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Covering cluster description of octagonal MnSiAl quasicrystals
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A likely mechanism for the formation of quasicrystals is by maximally covering space with overlapping,
stable atomic clusters. This notion is here applied to the experimentally determined layered structure of
octagonal MnSiAl quasicrystals, which can be described in terms of a decoration of the octagonal Ammann-
Beenker tiling. This decoration is abstractly represented by a two-color version of the tiling. The covering
cluster of the quasicrystal corresponds to an octagonal covering patch of the colored tiling. This covering patch
appears in two variants with complementary colors. The three-dimensional quasicrystal has a centered octago-
nal translation module, and its space group8s/mcm [S0163-182009)15525-3

I. INTRODUCTION and Kué in CrNiSi and VNiSi alloys. They are periodic
along one direction, and quasiperiodic and eightfold sym-
Clusters have long been suspected to play an importaroetric in the plane perpendicular to the periodic direction.
role in the formation and stabilization of quasicrystals. Jeong heir structure is closely related to thg-manganese-type
and Steinhardthave argued thatverlapping clustersould ~ tetragonal structures in the same alloy systems. Later, the
generate order through constraints on the possible overlapgctagonal quasicrystal phase was found, with improved qual-
Overlapping clusters share certain atoms, and so they muly, @lso in the MnSiAl alloy system. Huang and
agree in the overlap, which reduces the types of overlap to [;.Iovmdler10 put forward a structure model for this octagonal
small number of possibilities. Jeong and Steinhardt couldMnSIAl phase, which was later improved and further cor-
show that such constraints can lead to perfectly ordered, qu&oborated by Jiang, Hovitler, and Zou:* It is this latter,
sicrystalline structures, for instance the Penrose tiling. Thémproved structure model of octagonal MnSiAl on which our
key principle is the maximization of a small number of well- Paper is based.
chosen clusters, which asks for overlaps and therefore cre- We shall present a clusté€r which completely covers the
ates correlation and order. Such an approach could succeddnSiAl quasicrystal structure, and the overlaps which this
fully be applied also to the octagonal Ammann-Beenkercluster admits are such that among all structures covered by
tiling.2 the cluster, the octagonal quasicrystal has the highest cluster
|ndependent|y of this, similar questions had been Studie@enSity. Maximization of this cluster therefore appears as the
also from a purely geometric viewpoint. Gumniéifound a natural o_rdering principle leading to the formation of octago-
suitably decorated decagon with the property that everya@l quasicrystals.
structure completely covered by it is equivalent to a perfect It is not our intention to argue that the formation and
Penrose tiling. It is again the restricted number of possiblétabilization ofeveryquasicrystal is governed by such a clus-
overlaps which is responsible for the creation of order. Jeonée! maximization principle. Our example shows, however,
and Steinhardtcould extend this result by showing that the that there are cases where such an interpretation is indeed
perfect Penrose tilings have the highest density of Gumvery tempting. Nevertheless, other mechanisms might con-
melt's decagon among all tilings, irrespective of whethertribute to the stabilization of the quasicrystalline phase also
they are covered or not. A similar result could be obtainedn this case.

also for the octagonal Ammann-Beenker tilihglthough so In the remainder of this paper we first analyze the struc-
far no formal proof has been found which extends to tilingsture model of octagonal quasicrystégec. 1). The results of
which are not completely covered. this analysis allow for a thorough discussion of the space

So far, this cluster approach had only been worked out fogroup symmetrySec. Il). In Sec. IV we proceed to the heart
tilings, and the application to actual atomic structures hacPf the paper, by describing how the quasicrystal structure can
remained on a rather abstract level. Only very recentlyPe regarded as being covered by copies of a single clGster
Steinhardtet al” succeeded in applying it to a particular and explaining how the maximization of the density of this
instance of a decagonal quasicrystal;.Ni,(Caos. In this cluster leads to a perfect quasicrystal. We finally conclude in
case, the experimentally determined atomic cluster sugges&ec. V.
constraints of overlap which eventually enforce the forma-
tion of a perfect quasicrystal. It is the purpose of this paper to
present such a covering cluster for octagonal MnSiAl quasi-
crystals. In this section we review the structure of octagonal Mn-

Octagonal quasicrystals were observed by Wang, Cherg§iAl quasicrystals as described in Ref. 11. This structure is a

