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Structural stability of higher-energy phases and its relation to the atomic configurations
of extended defects: The example of Cu
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The total-energy calculations using a full-potential first-principles method have been performed for three
displacive phase transformation modes in Cu. The structural and elastic properties of the groufficEstatd
higher-energy phasdbcc and R), as well as the energy barrier for sliding {df11} .. close-packed atomic
planes and the stacking fault energy were obtained. Stability of higher-energy phases in the region of extended
defects is discussed in detail. Examples presented are bcc Rr@u9in grain boundaries and bcc Cu in
pseudomorphic films at low temperatures. It is shown that the higher-energy phases, which are usually un-
stable, can be stabilized in the region of extended defects by certain imposed constraints.
[S0163-182899)00726-2

[. INTRODUCTION at. % Al alloy quenched from the disordered phase, and Ban-
erjee, Ahuja, and Fras€robserved a series of structural
Extended defects play a significant role in crystalline sol-transitions in the form of changes in the stacking sequence of
ids as they control many physical and chemical properties ofhe close-packed atomic planes in the Ti and Al layers in
technological importance such as mechanical properties, rer/Al multilayered thin films.
crystallization, electronic conductivity, diffusion, corrosion  There is a great interest, on the theory front of materials
resistance, etc. By extended defects we usually mean sugience, in predicting the occurrence of stable or metastable
perturbations in the three-dimensional periodic arrangemerfhases as well as in gaining insights into the mechanisms
of ideal structure which are, at least in principle, infinite in \yhich control the phase formation. Modern quantum theory
one or two dimensions, e.g., dislocations, cracks, antiphasg o effective tool for studying these problenfsh initio
boundaries, grain boundarig&B'’s), interphase interfaces, alculations within the framework of density-functional

etc. A surface is, m_thls sense, also an extended defept. ﬁeory (DFT) employing the local-density approximation
further regard cavities, large vacancy clusters, precipitate LDA) or the generalized gradient approximatiéBGA)
etc. as extended defects, although their dimensions are finit

However, single vacancies, interstitials and their aggregate ave bf7e_24 performed _W|dely to pred|ct the structural
are excluded from this notion. A textbook example of theSt.ab'I'ty' In such studies, the atomic numbgrs of th_e con-
influence of extended defects on mechanical properties is_t‘ltuent a}toms and, usually,_somg structural .|r.1f0rmat|on are
dislocations. Due to their motion under stress, real strengtf® Only input data. Comparing with the empirical methods,

of the crystalline solids is several order of magnitudes lowe@" important advantage of first-principles calculations is that
than the theoretical strength. they can be applied reliably to the atomic configurations far
It was found in recent studies that atomic configurationsfom the equilibrium state.
in the GB region or other extended defects, e.g., in the epi- Although Cu has been investigated intensively, there is
taxial growth films on the substrate surfaces, may contairstill some controversy regarding the stability of its higher-
certain metastable structures which are different from thenergy phases, in particular of the bcc phésee recent
ground state. The ® (a-Sm) structure was theoretically paper§'®*3and references therginin the present paper we
predicted and verified by high-resolution electron micros-perform the full-potential first-principles total-energy calcu-
copy (HREM) at GB’s in Ag(Ref. 1) and Cu? Similarly, the lations for three different phase transformation modes in Cu
bce structure was found at certain GB'’s in &liThe bcc Cu  and discuss the structural stability of the higher-energy
phase has also been observed in the pseudomorphic Cu filrphases and its relation to the atomic configurations of ex-
grown on the{100; surfaces of Pd, Pt, Ag, and Fet’or as  tended defects. The first transformation path used in our cal-
small precipitates in a bcc Fe matfix(The structure in the culations is the tetragonal deformation path, which is also
pseudomorphic Cu films on the fd0 and P{100 sub-  known as the Bain’s patf. In this path, the body-centered
strates is also considered to be the deformed fcc structures bgtragonalbct) structure is deformed along(@01) axis and
some author$?'3 And, for example, fcc Co was found in the high-symmetry bcc and fec structures are contained as
the thin cobalt films on GO0 and Cy111 substrates®  the special casesee Fig. 1 This path has been used widely
Occurrence of such higher-energy or metastable phases iat the previous studies;'8222426=3%gpecially in the con-
interfaces is even more likely in more complex non-cubicnection with the mechanism of the pseudomorphic epitaxial
alloys such as TiAl. Indeed, structural features of this alloygrowth!3242731The second transformation path we employ
have been observed very recently. Abe, Kumagai, ands the trigonal deformation path which includes the simple
Nakamura® found a B19-type hcp-based structure in a Ti-48cubic (s¢ structure and fcc structure by distorting the bcc
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(00114 »[111] the flexibility of the basis and make possible a consistent
treatment of semicore and valence states in one energy win-
bee ° — =% | © dow additional basis function&so-called “local orbitals’)
¢/a=1 dt:;(r)?rg}l(’;?(l)n o = are added. We employ thelEN9gs code developed by Blaha
trigonal et al3® with the exchange-correlation potential given by the
ldeformation fee PW92 schemé® The muffin-tin radius is set to 2.0 a.u. In-
c/a=/2 side the atomic spheres, spherical harmonics ug . {g
sc =12 are used to expand the wave functions, and nonspheri-
c/a=2 cal components of the density and potential are included up

