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Structural stability of higher-energy phases and its relation to the atomic configurations
of extended defects: The example of Cu

L. G. Wang* and M. Šob
Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Zˇ ižkova 22, CZ-616 62 Brno, Czech Republic

~Received 19 January 1999!

The total-energy calculations using a full-potential first-principles method have been performed for three
displacive phase transformation modes in Cu. The structural and elastic properties of the ground-state~fcc! and
higher-energy phases~bcc and 9R), as well as the energy barrier for sliding of$111% f cc close-packed atomic
planes and the stacking fault energy were obtained. Stability of higher-energy phases in the region of extended
defects is discussed in detail. Examples presented are bcc and 9R Cu in grain boundaries and bcc Cu in
pseudomorphic films at low temperatures. It is shown that the higher-energy phases, which are usually un-
stable, can be stabilized in the region of extended defects by certain imposed constraints.
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I. INTRODUCTION

Extended defects play a significant role in crystalline s
ids as they control many physical and chemical propertie
technological importance such as mechanical properties
crystallization, electronic conductivity, diffusion, corrosio
resistance, etc. By extended defects we usually mean
perturbations in the three-dimensional periodic arrangem
of ideal structure which are, at least in principle, infinite
one or two dimensions, e.g., dislocations, cracks, antiph
boundaries, grain boundaries~GB’s!, interphase interfaces
etc. A surface is, in this sense, also an extended defect.
further regard cavities, large vacancy clusters, precipita
etc. as extended defects, although their dimensions are fi
However, single vacancies, interstitials and their aggreg
are excluded from this notion. A textbook example of t
influence of extended defects on mechanical propertie
dislocations. Due to their motion under stress, real stren
of the crystalline solids is several order of magnitudes low
than the theoretical strength.

It was found in recent studies that atomic configuratio
in the GB region or other extended defects, e.g., in the
taxial growth films on the substrate surfaces, may con
certain metastable structures which are different from
ground state. The 9R (a-Sm) structure was theoreticall
predicted and verified by high-resolution electron micro
copy ~HREM! at GB’s in Ag ~Ref. 1! and Cu.2 Similarly, the
bcc structure was found at certain GB’s in Cu.3,4 The bcc Cu
phase has also been observed in the pseudomorphic Cu
grown on the$100% surfaces of Pd, Pt, Ag, and Fe,5–10 or as
small precipitates in a bcc Fe matrix.11 ~The structure in the
pseudomorphic Cu films on the Pd$100% and Pt$100% sub-
strates is also considered to be the deformed fcc structure
some authors.12,13! And, for example, fcc Co was found i
the thin cobalt films on Cu$100% and Cu$111% substrates.14

Occurrence of such higher-energy or metastable phase
interfaces is even more likely in more complex non-cu
alloys such as TiAl. Indeed, structural features of this al
have been observed very recently. Abe, Kumagai,
Nakamura15 found a B19-type hcp-based structure in a Ti-
PRB 600163-1829/99/60~2!/844~7!/$15.00
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at. % Al alloy quenched from the disordered phase, and B
erjee, Ahuja, and Fraser16 observed a series of structur
transitions in the form of changes in the stacking sequenc
the close-packed atomic planes in the Ti and Al layers
Ti/Al multilayered thin films.

There is a great interest, on the theory front of materi
science, in predicting the occurrence of stable or metast
phases as well as in gaining insights into the mechani
which control the phase formation. Modern quantum the
is an effective tool for studying these problems.Ab initio
calculations within the framework of density-function
theory ~DFT! employing the local-density approximatio
~LDA ! or the generalized gradient approximation~GGA!
have been performed widely to predict the structu
stability.17–24In such studies, the atomic numbers of the co
stituent atoms and, usually, some structural information
the only input data. Comparing with the empirical metho
an important advantage of first-principles calculations is t
they can be applied reliably to the atomic configurations
from the equilibrium state.

