dual form ofL.

We would like to remark here that showing that thex1x l
state can be described by a bulk effective CS theory w
only one U~1! gauge field does not imply that thex1x l state
has only one branch of edge excitations. Actually thex1x l
state hasl branches of edge excitations.

When m52 l 251 and l 15 l , we obtain a sequence o
hierarchical states with filling fractions 2, 3/2, . . . , l /( l 21),
. . . @which are similar to the 2/3, 3/5, . . . , l /(2l 21), . . .
states for the fermionic electrons#. The ground-state degen
eracies for those states are given byND51,2, . . . ,l
21, . . . .

If l 15 l 251, the gauge group is SU~2!: G5$ei u•t%. Now
m1 andm2 must be equal@see Eq.~38!#: m15m25m. The
resulting state is nothing but the SU(2)m non-Abelian state
discussed in Ref. 5~them52 case was discussed in detail
Sec. II!. Its wave function is given byxm

2 . The filling frac-
tion is n5m/2.

In the Abelian version of effective theory@Eq. ~42!#, we
havek51 andq15(1,21) as a primary basis. In addition t
the Abelian gauge transformation, we also have a disc
gauge transformationW5 i t2. Such a discrete gauge tran
formation induces a ‘‘gauge’’ transformation in the Abelia
gauge fieldam

1 →2am
1 ~i.e., T521 in Eq. ~45!#. The K̃ ma-

trix is K̃52m. The 2m d-lattice points in the unit cell of the
e lattice are 0,1/2m, . . . , l /2m, . . . , (2m21)/2m. The T5
21 transformation leads to an equivalence relationl /2m;
2 l /2m;(2m2 l )/2m. Thus the SU(2)m non-Abelian state
hasm11 degenerate ground states on the torus.

Next we start with four different partons, all with th
same chargeQa51/2. The electron operator is chosen to

Ce5
1

A2
@c1~z!c4~z!2c3~z!c2~z!# ~69!

@which is Eq. ~15! if we identify (c1 , . . . ,c4)
5(c1↑ ,c1↓ ,c2↑ ,c2↓)#. The gauge groupGc is generated by
ten generators:t i ^ s0 , t i ^ s1 , t i ^ s2, andt0^ s3, where
t05s0 are the 232 identity matrix. It turns out thatGc is
the SO~5! ~or Sp4) group in its four-dimensional represent
tion. It appears thatG has no disconnected pieces, andG
5Gc . To be consistent with the gauge invariance@Eq. ~38!#,
the partons must all have the same integer filling fract
na5m. The effective theory is given by Eq.~36! with am in
the Lie algebra of the SO~5! gauge groupGc . After integrat-
ing out the fermions, we obtain a SO(5)m CS theory.

The Abelian version of the effective theory@Eq. ~42!# has
k52 and
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~p1
1 , . . . ,p4

1!5~1,0,0,21!, ~p1
2 , . . . ,p4

2!5~0,21,1,0!.
~70!

The parallelogram spanned byp1 and p2 does not contain
any integer points. Thusp1,2 is a primary basis. TheK̃ matrix
is @see Eq.~49!# K̃5(0

2m
2m
0 ). The d lattice is generated by

the bases d15(1/2m,0) and d25(0,1/2m). The 4m2

d-lattice points in the unit cell of thee lattice are
(k1/2m,k2/2m), with k1 ,k250, . . . ,2m21. The electron op-
erator is invariant under the following three transformatio

W15S 0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
D ,

W25S 0 0 0 1

0 1 0 0

0 0 1 0

21 0 0 0

D , ~71!

W35S 1 0 0 0

0 0 21 0

0 1 0 0

0 0 0 1
D .

This induces three mappings onu @see Eq.~58!#:

T15S 0 1

1 0D ,

T25S 21 0

0 1D , ~72!

T35S 1 0

0 21D .

T2,3 leads to the equivalence relations (k1/2m,k2/2m)
;@(2m2k1)/2m,k2/2m#;@k1/2m,(2m2k2)/2m#. Thus
k1 ,k250, . . . ,m label all the independent states.T1 gives rise
to an equivalence relation (k1/2m,k2/2m);(k2/2m,k1/2m).
Therefore, the QH state obtained through the above pro
tive construction has @(m11)2/2#1@(m11)/2#
5@(m11)(m12)/2# degenerate ground states on a to
@represented by points (k1/2m,k2/2m) with k1 ,k250, . . . ,m
andk1<k2].

Note that whenm51 the above projective construction
just the construction used in Sec. III to construct the filli
fraction n51 bosonic Pfaffian state with wave functionFp f

in Eq. ~25!. We see that then51 bosonic Pfaffian state ha
three degenerate ground state on the torus. This result ag
with a previous result obtained from the wave function.16,9

When m.1, the above construction produces other no
Abelian states.
s

c-

s

ees

-

In Sec. III, the bulk effective theory for then51 bosonic
Pfaffian state Fp f was found to be the USz

(1)

3SUcolor(2)2 CS theory@see Eq.~17!#. From the above dis-
cussion, we see that the correct bulk effective theory sho
be the SO(5)1 CS theory. If the two effective theories ar
inequivalent, the SO(5)1 CS theory is the correct effectiv
theory for then51 bosonic Pfaffian state, since the SO(51
CS theory has full gauge symmetry. However, it is also p
sible that the USz

