
PHYSICAL REVIEW B 1 JULY 1999-IVOLUME 60, NUMBER 1
Slave-fermion theory of confinement in strongly anisotropic systems
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We present a mean-field treatment of a strongly correlated model of electrons in a three-dimensional
anisotropic system. The mass of the bare electrons is larger in one spatial direction~the c-axis direction! than
in the other two~theab planes!. We use a slave-fermion decomposition of the electronic degrees of freedom,
and show that there is a transition from a deconfined phase to a confined phase in which there is no coherent
band formation along thec axis. @S0163-1829~99!14321-2#
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One of the most controversial, and hard to understa
problems related to high-Tc cuprates is the anomalous char
transport observed experimentally.1 The charge dynamics re
flects the anisotropy in the crystal structure of these co
pounds, which consists of weakly coupled planes. In
usual notation, we will refer to the ‘‘c axis’’ and ‘‘ab
planes’’ as the directions transverse and parallel to
planes, respectively. The in-plane conductivitysab shows a
behavior characteristic of the metallic state. On the ot
hand, close to the insulating state, in the so-called un
doped regime, thec-axis conductivitysc is ‘‘incoherent’’:
the values of sc are below the minimum metallic
conductivity,2 the temperature dependence is anomalous,
the frequency dependence does not show signature
Drude-like behavior.3,4

Band-structure calculations indicate an anisotropy whi
within the framework of Boltzmann transport, imply metall
behavior with an anisotropysc /sab well above the experi-
mental observation. Perturbative treatments within
Fermi-liquid theory indicate that the anisotropy is not ren
malized by interactions.5 Perhaps the main objection to th
‘‘conventional’’ theories ofc-axis transport7,8 is the observed
value of the anisotropy of the conductivity. In the superco
ducting phase, coherence is reestablished in all directio9

This led Anderson and others to attribute the anomalie
transport in the normal state to the effect of strong electro
correlations, and to conclude that in order to describe
incoherent c-axis conductivity the Fermi-liquid picture
should be abandoned. The starting point used as a para
is the one-dimensional correlated problem, where it is rig
ously known that the Fermi-liquid picture fails. Considerab
work has been done in weakly coupled chains that sug
that a state can be formed in which the coherence is confi
to the motion along the chains, the motion transverse to
chains being incoherent.6

A complete theory for the charge dynamics in anisotro
strongly correlated systems is not yet available. Due to
complexity of the problem, much work remains to be done
order to develop a fully consistent and controlled calculat
scheme that could account for the phenomenology indica
by the experiments. In the meantime, the analysis of sim
models is useful as a starting point toward the final answ
PRB 600163-1829/99/60~1!/84~4!/$15.00
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Here we present a mean-field treatment of a system
coupled planes that includes the strong anisotropy, and
corporates the strong correlations responsible for the n
Fermi-liquid behavior. We show that, within that mean-fie
approach, a transition from a deconfined to a confined ph
takes place. The parameter signaling the transition is the
in kinetic energy due to band formation in thec-axis direc-
tion.

We consider the Hubbard model in the limit of infinit
on-site repulsion, described by the Hamiltonian

H5(
^ i , j &

t i , j(
s

~12ni ,2s!ci ,s
† cj ,s~12nj ,2s!, ~1!

where^ i , j & refers to near neighbors on a cubic lattice whe
the anisotropy is incorporated into the values of hopping
the matrix elements:t i , j5t i for in-plane hoppings, andt i , j
5t' for the motion along thec axis. The fermion operators
ci ,s

† create an electron at sitei only if the site is empty.
A well-known mean-field description of Hamiltonian~1!

is the slave-boson10,11approach, in which each local configu
ration has associated with it a fermionic or bosonic degree
freedom, such thatci ,s