Although Cu has been investigated intensively, there
still some controversy regarding the stability of its highe
energy phases, in particular of the bcc phase~see recent
papers9,10,13and references therein!. In the present paper we
perform the full-potential first-principles total-energy calc
lations for three different phase transformation modes in
and discuss the structural stability of the higher-ene
phases and its relation to the atomic configurations of
tended defects. The first transformation path used in our
culations is the tetragonal deformation path, which is a
known as the Bain’s path.25 In this path, the body-centere
tetragonal~bct! structure is deformed along a^001& axis and
the high-symmetry bcc and fcc structures are contained
the special cases~see Fig. 1!. This path has been used wide
in the previous studies,13,18,22,24,26–31especially in the con-
nection with the mechanism of the pseudomorphic epita
growth.13,24,27,31The second transformation path we empl
is the trigonal deformation path which includes the simp
cubic ~sc! structure and fcc structure by distorting the b
844 ©1999 The American Physical Society
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PRB 60 845STRUCTURAL STABILITY OF HIGHER-ENERGY . . .
structure along â 111& direction ~see Fig. 1!.9,22,28,32 The
third path is the fcc-to-9R transformation path which corre
sponds to sliding along the$111% planes; this changes th
stacking sequence of close-packed atomic planes from
fcc sequence into the sequence of 9R structure~see Sec.
III D !. A more complex transformation from bcc to 9R had
been studied previously in investigations of the structu
stability of Na at low temperatures.33,34 These structura
transformations, in which individual atoms in the unit cell
complete atomic planes in the whole crystal move to n
positions in an orderly fashion, are known as displac
phase transformations or martensitic transformations.

II. COMPUTATIONAL METHOD

The full-potential linearized augmented plane wa
~FLAPW! method has been proved to be one of the m
accurate methods for the computation of the electronic st
ture of solids containing transition metals and rare-earth
oms within the density-functional theory. In this method, t
basis functions inside the spheres centered at atomic site
linear combinations of radial wave functions and their e
ergy derivatives, and in the interstitial region they are rep
sented by a plane-wave expansion. No shape approxima
are made to the charge density and potential. Following
usual procedure, the electronic states of the system are
vided into core~Cu 1s, 2s, and 2p in the present case!,
semicore~Cu 3s and 3p), and valence states. Core states
treated fully relativistically whereas semicore and valen
states are obtained using the semirelativistic approximat
In order to improve upon the linearization~i.e., to increase

FIG. 1. High-symmetry structures obtained along the tetrago
and trigonal deformation paths. Thec and a are the length scale
along the deformation direction and along a perpendicular direct
respectively. For tetragonal deformation, thec axis is parallel to
@001# direction and thea axis lies in the~001! plane. For trigonal
deformation, thec axis points into the@111# direction and thea axis
lies in the~111! plane. The body-centered cell is indicated by t
filled circles and heavy solid lines.
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the flexibility of the basis! and make possible a consiste
treatment of semicore and valence states in one energy
dow additional basis functions~so-called ‘‘local orbitals’’!
are added. We employ theWIEN95 code developed by Blaha
et al.35 with the exchange-correlation potential given by t
PW92 scheme.36 The muffin-tin radius is set to 2.0 a.u. In
side the atomic spheres, spherical harmonics up tol max
512 are used to expand the wave functions, and nonsph
cal components of the density and potential are included
to l max54. We employ the energy cutoffs up to 16 Ry fo
the plane-wave bases and 100 Ry for star functions to
scribe the wave functions, the charge density, and poten
in the interstitial region, respectively. The total-energy c
culations for the trigonal and tetragonal deformations
performed with 8000k points in the full Brillouin zone~BZ!.
500 k points in the full BZ are utilized in the fcc-to-9R
transformation, where nine atoms per unit cell had to
employed. The accuracy of the calculated structural ene
difference following from the convergence tests is about 0
mRy/atom.

