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Resonant electron transfer between quantum dots

Leonid A. Openo¥
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An interaction of electromagnetic field with a nanostructure composed of two quantum dots is studied
theoretically. An effect of a resonant electron transfer between the localized low-lying states of quantum dots
is predicted. A necessary condition for such an effect is the existence of an excited bound state whose energy
lies close to the top of the barrier separating the quantum dots. This effect may be used to realize the reversible
qguantum logic gate NOT if the superposition of electron states in different quantum dots is viewed as the
superposition of bits 0 and 1S0163-182¢09)12035-4

[. INTRODUCTION the conduction band. For the sake of simplicity we assume
the quantum dots to be identical, i.e., the values pf=¢,

One way to overcome the limitations of present semiconande ,,=¢&, do not depend o (£,>¢,). The wave func-
ductor microelectronics is to reduce the dimensions of elections (r|a1) for the dotsa=A andB have the same func-
tronic devices well below 100-nm size range. Novel devicetional form but are centered in different regions of coordinate
concepts are based on the use of quantum effects igspace; this is also true for the wave functidma2) of the
nanostructureSWhile a great number of technological prob- excited states.
lems still remains to be resolved, there is a considerable ex- If the distanced between the quantum dots and the height
perimental and theoretical activity in the field. Among otherU of the energy barrier separating the dots are reasonably
things, an interaction of electromagnetic field with nano-large, the wave functiongr|al) for «a=A and B are
structures is of particular interest since it results in a varietystrongly localized in the vicinity of the corresponding quan-
of phenomena highlighting the wave nature of electi@e®, tum dot within the region of the dot siza. Hence, their
e.g., Ref. 2. overlap can be neglected. In other words, the gtate with

Grossmanret al? have shown that a laser with appropri- the energye, may be thought of as doubly degenerate with
ate power and frequency can force the electron in a doubleespect to the dot index, i.e., with respect to electron loca-
well nanostructure to stay in one of the wells. In this papertion, either in the dof or in the dotB.
we draw attention to a possibility of an opposite effect, a It should be stressed that an electron may be considered as
laser-induced electron transfer between two quantum doti®calized in one of the dots in the statei) (i=1 or 2
situated so far from each other that an electron placed inispecifies the energy leveif we are interested in the pro-
tially in one of the dots may be thought of as localized in thatcesses whose characteristic times are much shorter than the
dot, while having been transferred to the other dot, the electime 7, it takes for an electron to turn between the statds

tron remains localized in it after the laser pulse is off. and|Bi). The value ofr; may be estimated as
The paper is organized as follows. We begin with quali-
tative estimates of characteristic energies and times of a Ti~hlV,, (2)

double-dot nanostructure and description of an appropriate

model. Next, we study the temporal evolution of an electrorivhereV; is the energy of electron hopping between the states

under the influence of a classical electromagnetic field mak-Ai) and [Bi). According to Landau and Lifshitzin the

ing use of the resonant approximation. We demonstrate thtuasiclassical approximation one has

the frequency, amplitude, and duration of an electromagnetic

pulse may be adjusted in such a way that an electron will be Ve ﬁexp{ B QW ©

transferred from the localized lowest-energy state of one of T f i)

the quantum dots to the localized lowest-energy state of an-

other quantum dot with a probability close to unity. We dis-WwhereT;=+2m*a/e; is a period of a classical motion for

cuss a possibility of using this effect to realize the quanturran electron with the energy; in the quantum dot, anoh* is

logic gate NOT. the electron effective maggor the sake of simplicity, we
assume the values of* to be the same in the dots and in the
barriep. For the quantum dot cubic in shape, the ground-state

Il. QUALITATIVE ESTIMATES energye; may be estimated as; ~ 3724 2%/2m* a® provided

We consider two semiconducting quantum détsndB,  thate;<U. ThenT;~%i73/e,&;, and one has from Eq2)
such that each quantum dot, when isolated, has two size-
guantized energy levels in the conduction band. Let us de- 1 d [U—g;
note the energies of the lower levell) and the upper level Vi~ 5 e18i8XP ~ Y7 e, | &)
|a@2) by £,, ande,,, respectively, wheree=A or B is the
dot index, and the energies are measured from the bottom efhere y= /3 is a numerical coefficient.