II. OCTAGONAL QUASICRYSTAL STRUCTURE
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FIG. 2. Decoration of a small octagon patch) layer B’, (b)

RPN UV layerB”, (c) layer A, and(d) layersB’ andB” together. Large dots
N SN N, denote Mn atoms, small dots Si or Al atoms.(th, only Mn atoms
RN are shown; atoms from thB’ layer are shown as solid dots, and
b e N e atoms from theB” layer as open dots.
o taX layer B', it has the other decoration in lay®&’, and vice

versa. This can best be seen in Figd)Zwhere for simplicity
we show only Mn atoms The mirror line along the vertical
diagonal of the square standing on its corner maps solid dots
(atoms from layeB’) to open dotgatoms form layerB”)
and vice versa. Incidentally, the same holds true for the two
rhombi adjacent to that mirror line. Of course, all these prop-
erties hold for the decorations of all tiles in the structure, not
periodic stacking ..AB'AB"..., where the layerA is  only for the octagonal patch.
eightfold symmetric, and the layeB are fourfold symmet- We are now ready to introduce an abstract representation
ric. The latter occur in two version&’ andB”, rotated by  of the tiles decorated with atoms. To represent the asymme-
45° with respect to each other. All three layers can be detry of the tile edges and also the asymmetry of the interior of
scribed as decorations of the well-known Ammann-Beenkethe squares, we put arrows on the tile edges. Such arrows are
tiling,'?*2 consisting of squares and 45° rhombi. The decocommonly used to formulate matching rules for the
rations in layersA andB’ of an octagonal patch as given in Ammann-Beenker tiling*31%®Here, they arise naturally
Ref. 11 are shown in Fig. 1. The decoration of laércan  through the asymmetry of the decoration. To distinguish be-
be obtained by rotating the decoration of lagerby 45°. tween the two possible decorations of the interior of the tiles,
To analyze the structure in more detail, let us have ave use a coloring with two colors. A tile is painted in one
closer look at a smaller, but very important motif, decoratingcolor if it has the first of the two possible decorations in layer
an octagonal patch of two squares and four rhonbte that B’ and the second decoration in laygf, and it is painted in
in the following, we shall consistently write “patch” for a the other color if it has the second decoration in lagérland
patch of tiles and “cluster” for a cluster of atomsThe the first decoration in layeB”. The squares are regarded
decoration of this patch in all three layers is shown in Fig. 2. here as being composed of two half-squares, divided along
We first observe that the decoration of the tile edges in layethe diagonal symmetry axis of the decorated square. The two
Ais not symmetric. That is best seen by looking at the squarbalves are then painted in two different colors. We should
with horizontal and vertical edges in Fig(c2 The five at- emphasize that every tile actually represents an entire, infi-
oms in the interior of that square form a smaller square, witmite prism in the quasicrystal. Two tiles which agree in
one atom at the center. This smaller square is obviously cershape, orientation, and arrowing, but have different colors,
tered inside the tile. If we compare the positions of the cortepresent the same prism; one of them is only translated by
ners of that square with the positions of the atoms on thdalf a lattice period in the direction (perpendicular to the
edges of the tile, it is obvious that the edges are asymmetrbasal plangwith respect to the other.
cally decorated. The edges are thereforented Our choice of the colors is shown in Fig. 3. If an octago-
While the A layer decoration of the interior of the tiles is nal prism has in th®’ layers the decoration shown in Fig.
symmetric, this is not the case for the decoration of the2(a), and in theB” layers the decoration shown in Fig(b2,
B-type layers. There are two possible decorations of theve represent it by the abstract tile patch shown on the left of
rhombus and two possible decorations of the square. AlFig. 3. If, on the other hand, the decorations of BieandB”
these decorations occur in both tBé and theB” layers. The layers are exchanged, we represent the prism by the abstract
two decorations of the square are mirror images of each otheile patch shown on the right of Fig. 3. In both cases, the
with respect to one of the diagonals of the square. A keydecoration of theA layers is the one shown in Fig(@. As
observation is that if a tile has one of the two decorations invell as the two colored tiles, the two octagonal patches rep-

FIG. 1. Decoration of an eightfold symmetric patch, as given in
Ref. 11. Only the decorations of layeks(top) andB’ (bottom) are
given. The decoration of layeB” can be obtained by rotating the
decoration of layeB’ by 45°. Large dots denote Mn atoms, small
dots Si or Al atoms.
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distance vectors between pairs of such translates generates a

free Z module, called the translation module of that patch.