III. RESULTS AND DISCUSSION

A. Properties of the ground state

The calculated equilibrium lattice constant and the ela
properties of the ground state~fcc! Cu are shown in Table I,
compared with the other calculations and the experime
values. We get the equilibrium lattice constant 3.52
which is in excellent agreement with the other FLAP
result28 ~see Table I!. The calculated lattice constant is 2.5
smaller than the experimental value 3.61 Å ,45 which can be
attributed to the deficiencies of the LDA.~In fact, if we em-
ploy the same code,35 but with the GGA exchange
correlation potential,38 then the equilibrium lattice constan
of 3.61 Å is obtained.! The calculated bulk modulus i
about 33% too large compared to the experimental va
This is also a typical deviation between the LDA calculati
and the experiment.37 The deviation between theory and e
periment may also be partly due to the relativistic correctio
in our calculations which are known to introduce large err
in the bulk modulus39 ~see also Table I!. The shear elastic
moduli C8 and C44 agree with the experimental value
within 6% and 10%, respectively.

B. Tetragonal deformation

The bct structures along the tetragonal deformation p
can be parameterized in terms of thec/a ratio. If we ascribe
the valuec/a51 to the bcc structure, then the fcc structure
obtained forc/a5A2 ~see Fig. 1!. We calculate the tota
energy with two independent variablesc/a and the volume
V/V0 (V0 is the experimental ground-state atomic volum
11.8015 Å3). The total energy per atom as a function
c/a for various volumes is shown in Fig. 2 and the ener
difference between bcc and fcc is given in the column 2
Table II. From Fig. 2 we can see that there are three extre
in the total-energy curves with the constant atomic volum
As it was discussed in the previous studies,18,22 there is al-
ways an odd number of extrema; some of them are symm
dictated. The extrema which are not dictated by the symm
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TABLE I. Calculated structural and elastic properties of fcc and bcc Cu. Lattice constantsa are given in Å , elastic constants in Mba
and structural energy differences in meV/atom. The results of the other calculations and the experimental values are presented fo
son. Both semirelativistic~SR! and nonrelativistic~NR! results from Ref. 39 are included.

fcc bcc

a(Å ) B(Mbar) C8(Mbar) C44 (Mbar) a(Å ) B(Mbar) C44 (Mbar) Ebcc-Ef cc ~meV!

This work 3.52 1.90 0.271 0.82 2.80 1.88 1.12 44.0

FLAPW ~SR! a 3.56 1.83 2.84 1.79 48.8

FLAPW ~NR! a 3.61 1.62 2.86 1.60 17.7

FLAPW b 3.52 1.90 0.250 0.80 47.6

FP-LMTO c 3.58 1.53 0.272 0.86 2.80 0.69 6.8

PW d 3.61 1.66 2.87 1.68 37.2

Expt.e 3.61 1.42 0.256 0.75

aRef. 39, using the Wigner exchange-correlation (xc) potential~Ref. 40!.
bRef. 28, using the Hedin-Lundqvistxc potential~Ref. 41!.
cRef. 9, using the Ceperley-Alderxc potential~Ref. 42! in the Vosko-Wilk-Nusair parametrization~Ref. 43!.
dRef. 13, using the Ceperley-Alderxc potential~Ref. 42! parametrized by Perdew and Zunger~Ref. 44!.
eRefs. 45 and 46.
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try usually reflect the nature of the system.22 For the tetrag-
onal deformation path, there are two symmetry-dictated
trema corresponding to the bcc and fcc structures.
energy of the equilibrium bcc structure is about 44.0 me
atom higher than that of the equilibrium fcc structure, t
equilibrium lattice constant beingabcc52.80 Å . The calcu-
lated structural energy difference is in a good agreement w
the other calculations by FLAPW~Ref. 28! and by FLAPW
with the semirelativistic correction~SR! ~Ref. 39! ~see Table
I!.