0163-1829/99/6(12)/87986)/$15.00 PRB 60 8798 ©1999 The American Physical Society



PRB 60 RESONANT ELECTRON TRANSFER BETWEEN QUANTUM DOTS 8799

— — U excited state, e.g.|A2)+|B2))/\2, immediately becomes
"""""""""""""" e +V spread over both dots, so that it can be subsequently “low-
€2 ered down” by the same perturbatidacting on both dojs

""""""""""" €=V to the localized state of thether quantum dot, in our ex-

ample |B1). The physical picture of such an effect seems
Q, quite clear, the question is only in the probability of electron
transfer between the dots.

As to the case of arnsolated quantum dot, it is well
& known that a periodic perturbatidhcos(t) with frequency
O =e,— €, (hereinafterh =1) leads to periodic oscillations
A B of the probabilitiesp,(t) andp,(t) of detecting an electron

; 4,7 — _
FIG. 1. Energy levels diagram of a nanostructure composed o!ln, I_evels |1> and |2>' If p1(0)=1 andp,(0)=0 at the
two identical quantum dotsh andB. See text for details. initial moment, then

: . pa(t) =sirf(wgt), 4
Taking U~1 eV, £;,~0.1 eV, andd/a~3, we obtain A A

V;~10 2 eV. Hence, a characteristic time it takes for anwherewg=|(2|F|1)|/2. Here,(2|F|1) is the matrix element
electron to tunnel from the ground state of one dot to theof the interlevel transition. It follows from Ed4) that one
ground state of another dat;~1C® s, is very long even on can select the tim& during which the perturbation is difor
a macroscopic scale, and such a tunneling can be ignoredxample,T=m/2wg) so that the conditiomp,(T)=1 is sat-
On the other hand, if the energy of the excited bound state isfied (so-calledw pulse. Below we shall show that in the
is close toU, then the value o¥/, is many orders of magni- case of the double-dot system, the probability of electron
tude greater tharv/,. Taking, e.g.,U—e,~0.01 eV, we transfer between the localized low-lying states of quantum
haveV,~10"% eV andr,~10 2 s. Thus, for a certain set dots can also be put very close to unity through the proper
of quantum dots parameters, the low-lying energy level ofchoice of the characteristics of an electromagnetic pulse.
the dots can be viewed as degenerate, whereas the excitdémilar effect in semiconducting quantum wells has been
level splits into two sublevels with the energiest V,. Itis  discussed in Ref. 6.
important for the following consideration that the electron

wave functions of the resulting excited sublevels are not lo- IIl. DESCRIPTION OF THE MODEL
calized within a particular dot, but spread over both dots as ) . .
(r|A2) = (r|B2))/2. Let the external perturbation be the classical ac electric