(1)3SUcolor(2)2 effective CS theory is

equivalent to the SO(5)1 CS theory. On the torus both theo
ries give three degenerate ground states. Also, the edge
citation for then51 bosonic Pfaffian state should be d
scribed by the U4(1)/SO(5)1 coset theory. Note that U4(1)
5U(1)3SUspin(2)23SUcolor(2)2 theory can be describe
by eight free Majorana fermions. The U~1! KM algebra can
be described by two Majorana fermions (Rec,Im c), the
SUspin(2)2 KM algebra by three Majorana fermion
(hs

mum51,2,3), and the SUcolor(2)2 KM algebra also by three
Majorana (hc

aua51,2,3). The SO~5! gauge field couples to
(hc

1,2,3,hs
1,2) and the projection to the SO~5! singlet sector

gives us U4(1)/SO(5)15U(1)3I theory described by
(c,hs

3). Thus effective edge theory—the U(1)3I theory—
obtained in Sec. III is still valid.

We can also start with five different partons with fo
partonsc1,2,3,4 carrying chargeel1/2(l 21 l 2), and the fifth
parton carrying chargeel2 /( l 11 l 2). The electron operato
can be chosen to be

Ce5
1

A2
@c1~z!c4~z!1c3~z!c2~z!#c5 ~73!

@which is Eq. ~26! if we identify (c1 , . . . ,c5)
5(c1↑ ,c1↓ ,c2↑ ,c2↓ ,c0)]. The gauge groupGc is gener-
ated by 11 generators. The first ten generatorst i ^ s0 , t i
^ s1 , t i ^ s2, andt0^ s3 act only onc1,2,3,4. The last gen-
erator is given by diag(1,1,1,1,22). Gc is the SO(5)
3U(1) group. AgainG has no disconnected pieces andG
5Gc . To be consistent with the gauge invariance@Eq. ~38!#,
the first four partons all have the same integer filling fracti
na5m1, and the last partonc5 has filling fractionm5. Equa-
tion ~39! @or Eq. ~50!# requiresm1l 12 l 2m550. Therefore,

m15ml2 , m55ml1 . ~74!

The effective theory is given by Eq.~36! with am in the Lie
algebra of the SO(5)3U(1) gauge groupGc . After integrat-
ing out the fermions, we obtain a SO(5)m1

3U(1) CS
theory.

The Abelian version of the effective theory is Eq.~42!
with

~p1
1 , . . . ,p5

1!5~1,0,0,21,0!,

~p1
2 , . . . ,p5

2!5~0,21,1,0,0!, ~75!

~p1
3 , . . . ,p5

3!5~0,1,0,1,21!.

The ‘‘volume’’ spanned byp1,2,3 does not contain any inte
ger points, andp1,2,3 is a primary basis. TheK̃ matrix be-
comes
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K̃5S 2m1 0 2m1

0 2m1 2m1

2m1 2m1 2m11m5
D . ~76!

The electron operator is invariant under the followi
three transformations which also leave the Abelian ga
structure unchanged:

W15S 0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

D ,

W25S 0 0 0 1 0

0 1 0 0 0

0 0 1 0 0

21 0 0 0 0

0 0 0 0 1

D , ~77!

W35S 1 0 0 0 0

0 0 21 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

D .

This induces three mappings onu @see Eq.~58!#:

T15S 0 1 0

1 0 0

0 0 1
D ,

T25S 21 0 1

0 1 0

0 0 1
D , ~78!

T35S 1 0 0

0 21 1

0 0 1
D .

To calculate the ground-state degeneracy on the torus
us consider only a simple casel 15 l 25m51. The corre-
e

let

sponding QH state is just the fermionic Pfaffian state a
filling fraction 1

2 with wave function equation~27!. From

K̃215 1
8S 5 1 2

1 5 2

2 2 4
D ,

we find that thed lattice is generated by the basesd1

5(5/8,1/8,1/4), d25(1/8,5/8,1/4), andd35(1/4,1/4,1/2).
The eightd-lattice points in the unit cell of thee lattice are
(5/8,1/8,1/4), (1/8,5/8,1/4), (7/8,3/8,3/4), (3/8,7/8,3/4
(0,0,0), (1/4,1/4,1/2), (1/2,1/2,0), and (3/4,3/4,1/2).T2,3 do
not lead to any new equivalence relations. However,T1
gives rise to two equivalence relations (5/8,1/8,1/
;(1/8,5/8,1/4) and (7/8,3/8,3/4);(3/8,7/8,3/4). Thus the
fermionicn51/2 Pfaffian state has six degenerate states o
torus. This result again agrees with a previous result obtai
from wave function.16,9

VI. SUMMARY

In this paper we introduced a powerful method—the p
jective construction—to construct many non-Abelian~and
Abelian! states, which include the fermionicn51/2 and the
bosonic n51 Pfaffian states, and thed-wave-paired non-
Abelian state. What is more significant is that the project
construction allows us to calculate bulk and edge effect
theories. We find that the bluk effective theory is a SO(51
CS theory for the bosonicn51 Pfaffian state, and a U(1
3SO(5)1 CS theory for the fermionicn51/2 Pfaffian state.
Using the bulk effective theory, the ground-state degener
on a torus was calculated.

However, it is unclear if the projective construction ca
produce all the QH states or not. We still do not known ho
to use the projective construction to construct the Halda
Rezayi state.29 Although we understand a lot of physica
properties of the Haldane-Rezayi state,13,14,30we still do not
know its bulk effective theory.
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