There is also a very shallow and flat minimum forc/a
,1 ~its position and depth varies with the volume; see F
2!. This minimum is imposed by the increase of total ene
whenc/a tends to be very small and some atoms move v
close to each other. The calculated energy barrier betw
the equilibrium bct and fcc structures along the minimu

FIG. 2. Total energy per atom as a function ofc/a for various
values ofV/V0 along the tetragonal deformation path.V0 is the
experimental ground-state atomic volume (11.8015 Å3), andE0 is
the total energy of equilibrium fcc Cu.
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energy path is about 1 meV/atom~this lowest energy saddle
point on the energy surface is called the transition state;
do not show our contour plot here as it is similar to Fig. 2
the paper by Jeong13!. The magnitude of this energy barrie
is in a very good agreement with the value of 1.3 meV/at
obtained by the pseudopotential plane-wave~PW!
calculations.13 It is comparable to or smaller than therm
vibrational energies and therefore the bcc~or bct! structure is
considered to be energetically unstable with respect to
tetragonal deformation. The structural instability of bcc~or
bct! Cu due to the lack of the energy barrier in the tetrago
deformation was also found by other authors.9,13,27

C. Trigonal deformation

In the trigonal deformation path,22,28 we change the dis-
tance between the close-packed$111% planes, as well as the
distances between the atoms in the planes, but keep
hexagonal geometry. The high symmetry bcc, sc, and
structures are contained as the special cases in this tran
mation path. Following the idea that the distortion is para
etrized byc/a similarly as in the tetragonal deformation, th
bcc structure is obtained forc/a51, andc/a52 and 4 cor-

TABLE II. The structural energy differences between the b
and fcc structures, and between the sc and bcc structures for va
atomic volumes.V0 is the experimental ground-state atomic vo
ume. Structural energy differences in meV/atom.

V/V0 Ebcc-Ef cc (meV) Esc-Ebcc (meV)

0.80 57.4 1009.9
0.85 51.1 847.2
0.90 45.0 717.5
0.95 41.0 602.1
1.00 35.2 506.0
1.05 30.2 428.0
1.10 28.4 359.7
1.15 26.2 292.4
1.20 25.1 243.7
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PRB 60 847STRUCTURAL STABILITY OF HIGHER-ENERGY . . .
respond to the sc and fcc structures on the trigonal defor
tion path, respectively~see Fig. 1!. We calculated the tota
energies for this deformation fromc/a50.8 toc/a54.5 and
the volumeV/V0 varied from 0.8 to 1.2. The contour plo
and the total-energy curves for various constant volumes
shown in Figs. 3 and 4. Here we can see three extrema
all of them are symmetry dictated, corresponding to the b
sc, and fcc structures. The bcc and fcc structures are s
with respect to the trigonal deformation. The top of a ve
high-energy barrier between bcc and fcc represents th
structure.

The calculated shear modulusC44 for the bcc Cu is 1.12
Mbar. The energy barrier of 522.5 meV which correspon
to the energy difference between the equilibrium sc and
structures is much larger than the value of 115.6 meV
Kraft et al.9 The saddle point or the transition state is ind
cated by the cross in Fig. 3. As it is shown in the previo
studies,29,48,26the shear modulusC8 of cubic transition met-
als correlates with the energy difference between the bcc

FIG. 3. Contour plot of energy surface for the trigonal deform
tion as a function ofc/a andV/V0. The contour spacing is 3 mRy
The cross indicates the saddle point.

FIG. 4. Total energy per atom as a function ofc/a for various
values ofV/V0 along the trigonal deformation path.V0 andE0 are
same as in Fig. 2.
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fcc structures. Our calculations showed that the shear mo
lus C44 is also associated with the energy difference betw
the sc and bcc structures for the bcc metals or with the
ergy difference between the sc and fcc structures for the
metals.49 This can explain the difference between our val
of C44 and that by Kraftet al.9 since there is a large differ
ence of the energy barriers between the two calculations~see
also Table I!. The energy differences between bcc and f
and between sc and bcc are strongly influenced by the ato
volume ~see Table II!. We can see from Table II that th
structural energy difference between the bcc and fcc st
tures decreases with increasing atomic volume. In the reg
of extended defects, the volume per atom is usually lar
than in the equilibrium structure, therefore we may exp
that the formation of higher-energy phases, e.g., of the
Cu at certain GB’s, costs less energy than in the perfect b