to I hax=4. We employ the energy cutoffs up to 16 Ry for
the plane-wave bases and 100 Ry for star functions to de-
trigonal scribe the wave functions, the charge density, and potential
ldCf"rma“‘m in the interstitial region, respectively. The total-energy cal-
culations for the trigonal and tetragonal deformations are
performed with 800 points in the full Brillouin zongBZ).
500 k points in the full BZ are utilized in the fcc-tof®
transformation, where nine atoms per unit cell had to be
employed. The accuracy of the calculated structural energy
difference following from the convergence tests is about 0.01
mRy/atom.
FIG. 1. High-symmetry structures obtained along the tetragonal
and trigonal deformation paths. Tleand a are the length scales
along the deformation direction and along a perpendicular direction, IIl. RESULTS AND DISCUSSION
respectively. For tetragonal deformation, tbeaxis is parallel to
[001] direction and thea axis lies in the(001) plane. For trigonal

A. Properties of the ground state

deformation, the axis points into th¢111] direction and the axis The calculated equilibrium lattice constant and the elastic
||.eS In the(lll) plane. The quy-Centered cell is indicated by the properties of the ground Stamc) Cu are shown in Table l,
filled circles and heavy solid lines. compared with the other calculations and the experimental

values. We get the equilibrium lattice constant 3.52 A
o . 029.28.32 which is in excellent agreement with the other FLAPW

structure along g111) direction (see Fig. 17“““**“The  resulf® (see Table)l The calculated lattice constant is 2.5%
third path is the fcc-to-B transformation path which corre- smaller than the experimental value 3.61 “Awhich can be
sponds to sliding along thgl11} planes; this changes the attributed to the deficiencies of the LDAN fact, if we em-
stacking sequence of close-packed atomic planes from theloy the same cod® but with the GGA exchange-
fcc sequence into the sequence dR Structure(see Sec. correlation potential’ then the equilibrium lattice constant
IID). A more complex transformation from bce tdkthad  of 3.61 A is obtained. The calculated bulk modulus is
beer_l_studled previously in mvesﬂga'ggns of the structurabbout 33% too large compared to the experimental value.
stability of Na at low temperaturé$® These structural This is also a typical deviation between the LDA calculation
transformations, in which individual atoms in the unit cell or and the experimenri. The deviation between theory and ex-
complete atomic planes in the whole crystal move to newperiment may also be partly due to the relativistic corrections
positions in an orderly fashion, are known as displacivein our calculations which are known to introduce large errors
phase transformations or martensitic transformations. in the bulk modulu¥ (see also Table)l The shear elastic