Of course, our estimates o, and r; are rather crude, field E(t). Then the model Hamiltonian has the form
they strongly depend on the supposed form of confinement A A A A
potential and should be considered as qualitative. However, H(t)=e€1(ax1aa1+ag18p1) + €2(@nz8n2 T Ag2a52)
one can hope that, first, for a dot of an arbitrary shape it is Ay Ay “y o
possible to shift the energy of one of excited states very close —V(apap+H.c)+E(t)[d(apaa+apyap1)
to the continuum part of the energy spectrum by varying, +H.c] (5)
e.g., the dot size and the doping level, and, second, the dis- '
tance between two such quantum dots can be adjusted {pherea*. (a,) is the electron creatiofannihilation opera-
satisfy the conditiolV,>V for the energies of electron hop- (5 for an electron in stategai) (a=A,B;i=1,2); d
ping between the excited states and between the grounQ<A2|—er|A1>=<82|—er|Bl> is the matrix element of
states of the'dots, respective(l&nq hgnce, the condition, _ optical dipole transition$Al)=|A2) and|B1)=|B2). We
<, for the times of electron switching between those pairsy ot specify the spin index explicitly since we consider a
of states. , , single electron whose spin projection on an arbitrary chosen
It should be pointed out that except for the timgsand  5is remains unchanged upon the action of ac electric field.
75, there is one more important time scale, the lifetirieof Note that in Eq.(5) we have omitted the terms describing
electron in the excited state with respect to spontaneous traRpih  tunnel  and optical transitiongA1)=|B2) and
sitic_)n to the ground state at the sacrifice ogphoton or phonovPBl>$|A2> since the wave functions entering into the cor-
emission. It has been shown by Nometoal- that the value  regnonding matrix elements are centered in different quan-
of 7 strongly depends on the dot size and can b‘i as long 4§m dots (one of wave functions being strongly localized
10" s or even longer, so that one can SUPpPESE 7 <71.  ythin a particular dot and hence one can expect those ma-
From the above line of reasoning, we $4t=0 (i.e., 71 ix elements be exponentially smaller therandd, respec-
=), We denoteV,=V. The diagram of one-electron en- tively.
ergy levels is shown schematically in Fig. 1. The overallidea | gt s suppose that the external field is turned on at
is to make use of one of the excited states of the system ta g gnd turned off at=T, and has a frequend®, i.e.,
induce electron transitions between the lowest-energy states
localized in different quantum dots under the influence of E(t)=EocogQt)a(t) o(T—1), (6)
resonant external perturbatige.g., an ac electromagnetic
field). According to the laws of quantum mechanics an elecwhereE, is the field amplitudeg(t) is the Heaviside step
tron, having been “raised up{at some moment in timeby ~ function. The pulse duratiol and frequency) are to be
the perturbation from the localized state, e|@\1), to the  derived by maximizing the probability that an electron is
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transferred from the localized low-lying state of one quan-

tum dot to that of another dot.
It is convenient to introduce new notations for one-
electron states:

D=|A1), [2)=[B1), [3)=(|A2)+|B2))/\2,

14)y=(|A2)—|B2))/V2, 7

and hence, to replace in E) the operatorsiy; andag; by
operatorsa; anda,, respectively, as well as to go from op-
eratorsa,, andag, describing the excited states of isolated
guantum dots with the energy, to operatorsé3=(éA2
+ag,)/\2 and a,=(ax,—ag,)/\2 describing the excited
sublevels of the double-dot nanostructure with energies
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Qr:EZ_V_El, (12)

i.e., to the difference between the eneegy-V of the lower
excited staté3) and the energy, of the twofold degenerate
ground statél) (]2)) so that those three states are resonant
with the ac field, while the upper excited sta® with the
energye,+ V is out of resonance. To be precise, the value of
Q) should be much more closer 16,—V—¢€; than toe,
+V—¢4, i.e., the following strong inequality should be sat-
isfied:

15| <V, (13)

where the value of

s=0-Q, (14)

—V ande,+V, respectively. Then the time-independent part

of the Hamiltonian acquires a diagonal form, while optical
transitions take place between the stafes=|3), |2)=13),
|1)=|4), and|2)=]4):

H(t)=ey(af a;+a; ay) + (e,—V)aj ag+ (e,+V)az a,

+E(t)

2

(A3, +A0 A+ 878, — A Ay +H.C.

8

quantifies the offset from resonance. Since in the resonant
approximation the electron transition$l)=|4) and
|2)=|4) can be ignored, the effective Hamiltonian has the
form

H(t)=e(a] a,+a; ay) +(e,—V)ag ag

A NlA AL~
+ Eexp(—iﬂt)(agal+a3+a2)+H.c., (15)

where we have introduced the notation

For the system under consideration, the one-electron wave

function ¥ (t) can be expressed at any moment as

4
wo:;l Ai(t)exp(—iE;b)]i), 9)

whereE; are eigenvalues of the stationary Satinger equa-
tion H|i)=E;|i) in the absence of an applied fielt<(0):

El:E]_, E2:€l, E3:EZ_V, E4:€2+V. (10)

The valuesA;(0) define the electron wave function at the
initial moment; A;(0)=A;(t<0) since|i) are eigenstates of
the Hamiltonian(8) for t<0. We assume that @0 an
electron is localized in the ground state of the dgti.e.,
A.(0)=1, A,(0)=A3(0)=A,(0)=0. The probabilityp;(t)

to find an electron in state) at an arbitrary time is | A;(t)|?