The translation module of the whole tiling is then the inter-

4 4 A A section of the translation modules of all its finite patches.

Note that when a patch is enlarged, its translation module

can only shrink, not increase. Fortunately, éprasiperiodic

tilings like the Ammann-Beenker tiling, the translation mod-

] ) . ules do not shrink when a patch size is increased. It is there-
FIG. 3. Abstract representation of Fhe two possible decoratlon%re enough to consider the translation modules of single

of the octagon patch. For an explanation, see text. tiles.

. . e . . For the uncolored(but possibly arrowed Ammann-
resent essentially identical infinite prisms. They only differ Beenker tiling, it is well known that the translation module is

by being translated by half a lattice period in theirection the module generated by all its tile edges. For the colored

With'respecr:]t to each other. h h h Itiling, this is no longer so. A closer look at Fig. 4 shows that
Since the arrowed octagon patches cover the wholgeq’of the same shape, orientation, arrowiaggd coloring
Amman-Beenker tiling, there is a unique arrowing of the always separated by a path involvingemennumber of

tiling consistent with the arr_owing of our octagon patc_h.t”e edges. On the other hand, tiles of different color but like
Moreover, once we have decided on the coloring of the f'rsbrientation are separated by an odd number of tile edges.

octagon patch, the coloring of all the other octagon patches Bnly the “even” translations preserve the color, whereas the

determined, since all octagons in the pattern are connecteq,yq yransiations change the color. The same holds true for
through overlaps. In these overlaps, the coloring must agreey,, wing of finite patch: if a translation maps one patch to

A larger .r_egiqn of the_ cqlored and arroyved Ammann'another patch in the tiling, this other patch has the same
Beenker tiling is shown in Fig. 4. From this figure, it should o616, if the translation is even and the other color if the
also be clear that every square in the tiling belongs to one d4nsiation is odd.

two octagons, while every rhombus belongs to two or three \y/a should remember now that tiles which differ only in

octagons. This observation may help to elucidate the locgly o actually represent the same prism, but translated by
chemical structure in actual octagonal quasicrytals. half a lattice period in the direction. Therefore, the odd
translations simply have to be combined with a translation in
IIl. SPACE GROUP SYMMETRY the z direction by half a lattice period, to make them ele-
) ] ments of the translation module of the three-dimensional

In this section we analyze the space group symmetry of3p) quasicrystal structure. Color-preserving even transla-
the octagonal quasicrystal structure. Since our abstract tilagons, on the other hand, can be purely horizontal or can be
with their coloring and arrows have exactly the same symgombined with lattice translations in the direction. The
metry as their decoration with atoms, this is best done conyanslation module of the 3D quasicrystal therefore &en-
sidering the abstract tiling. tered octagonamodule!®

For quasicrystalline tilings, the role of the lattice of trans-  This finding is well in line with the experimental diffrac-
lation symmetries is played by theanslation modulé’ The  tion pattern$® Recall that the translation module is gener-
translation module is an important concept, because it detegged by a set of vectors which project on the eight tile edges,
mine; the Fourier module or reciprocal ‘.‘Iattice,” which is put which have also a component corresponding to half a
experimentally observable. The translation module can bettice period, because these basis translations are odd. The
determined as follows. For any finite p_atch of tiles, one detranslation module within a plane spanned by trexis and
termines the set of all its translatewhich must agree in 3 tjle edge therefore consists of two kinds of layers, even
every respect, also in coloring and arrowinghe set of  gnes and odd ones, where different positions are occupied.
On the other hand, in a plane spanned by #texis and a
vector between two tile edges, there is only one kind of
layer, because the odd layers are missing altogether. In such
a plane, there are only even translations.

The Fourier module of such a translation module is
spanned by a similar umbrella of generating vectors. This
umbrella is rotated, however, by 22.5°. Therefore, in Fourier
space, the missing odd layers are in vertical planes contain-
ing the tile edges, whereas the vertical planes between the
tile edges contain two different kinds of layers, odd ones and
even ones, with different sets of Bragg positions. This is
exactly what is found in electron diffraction pattefits.