moduli C’ and C,, agree with the experimental values

within 6% and 10%, respectively.
Il. COMPUTATIONAL METHOD

The full-potential linearized augmented plane wave
(FLAPW) method has been proved to be one of the most
accurate methods for the computation of the electronic struc- The bct structures along the tetragonal deformation path
ture of solids containing transition metals and rare-earth atcan be parameterized in terms of @@ ratio. If we ascribe
oms within the density-functional theory. In this method, thethe valuec/a=1 to the bcc structure, then the fcc structure is
basis functions inside the spheres centered at atomic sites apbtained forc/a= 2 (see Fig. 1L We calculate the total
linear combinations of radial wave functions and their en-energy with two independent variableta and the volume
ergy derivatives, and in the interstitial region they are repreV/V, (V, is the experimental ground-state atomic volume
sented by a plane-wave expansion. No shape approximatioid.8015 A%). The total energy per atom as a function of
are made to the charge density and potential. Following the/a for various volumes is shown in Fig. 2 and the energy
usual procedure, the electronic states of the system are dilfference between bcc and fcc is given in the column 2 of
vided into core(Cu 1s, 2s, and 2 in the present cage Table Il. From Fig. 2 we can see that there are three extrema
semicorg(Cu 3s and 3), and valence states. Core states ardn the total-energy curves with the constant atomic volumes.
treated fully relativistically whereas semicore and valenceAs it was discussed in the previous studi®é’ there is al-
states are obtained using the semirelativistic approximatiorways an odd number of extrema; some of them are symmetry
In order to improve upon the linearizatigne., to increase dictated. The extrema which are not dictated by the symme-

B. Tetragonal deformation
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TABLE |. Calculated structural and elastic properties of fcc and bce Cu. Lattice conatangsgiven in A | elastic constants in Mbar,
and structural energy differences in meV/atom. The results of the other calculations and the experimental values are presented for compari-
son. Both semirelativisti€SR) and nonrelativistidNR) results from Ref. 39 are included.

fcc bcc
a(A) B(Mbar) C’(Mbar) C, (Mbar) a(A) B(Mbar)  Cy (Mbar)  EpceEfee (MEV)

This work 3.52 1.90 0.271 0.82 2.80 1.88 1.12 44.0
FLAPW (SR @ 3.56 1.83 2.84 1.79 48.8
FLAPW (NR) @ 3.61 1.62 2.86 1.60 17.7
FLAPWP 3.52 1.90 0.250 0.80 47.6
FP-LMTO® 3.58 1.53 0.272 0.86 2.80 0.69 6.8
Pw 3.61 1.66 2.87 1.68 37.2
Expt.© 3.61 1.42 0.256 0.75

8Ref. 39, using the Wigner exchange-correlaticm)( potential (Ref. 40.

PRef. 28, using the Hedin-Lundqvist potential (Ref. 41).

‘Ref. 9, using the Ceperley-Alderc potential(Ref. 42 in the Vosko-Wilk-Nusair parametrizatioiRef. 43.
9Ref. 13, using the Ceperley-Aldeic potential(Ref. 42 parametrized by Perdew and ZundBef. 44.
Refs. 45 and 46.

try usually reflect the nature of the systéffor the tetrag- energy path is about 1 meV/atofthis lowest energy saddle
onal deformation path, there are two symmetry-dictated expoint on the energy surface is called the transition state; we
trema corresponding to the bcc and fcc structures. Thelo not show our contour plot here as it is similar to Fig. 2 in
energy of the equilibrium bcc structure is about 44.0 meVihe paper by Jeodd). The magnitude of this energy barrier
atom higher than that of the equilibrium fcc structure, theis in a very good agreement with the value of 1.3 meV/atom
equilibrium lattice constant beirg,..=2.80 A . The calcu- obtained by the pseudopotential plane-waveW)
lated structural energy difference is in a good agreement witkalculations:® It is comparable to or smaller than thermal
the other calculations by FLAPWRef. 28§ and by FLAPW  vibrational energies and therefore the lgachc? structure is
with the semirelativistic correctio(SR) (Ref. 39 (see Table considered to be energetically unstable with respect to the
1. tetragonal deformation. The structural instability of koc
There is also a very shallow and flat minimum fofa  bct) Cu due to the lack of the energy barrier in the tetragonal
<1 (its position and depth varies with the volume; see Fig.deformation was also found by other authdtd?’
2). This minimum is imposed by the increase of total energy
whenc/a tends to be very small and some atoms move very C. Trigonal deformation
close to each other. The calculated energy barrier between

. . ,28 el
the equilibrium bct and fcc structures along the minimum- In the trigonal deformation paftf;® we change the dis

tance between the close-packgd 1} planes, as well as the
distances between the atoms in the planes, but keep their