(it follows from the normalization condition thap,(t)
+po(t) + ps(t) + pa(t)=1 at anyt). In particular, the value
of p,(t) is the probability that an electron occupies the low-
lying localized level of the doB at a timet. The coefficients
A;(t) in Eg. (9) can be calculated by solving the time-
dependent Schdinger equation

W(t)

=T,

i (11

whereH (t) is given by Eq.(8), i.e., it explicitly depends on
time at O<t<T.

IV. RESONANT APPROXIMATION

In order to solve the problem analytically, we use the
resonant approximatich’ We assume that the frequengy
of ac electric field is close to the resonant frequency

N=Eqd/ 2. (16)
Generally speaking, the Sclioger Eqg.(11) with Hamil-

tonian (15) can be reduced to the system of coupled differ-

ential equations for the coefficiens(t) in the expansion

(9) of the wave function i(=1—3). It is more convenient,

however, to go to a representation with a time-independent

Hamiltonian making use of the unitary transformation

“ it .. .. ..
U(t):exp{T(afalJra;az—a;ag)

17

similar to those proposed by Galitskit al® to describe the
interaction of a semiconductor with a strong electromagnetic
field. Substituting

P(t)=U(t)P(t) (19

into the Schrdinger Eq.(11) for ¥(t), we obtain the Schro
dinger equation fof¥(t):

V(1)

i P =HW(t),

(19

with the Hamiltonian

a0(t)
ot

A=0"0An00 -0 (1)

=(e+Q/2)(afa;+aja,)+(e,—V—Q/2)a; as

+ E(Ea*é\ +ala,)+H.c (20)
2 3 41 3 A2 A
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Since the Hamiltonia is independent on time, the gen-
eral solution of the time-dependent Sattirger Eq.(19) for
0<t<T has the form:

3
x’ff(t)z_Zl B exp(—iE;t)[T), (21)

where |T> andE; are the eigenstates and eigenvalues of the

stationary Schidinger equation

AM=&). (22)
We seek solutions of Eq22) in the form
3
[M)= kgl Ciclk), 23

where|k) are eigenstates defined by E#) for t<0. Sub-
stituting Eq.(23) into Eq.(22), we obtain a set of equations

for Cy andE; :
3

gl Cik(<i|ﬁ|k>_5ikﬁi):0v (24

wherei=1+3, and(i |ﬁ|k> are the matrix elements of the
Hamiltonian(20) in terms of the first three basis states of Eq.

(7). The Hamiltonian matri>(i|ﬁ|k> has the form

€+Q/2 0 N*I2

N2 N2 e,—V—-Q/2

From Egs.(21) and(23) one has
3
\If(t):i; D;(1)]i), (26)
where
3
Di(t)zkgl B, Cyi exq_iEkt). (27)

Since ¥(0)=¥(0), seeEgs. (17) and (18), we have
D,;(0)=A;(0), where the coefficient#\;(0) determine the
state (9) for t<0. Therefore, from E@27) we obtain the
equations that determine the coefficieBtan terms of given
A;i(0):

3

Ai<0>=k§1 BiCui. (28)

whence

3
B; :kZl A(0)Cyt, (29)

whereC™1 is the matrix inverse o. From Egs.(27) and
(29) we obtain
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3 3
Di<t>=k§l ;1 A(0)Cy 'Ciexp —iE ). (30)

Finally, given Eq.(18) relating the function¥(t) to W (t)
and taking into account that the opera&fb(rt) defined by Eq.
(17) is unitary, we obtain an expression for the probability
pi(t) for the transition to the statg):

pi(t)=|D;(t)]2. (31

V. RESULTS AND DISCUSSION

Since we assumésee abovethat att<0 an electron is
localized in the leve|l), the lowest energy level of the dot
A i.e, A;(0)=1 and A,(0)=A3(0)=0, expressiong30)
and(31) simplify somewhat. Having calculated the eigenval-
uesE; and the matrix of eigenvectofs,, from Eq.(24), we
obtain from Eqgs(30) and (31) the expressions for the prob-
abilities of transitions from the stat¥(0)=|1) to the state

li):