D. fcc-to-9R transformation

The 9R structure consists of successive stacking of clo
packed layers with the periodic sequen
. . . ABCBCACAB . . . . Comparing with the fcc structure
having the stacking sequence. . . ABCABCABC . . . , we
can consider 9R as fcc with a stacking fault on every thir
closed-packed atomic plane. The packing fractions as we
the coordination numbers are equal in both cases. In the
structure, each close-packed plane is shifted by the s
displacement vector with respect to the one below. The
placement of A with respect to B~and also of B with respec
to C and of C with respect to A! along a certain crystallo-
graphic axis, for example â211& axis, isA6af cc/6. It is the
same displacement, but in the opposite direction, from B
A ~as well C to B and A to C!. The stacking sequence of 9R
structure may be therefore obtained by sliding the clo
packed atomic planes of fcc.

The 9R structure has been experimentally observed in
GB’s in Cu, Ag, and Au,1,2,50 which have a low stacking
fault energy. The structure in the region of theS3 GB’s may
be 9R or bcc depending on the boundary inclination.2,3 Here
we perform the total-energy calculations along the fcc-to-R
transformation path in Cu. In this structural transformatio
the stacking sequence of close-packed atomic planes in f
transferred into the sequence of 9R by fixing the first three
atomic planes, shifting the second three atomic planes
some displacementd in the ^211& f cc direction and the third
three atomic planes by the same amount in the opposite
rection. We parametrize the deformation by the absol
value of the shift. Here the fcc structure corresponds to
zero displacement and the 9R structure is obtained for
A6af cc/6. Because the calculations for this deformation b
full-potential first-principles method are quite involved, w
only calculated the total-energy curve for the experimen
ground-state atomic volume, without performing internal
laxations~Fig. 5!.

We can see that there are three extrema in the curve~Fig.
5!. The fcc and 9R structures correspond to the minim
which are dictated by the symmetry. A maximum occu
between the two minima and forms an energy barrier
tween the fcc and 9R structures. The energy of 9R Cu is 7.6
meV/atom higher than that of fcc Cu, which is in a very go
agreement with the values of 7.2 and 6.8 meV/atom by
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848 PRB 60L. G. WANG AND M. ŠOB
full-potential linear muffin-tin orbital ~FP-LMTO!
calculations.1 The calculated energy barrier between the
and 9R structures is 91.0 meV/atom which is important
stabilizing the 9R structure in theS3 GB’s ~see Sec. III E!.
Inclusion of internal relaxations during deformation wou
probably reduce the height of this barrier a little bit, but th
will not change our conclusions regarding the stability of 9R
structure with respect to the fcc-to-9R transformation. The
fact that the energy of 9R Cu is only slightly higher than tha
of fcc Cu shows that the stacking fault energy in Cu is ve
small and therefore 9R or other stacking fault structures oc
cur easily in the GB region. The energy difference betwe
hcp and fcc structures following from our calculations
10.6 meV/atom at the experimental ground-state atomic
ume. This confirms the value of 10.7 meV/atom obtained
Ernstet al. using the FP-LMTO method.1 The calculated in-
trinsic stacking fault energy is 64 mJ/m2 which is also in
excellent agreement with the value 63 mJ/m2 by Ernst
et al.1 and in reasonable agreement with the experiment
estimated value 55 mJ/m2 ~Ref. 47!.

E. Structural stability of higher-energy phases

Craievich and co-workers18,19 have found that the excite
phases are usually locally unstable with respect to cer
deformation modes. They argued that the entropy contr
tions to the free energy are responsible for the stability
some of those phases at high temperatures. Our prev
study22 also showed that all higher-energy cubic structu
studied are locally unstable with respect to trigonal or tetr
onal deformation. But some experimental facts7,8,10,12,14have
revealed that the higher-energy phases can be stabilize
the region of certain extended defects at room tempera
and below. Thus it is an interesting issue how to underst
the stability of higher-energy phases, for example, the
Cu in the pseudomorphic films or in the GB’s, at low tem
peratures. In this subsection, we discuss the structural st