400 I hexagonal geometry. The high symmetry bcc, sc, and fcc
%. structures are contained as the special cases in this transfor-
350 | mation path. Following the idea that the distortion is param-
300 5 etrized byc/a ;imilar[y as in the tetragonal deformation, the
) N 0080 bcc structure is obtained fara=1, andc/a=2 and 4 cor-
8 \ --0.85
N [ :832 TABLE Il. The structural energy differences between the bcc
% +1.00 and fcc structures, and between the sc and bcc structures for various
C +1.05 atomic volumesV, is the experimental ground-state atomic vol-
p‘j :%%g ume. Structural energy differences in meV/atom.
k +120
V/VO Ebcc'Efcc (meV) Esc'Ebcc (meV)
0.80 57.4 1009.9
0.85 51.1 847.2
0.90 45.0 7175
0.95 41.0 602.1
1.00 35.2 506.0
1.05 30.2 428.0
FIG. 2. Total energy per atom as a functionas for various 1.10 28.4 359.7
values ofV/V, along the tetragonal deformation pai, is the 1.15 26.2 292.4
experimental ground-state atomic volume (11.8018) fandE, is 1.20 25.1 243.7

the total energy of equilibrium fcc Cu.
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12 fcc structures. Our calculations showed that the shear modu-
lus C,, is also associated with the energy difference between
the sc and bcc structures for the bcc metals or with the en-

11 ergy difference between the sc and fcc structures for the fcc
x metals*® This can explain the difference between our value
S . of C4, and that by Kraftet al® since there is a large differ-
> ence of the energy barriers between the two calculatises

also Table ). The energy differences between bcc and fcc,
and between sc and bcc are strongly influenced by the atomic

09 1 volume (see Table ). We can see from Table Il that the
structural energy difference between the bcc and fcc struc-
0.8 WA/ Z=. ‘ tures decreases with increasing atomic volume. In the region
081216 2 24283236 4 44 of extended defects, the volume per atom is usually larger

c/a than in the equilibrium structure, therefore we may expect
that the formation of higher-energy phases, e.g., of the bcc
FIG. 3. Contour plot of energy surface for the trigonal deforma-Cu at certain GB’s, costs less energy than in the perfect bulk.
tion as a function ot/a andV/V,. The contour spacing is 3 mRy.
The cross indicates the saddle point.
D. fcc-to-9R transformation

The 9R structure consists of successive stacking of close-

respond to the sc and fcc structures on the trigonal deformé#packed  layers  with  the  periodic ~ sequence
tion path, respectivelysee Fig. 1. We calculated the total ... ABCBCACAB. .. . Comparing with the fcc structure
energies for this deformation frooia=0.8 toc/a=4.5 and having the stacking sequence.. ABCABCABC ..., we
the volumeV/V, varied from 0.8 to 1.2. The contour plot can consider B as fcc with a stacking fault on every third
and the total-energy curves for various constant volumes arelosed-packed atomic plane. The packing fractions as well as
shown in Figs. 3 and 4. Here we can see three extrema arifieé coordination numbers are equal in both cases. In the fcc
all of them are symmetry dictated, corresponding to the bccstructure, each close-packed plane is shifted by the same
sc, and fcc structures. The bcc and fec structures are stabfisplacement vector with respect to the one below. The dis-
with respect to the trigonal deformation. The top of a veryplacement of A with respect to &nd also of B with respect
high-energy barrier between bcc and fcc represents the 46 C and of C with respect to )Aalong a certain crystallo-
structure. graphic axis, for example @11) axis, is \/EafCC/G. It is the

The calculated shear modul@s, for the bcc Cu is 1.12 same displacement, but in the opposite direction, from B to
Mbar. The energy barrier of 522.5 meV which correspondsA (as well C to B and A to € The stacking sequence oR9
to the energy difference between the equilibrium sc and bcetructure may be therefore obtained by sliding the close-
structures is much larger than the value of 115.6 meV bypacked atomic planes of fcc.
Kraft et al® The saddle point or the transition state is indi- The 9R structure has been experimentally observed in the
cated by the cross in Fig. 3. As it is shown in the previousGB’s in Cu, Ag, and Au;**° which have a low stacking
studies?®*8?%the shear modulu§’ of cubic transition met- fault energy. The structure in the region of th8 GB’s may
als correlates with the energy difference between the bce anae 9R or bee depending on the boundary inclinatfotiHere
we perform the total-energy calculations along the fcc{o-9
transformation path in Cu. In this structural transformation,