St 5
pl(t)=co§‘(th)—sinz<Z) cos{2th)+64wésin2(2th)
) (&) _
+8—szm > Sin(2wgt),

2

_Sirt(2wgt)

. L[ ot )
po(t)=sint(wgt)+ smz( Z) cog2wgt) +
6 R

5 . [ot) . )
S—szm > SiN(2wgt),

1 2
ps(t)= 5( 1- 160r
where§ is defined by Eqs(12) and(14), and

Jo%+2]\|?

4

Sir(2wgt), (32

WR= (33
In a particular case of exact resonanée=0), one has from
Eq. (32):

p1(t)=cos(wrt),

po(t)=sin*(wgt),

1
Ps(t) = SSi(2wgt). (34)

We are interested mainly in the probabilipy(t) of elec-
tron transfer to the leveR), the lowest energy level of the
dot B. It follows from Eq. (34) that p,(t)=1 att=T,,
where

mn

wR’

ko

T.=
n 2(1)R

(35

andn is an integer. Hence, after the applied field is oft at
=T,, the electron will stay in the stat@) since this state is
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the eigenstate of the Hamiltoni&®) in the absence of exter- the optical dipole matrix elemend, see Eq.(16), and d

nal perturbation. So, if a characteristic time of electron tun-~ea, for a characteristic quantum dot size<10 nm we

neling between the staté) and|2), the ground states of obtainE,~10—100 V/cm, which can be easily realized ex-

the dotsA andB, respectively, is long enoudhe., if the two  perimentally. As to the condition imposed énfor assumed
dots are placed far apart from each other and/or are separatediue of V one finds that the frequenc® of the external

by relatively high-energy barrigrthe electron remains, in source should be accurate to within®16 ! or better. Such

fact, localized in the doB. an accuracy can be obtained by modern experimental meth-

When the frequency is offset from resonanée“(Q), the  ods. Besides, the resonance condition can probably be
value of p,(T,) derived from Eq.(32) deviates from unity achieved by varying the energy difference between the size-
by a quantity of order52Tﬁ. At a given value ofé§, the  quantized levels via applying a gate voltage to the nanostruc-
probability p,(T,,) has a maximum fon=0, see Eq(35), ture.

i.e., for the perturbation duration timg,= 7/2wg: From symmetry considerations it is clear that it&t0 an
electron is in the statg?) (i.e., in the lowest-energy state of
the dotB), it will take the same timd, to transfer it to the

(36) state|1) (i.e., to the lowest-energy state of the d9tas the
time needed for electron transfer from the st to the

Taking Eq.(33) into account, we are led to the following State|2), see above. Hence, if initially an electron is in an

2

2
PoTo)=1— 64 ‘U_ZR.

inequality arbitrary superposition of statedd) and |2), i.e., ¥(0)
=a|l)+ B|2) wherea and g are complex numbers such
| 8] <[], (37 that|al?+|B|2=1, then¥(Ty) = B|1) + a|2).

Now it is in order to mention a possible application of the
effect of ac field-induced electron transfer between two
quantum dots to the so called “quantum computatidr®’
Indeed, if the statekl) and|2), i.e., electron locations in
dots A and B, are viewed as the Boolean states 0 and 1,
respectively, then their linear combinatianl)+ 8|2) may
be viewed as a “quantum bit'{“qubit” ). In its turn, an
action of the resonariin the sense discussed abpee field
on the double-dot nanostructure may be considered as a uni-
tary operation NOT over the qubit:

which should hold in order that the probabilips(T;), EQ.
(36), be very close to unity.