FIG. 5. Total energy per atom as a function of the absolute va
of displacement along the fcc-to-9R deformation path at the exper
mental ground-state atomic volume.E08 is the total energy of fcc Cu
with the experimental ground-state atomic volume.
c
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ity of higher-energy phases at low temperatures with so
imposed constraints, e.g., with the epitaxial constraints in
pseudomorphic films and the internal constraints in the GB

For a cubic crystal, only three elastic constants, i.e.,C11,
C12, and C44 or the bulk modulusB@5(C1112C12)/2#,
C8@5(C112C12)/2# and C44 are independent. For the bc
structure,C8 is the shear modulus describing the resistan
of the lattice against the glide corresponding to the slip s
tem $110%^1̄10&,9,51 and the shear modulusC44 governs the
glide of $001% atomic planes in thê100& directions.9 We can
obtain C8 and C44 from the behavior of total energy at te
tragonal and trigonal deformation, respectively. The cal
lated values are shown in Table I. For bcc Cu,C44 exhibits a
finite positive value, butC8 vanishes or is even negative
Thus the bcc Cu is unstable with respect to the glide of
$110% planes. However, we can understand its stability
pseudomorphic bcc Cu films on the$001% substrate surface.9

Namely, the glide of$110%bcc atomic planes over each othe
which would take place in the bulk case is prevented here
the substrate surface which is stable and plays the role o
epitaxial constraint. And due to the finite positiveC44, the
glide of the$001%bcc atomic planes over each other does n
occur as well.

The stability of bcc Cu in theS3 GB’s can also be un-
derstood as following from the GB internal constraints. T
atomic configurations in the region of theS3 ^211& GB’s
may be, among others, 9R or bcc depending on the bounda
inclination.2–4 If the bcc Cu phase is formed in the GB re
gion, the $111% f cc atomic planes in the grains become t
$110%bcc atomic planes in the GB region~see, e.g., Fig. 6 of
Ref. 4!. Therefore the glide of the$110%bcc atomic planes in
the GB region is precluded by the$111% f cc atomic planes in
the grains: since the glide of the$111% f cc atomic planes in
the grains cannot occur~there is an energy barrier to preve
it; see Fig. 5!, the $110%bcc atomic planes in the GB region
cannot glide as well. This is similar to the situation
pseudomorphic films on the$001% substrates except the con
straints in the present case are imposed on both sides o
GB region. And the relative sliding of two grains parallel
the GB plane, i.e., the glide of the$100%bcc atomic planes in
the GB region~see Fig. 6 of Ref. 4! cannot take place due t
the finite positive value ofC44. As a result, the bcc configu
ration in the GB’s is stable.

We do not know at present what are the instability mod
of the 9R structure in Cu. It cannot be excluded that th
structure is even metastable, i.e., stable with respect to
small deformations from the 9R configuration. In that case
there can be a 9R-to-fcc transformation path with a muc
lower energy barrier than that in Fig. 5. On the basis of
above experience with the bcc structure, we may supp
that the constraints due to the presence of grains stabilize
9R structure in the GB region in a similar manner as th
stabilize the bcc structure, i.e., they prevent the moveme
of atoms corresponding either to an instability mode or to
9R-to-fcc transformation with the lowest energy barrier.
more detailed analysis on the 9R structure will be the subjec
of future investigations.

IV. CONCLUSIONS

We have investigated the structural stability of highe
energy phases in Cu along three displacive phase tran
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mation paths by a full-potential first-principles method. T
calculated results show that bcc Cu is unstable with res
to the tetragonal deformation, but it is stable with respec
the trigonal deformation. Our study indicates that the high
energy phases, which are usually unstable, can be stabi
by imposed constraints. Specifically, in this paper we h
discussed the stabilization of bcc and 9R Cu in grain bound-
aries and of bcc Cu in pseudomorphic films. The calcula
energy differences between 9R and fcc and between hcp an
fcc are 7.6 meV/atom and 10.6 meV/atom for the experim
tal ground-state atomic volume, respectively. The intrin
stacking fault energy is calculated to be 64 mJ/m2. These
d
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results imply that the atomic configurations in the GB’s
Cu may include quite complex stacking fault structures.52
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