1400 ©-0.80 the stacking sequence of close-packed atomic planes in fcc is
1200 | :8:3(5, transferred into the sequence dR By fixing the first three
atomic planes, shifting the second three atomic planes by
~ 1000 i some displacement in the (211);.. direction and the third
g i three atomic planes by the same amount in the opposite di-
= 800 | rection. We parametrize the deformation by the absolute
> ' value of the shift. Here the fcc structure corresponds to the
) 600 | zero displacement and theR9structure is obtained for
UE J6a;../6. Because the calculations for this deformation by a
o 400 g full-potential first-principles method are quite involved, we
i only calculated the total-energy curve for the experimental
200 | ground-state atomic volume, without performing internal re-
I laxations(Fig. 5.
0 N We can see that there are three extrema in the oiifige

05 1 15 2 25 3 35 4 45 5). The fcc and ® structures correspond to the minima
c/a which are dictated by the symmetry. A maximum occurs
between the two minima and forms an energy barrier be-
FIG. 4. Total energy per atom as a functionash for various ~ tween the fcc and B structures. The energy oOCu is 7.6
values ofV/V, along the trigonal deformation patii, andE, are ~ meV/atom higher than that of fcc Cu, which is in a very good
same as in Fig. 2. agreement with the values of 7.2 and 6.8 meV/atom by the
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100 ity of higher-energy phases at low temperatures with some
imposed constraints, e.g., with the epitaxial constraints in the
pseudomorphic films and the internal constraints in the GB's.
For a cubic crystal, only three elastic constants, Cgq,,
Ci.p and Cyy or the bulk modulusB[=(C;+2C4,)/2],
C'[=(C41—C19/2] and C,, are independent. For the bcc
structure,C’ is the shear modulus describing the resistance
of the lattice against the glide corresponding to the slip sys-
tem {110/(110),>** and the shear modulu8,, governs the
glide of {001} atomic planes in thé100) directions’ We can
obtainC’ and C4, from the behavior of total energy at te-
tragonal and trigonal deformation, respectively. The calcu-
lated values are shown in Table I. For bcc @y, exhibits a
finite positive value, buC’ vanishes or is even negative.
" Thus the bce Cu is unstable with respect to the glide of the
220 o e e e e {110 planes. However, we can understand its stability in
02 0 02 04 06 08 1 12 14 pseudomorphic bce Cu films on thB01 substrate surface.
8 (/Basec/6) Namely, the glide 0f110},.. atomic planes over each other
hich would take place in the bulk case is prevented here by
he substrate surface which is stable and plays the role of the
epitaxial constraint. And due to the finite positi@,, the
glide of the{001},.. atomic planes over each other does not
occur as well.
The stability of bcc Cu in th& 3 GB’s can also be un-
. . _ , derstood as following from the GB internal constraints. The
full-potential  linear muffin-tin  orbital (FP-LMTO) atomic configurations in the region of t&3 (211) GB's

calculations: The calculated energy barrier between the fcc .
and R structures is 91.0 meV/atom which is important in may be, among othersRdor bee depending on the boundary

stabilizing the R structure in the23 GB's (see Sec. Il E "}giﬁﬂgﬁ?ﬁf th(;tgtr:nciCCulapnh;lssemisthrmr(;ciinisn t:ggo?ni rtﬁ_e
Inclusion of internal relaxations during deformation would gion, fee P 9

probably reduce the height of this barrier a little bit, but this%llfO}E)CCTagomifc pla:rr:es i_r:jthef?hB rigicﬂsei, €.9., IIZig. 6 .Of
will not change our conclusions regarding the stability 8 9 ef. 4. Therefore the glide of the11G,; atomic planes in

structure with respect to the fcc-tdR9transformation. The the GB region is precluded by tHé 11, atomic planes in