Note that the perturbing ac field acting foffiaite period
of time, T, contains harmonics in the frequency range
~1/Ty. In order that the approximating Hamiltonian, Eq.
(15), be valid, the bandwidthSw should be much smaller
than the interval ¥ between the energies of excited states
|3) and|4) since otherwise the external field will mix all the
stateg1), |2), |3), and|4), see Eq(7). Besides, the tim&
needed to transfer an electron from the ground dthteof
the dotA to the ground statg) of the dotB should be much
shorter than the lifetime™* of electron in the “auxiliary” @ B
excited statd3) of the nanostructure, see Sec. Il, since oth- Unot| g| =| « (40
erwise the probability of photon/phonon emissioni<&fl is
high, resulting in decoherence and breakdown of unitary,

electron evolution under the influence of ac field. Hence,SUCh an operation is nondissipati(reversible. Hence, the

o N double-dot nanostructure can function as a reversible logic
gl%n%v;n';orri/cg (;Lt”t]:] éhf?}I-I%wiln/'g)\!r’] ;35 a:;:t?ess(?,S)' (35), and gate NOT (inverten, in contrast to a number of dissipative

(nonreversiblglogic circuits proposed in the literatufeee,
1 e.g., Refs. 5,11-13
—<|\|<=V. (38) Various schemes for realizing reversible quantum logic
T* gates have also been discus¢sek, e.g., Refs. 9,14-1dnd
demonstrated experimentalf§->° Almost all of these
schemes are based on encoding qubits in either photon states
or in nuclear spins. From the perspective of high-density
computational circuits, the reversible logic gates based on
single electrons in quantum dots seem to be very appealing.
Several qguantum gate mechanisms based on electron spins in
strongly coupled adjacent quantum dots have been proposed
(see, e.g., Refs. 21-24In our opinion, encoding qubits in
1 e X
—, s<\|=<V. (39  electron locationdi.e., in fact, in ground states afeakly
T coupled well-separated quantum datsther than in electron
spins may have an advantage that such qubits are well de-
We note that condition$39) imposed on the frequency, fined and can be expected to have long dephasing times.
duration, and amplitude of electromagnetic pulse can be fulBesides, the measurement procedure may appear to be more
filled in the experiment. Indeed, ¥~103 eV (see esti- straightforward than in the case of spin-based qubits.
mates in Sec. )| we should have, e.g./\|=107° Of course, a quantum inverter is the simplest logic gate. It
—10* eV and|§|~10 "—10° eV [our numerical calcu- operates with one qubit only and is notimiversalgate, i.e.
lations have shown that 4k |/V=0.1 and|5|/|\|=0.1 the it cannot be considered as the fundamental building block of
value ofp,(T,) is about 0.9 Since the parametéx| is of  a quantum computer. However the ideas presented in this
the order of a product of the electric field amplituBlg and  paper can be used to construct more complex gates consist-

Finally, combining Egs(13), (37), and (38) together, one
has the following conditions foi) applicability of the reso-
nant approximation to the description of electronic transi-
tions in the nanostructure under consideration @ndorox-
imity of the probability of electron transfer from one dot to
another to unity:
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ing of several quantum dots and operating with more thann a quantum-mechanical superposition of states localized in
one qubit, e.g., XORcontrolled-NO7 gate. different dots, the double-dot nanostructure can play a role of

In conclusion, we have shown that a resonant electrom reversible logic gate NOT operating the quantum bits.
transfer between the states localized in distant quantum dots

can take place upon the influence of a resonant ac field with
properly chosen characteristi¢amplitude, frequency, and
duration. Such a transfer occurs via an excited bound state
of the double-dot nanostructure delocalized over both dots. This work was carried out within the project “Quantum
Although only the simplest case that each dot has two sizeScope” and was supported in part by the Russian Federal
guantized energy levels has been considered, it is clear tha&rogram “Integration,” the Russian Foundation for Funda-
in general, the resonant electron transfer between the doteental Research, and by the Russian State Program “Ad-
can be assisted by any excited level whose energy lies closanced Technologies and Devices in Micro- and Nanoelec-
to the top of the barrier separating the dots if the appropriatéronics.” The author would like to thank V. V. V'yurkov, V.
resonance conditions are satisfied. Since an electron can Be Elesin, and S. N. Molotkov for useful discussions.
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