The missing layers in planes spanned by a tile edge and
the z axis are therefor@ot due to a glide plane, but due to
the centered Bravais lattice. However, this plane nevertheless
is a glide plane, as can be seen in Fig. 4. Neglecting the
coloring, there are many local patches invariant under such a
FIG. 4. Colored and arrowed Ammann-Beenker tiling. mirror. The colors, however, are exchanged by the mirror, so
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In Ref. 6 it has been shown that among all tilings com-
pletely covered by the arrowed octag@md thus satisfying
the alternation condition the octagonal Ammann-Beenker

tiling is the unique tiling with the highest octagon density.
FIG. 5. The alternation condition requires that along any lane ofanq since there is so much overlap of octagons in the
tiles, t.he two typgs of rhqmbi must alternate. This is enforced by they nmann-Beenker tiling, it is hardly imaginable that there is
arrowing of the tiles, which must match. a tiling not completely covered that has an even higher den-
sity. We can therefore conclude that the octagonal quasicrys-
tal structure is the unique structure having the highest density
f C clusters.

that a translation in the direction must be added to make it
a symmetry. On the other hand, local mirrors between th
tile edges preserve the coloring and are therefore true mirror

planes, not glide planes. From this it follows that the eight-

fold rotation from the 2D Ammann-Beenker tiling becomes V. DISCUSSION AND CONCLUSION
an 8,-screw axis, so that the space groupg8s/mcm The
glide planes cannot cause any further extinctions, because al
Bragg peaks that are candidates for extinction are alread
extinct due to the lattice centering condition.

| In this paper we have shown that the octagonal quasicrys-
| structure determined in Ref. 11 is completely covered by
single kind of clusterC. Moreover, this structure is even
the one with the highest density 6f clusters. Since& clus-

ters are so abundant, they must be energetically preferred,
and atoms inside such a cluster must have a favorable envi-

In the preceding section, we have seen that the octagongnment. Since every atom in the structure is contained in
quasicrystal structure is covered by two types of infiniteseveral suctC clusters, every atom must therefore be in a
prisms with octagonal base. The only difference between théavorable environment. The maximization & clusters
two prism types is that they are translated by half a latticdherefore seems to be the natural ordering principle that is
period in thez direction with respect to each other. Both reponsible for the formation of octagonal quasicrystals.
kinds of prisms can be regarded as being covered $iggle Our conclusions rely heavily on the results of Ref. 6,
kind of cluster,C. This is achieved by dividing the two kinds where a similar result for the two-dimensional Ammann-
of prisms at different hights into clusters. For the clugler Beenker tiling was obtained. In that paper, it was suggested
we choose a prism with octagonal base, consisting of fivéhat the arrowed octagon might be replaced by a larger, un-
layers B’ AB"AB’. The top and bottonB’ layers are then decorated patch, which has exactly the same asymmetry as
shared with the neighboring clusters. Since the quasicrystdhe arrowed octagon and therefore imposes the same over-
is covered by infinite prisms, it is also completely covered bylapping constraints. In the present case this is not necessary,
copies of the cluste€. quite on the contrary. It is, in fact, the atomic decoration of

We shall now determine the class of structures that can b#he tiles which provides us with exactly the right overlapping
completely covered by the clust€. By construction, the constraints that are needed to enforce the perfect octagonal
perfect octagonal quasicrystal structure is among these. If watructure through the maximization Gfclusters.
insist that neighboring clusters in tlzedirection overlap by The octagonal quasicrystal therefore appears almost like a
one layer, the cluster€ can only form correct, infinite textbook example that illustrates how the maximization of a
prisms. If, in turn, these infinite prisms are to cover thesingle cluster can create quasiperiodic order. This order is
whole, infinite structure, they can do this only by overlap-created through constraints of overlap, which are the result of
ping to some extent with their neighbors in the plane. In  the particular atomic structure of the cluster. In this way, one
these overlaps, they will have to share the atoms with thei¢an see how the global order of the structure follows from its
neighbor clusters, and so the decoration with atoms will havéocal order.
to agree in the overlap. Because the abstract octagons shown
in I_:ig. 3 admit exactly the_ same overlaps as the atomic deco- ACKNOWLEDGMENTS
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