fact that the energy of R Cu is only slightly higher than that the grains. since the glide O.f tHE 1L 1 atomic planes in

of fcc Cu shows that the stacking fault energy in Cu is veryf[he grains cannot occithere is an energy_barner to preyent
small and therefore R or other stacking fault structures oc- It SeetF'?ﬁds’ the{llliqb%chato_mlc_plglmesj[ n t:\he G.tB rfg'O’?
cur easily in the GB region. The energy difference betweer?anng gl eh.asﬂwe ) i IS OIS S'T)' ?r to € SItutﬁ lon n
hcp and fcc structures following from our calculations is pseudomorphic films on th01; substrates except the con-

10.6 meV/atom at the experimental ground-state atomic vol§trBa'mS. in trf gr&sentlc?se alr_g'lmp?sted on t.’Oth S|de|is IOI the
ume. This confirms the value of 10.7 meV/atom obtained byG region. And the refative siiding ot two grains parafie! to

Ernstet al. using the FP-LMTO metholThe calculated in- the GB plane' e, the glide of tHa0G}. atomic planes in
trinsic stacking fault energy is 64 mJfmvhich is also in the GB regior(see Fig. 6 of Ref. Acannot take place due to

excellent agreement with the value 63 m3/iy Ernst the_ fini_te positiv? v_alue OC44. As a result, the bcc configu-

et all and in reasonable agreement with the experimentall;fatlon in the GB's is stable. . o

estimated value 55 mJATRef. 47. We do not know a}t present what are the instability modgs
of the 9R structure in Cu. It cannot be excluded that this
structure is even metastable, i.e., stable with respect to all

E. Structural stability of higher-energy phases small deformations from theM configuration. In that case,

&19have found that the excited there can be a R-to-fcc transformation path with a much

}pwer energy barrier than that in Fig. 5. On the basis of the

above experience with the bcc structure, we may suppose

tions to the free energy are responsible for the stability O1that the constraints due to the presence of grains stabilize the

some of those phases at high temperatures. Our previOL? structure in the GB regonin a similar manner as they
study?? also showed that all higher-energy cubic Structure§t<91b|llze the bcc structure, i.e., they prevent the movements

studied are locally unstable with respect to trigonal or tetrag—Of atoms corresponding either to an instability mode or to the

onal deformation. But some experimental 2812 %have 9R-to-fcc Fransforma_tion with the lowest energy barrigr. A
revealed that the higher-energy phases can be stabilized {H°r€ detailed analysis on th&tructure will be the subject
the region of certain extended defects at room temperatuf@ future investigations.

and below. Thus it is an interesting issue how to understand IV. CONCLUSIONS

the stability of higher-energy phases, for example, the bcc '

Cu in the pseudomorphic films or in the GB’s, at low tem- We have investigated the structural stability of higher-
peratures. In this subsection, we discuss the structural stabiénergy phases in Cu along three displacive phase transfor-

80 [

60

20

Ei-E'o (meV/atom)

FIG. 5. Total energy per atom as a function of the absolute valu
of displacement along the fcc-tdRddeformation path at the experi-
mental ground-state atomic voluntg} is the total energy of fcc Cu
with the experimental ground-state atomic volume.

Craievich and co-worket
phases are usually locally unstable with respect to certai
deformation modes. They argued that the entropy contribu
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mation paths by a full-potential first-principles method. Theresults imply that the atomic configurations in the GB’s in
calculated results show that bcc Cu is unstable with respecu may include quite complex stacking fault structutes.

to the tetragonal deformation, but it is stable with respect to
the trigonal deformation. Our study indicates that the higher-
energy phases, which are usually unstable, can be stabilized
by imposed constraints. Specifically, in this paper we have This research was supported by the Grant Agency of the
discussed the stabilization of bcc an® €u in grain bound- Academy of Sciences of the Czech RepuliRroject No.
aries and of bcc Cu in pseudomorphic films. The calculatedA1010817 and by the COST Action P3 “Simulation of
energy differences betweerR%@nd fcc and between hcp and Physical Phenomena in  Technological Applications”
fcc are 7.6 meV/atom and 10.6 meV/atom for the experimen¢Project No. COST OC P3.10This work is a part of activi-
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