† 5ai ,s
† ei , whereai ,s

† creates a fermion
with spin s at the i th site representing a singly occupie
configuration, andei destroys a boson representing t
empty state at the same site. A standard mean-field calc
tion decouples fermions and bosons and relaxes the e
constraint of one ‘‘particle’’~fermion plus boson! per site.
The resulting problem is that of noninteracting bosons a
fermions coupled self-consistently. As a result the id
bosons condensate in ak50 state, the overall effect being
renormalization of the masses of the fermions. It is import
to note that, even for an anisotropic system, thek50 bosonic
ground-state wave function does not ‘‘know’’ about the a
isotropy, and the mass renormalization is the same in
spatial directions. Consequently, such an approach prese
the anisotropy and the Fermi-liquid character of the grou
state. At least formally, one can conceive of corrections
this state that improve the treatment of the constraint
avoid multioccupancy of the particles at the same site. Th
are, however, alternative treatments that—still within t
mean-field level—take into account the hard-core constr
84 ©1999 The American Physical Society
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for the bosons exactly. In the present work we presen
mean-field approach along this line. In what follows w
show that at an alternative description in terms of slave
mions for the infinite-U case breaks the Fermi-liquid de
scription and produces a confined coherent state12 in the ab
planes.

We introduce a description in which the original project
fermions are represented by three fermions:

c̄i ,s[ci ,s~12ni ,2s!5ai ,s f i ,↑
† f i ,↓ . ~2!

The above representation respects the anticommutation
tion between the projected operatorsc̄i ,s and c̄i ,s

† , provided
one stays within the physical Hilbert space. A related f
mion linearization was presented in Ref. 13.

The productf i ,↑
† f i ,↓ is a spin-flip operator correspondin

to a pseudospin degree of freedom not related tos. When
this fictitious spin is↓ in site i, this means that the site i
occupied, and the site is empty if the spin is↑: there are as
many f ↓’s as there are electrons, and as manyf ↑’s as there
are holes. Thef fermions therefore satisfy

^ f i ,↑
† f i ,↑&1^ f i ,↓

† f i ,↓&51,(
s

^ai ,s
† ai ,s&1^ f i ,↓

† f i ,↓&51,

~3!

and, in turn,

(
s

^ai ,s
† ai ,s&512d, ~4!

with d representing the fractional deviation in occupati
number with respect to the half-filling case of one electr
per site.

At the mean-field level the ground-state wave functi
consists of a direct product of three Fermi seas, one per e
of the fermion degrees of freedom. The total energy in t
approximation is given by

E052(
^ i , j &

t i , jAi , jx i , j
2 , ~5!

with

Ai , j5(
s

^ai ,s
† aj ,s&, ~6!

x i , j5^ f i ,↑
† f j ,↑&5^ f i ,↓

† f j ,↓&, ~7!

where the last equality holds because we are dealing wi
bipartite lattice with particle-hole symmetry. The three sp
cies of fermions are free, with their hopping amplitud
renormalized by the factorsAi , j andx i , j . These factors are
responsible for renormalizing the anisotropy, and can be
ter visualized in the mean-field Hamiltonian

HMF52(
^ i , j &

t i , j(
s

@x i , j
2 ai ,s

† aj ,s1Ai , jx i , j f i ,s
† f j ,s#1C,

~8!

with C a constant.
Note that, for small deviations from half-filling, th

f i ,↑ ( f i ,↓) fermions are moving close to the bottom~top! of
a

r-

la-

-

n
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s

a
-

t-

their band, whereas thea fermions are close to the center o
the band. This makes their respective Fermi surfaces dif
ent.

Our mean field can be understood in two steps. First,
a fermions are decoupled from thef fermions. At that level,
the a fermions are free, but thef ↑ and f ↓ fermions are
strongly correlated. The dynamics of the system off fermi-
ons at this level is identical to that of anxy model, and can
be mapped onto a hard-core boson problem. In the sec
stepf fermions of different spin are decoupled, and treated
free fermions ~with a self-consistent constraint on th
dynamics!.14 Note that, at the level of the first step, th
above-mentioned system of hard-core bosons will in pr
ciple have an anisotropy in the expectation values of
kinetic energy terms that will depend on direction. This
due to the quantum fluctuations introduced by the hard-c
constraint.

At half-filling ( d50), the kinetic energy of thef fermions
is zero, the renormalization factorx i j 50 giving the localized
limit of the a fermions which we identify as the Mott insu
lating state. On the other hand, far from half-filling, ford
;1, the density ofa fermions is so low that they shoul
behave as noninteracting, but our mean-field approach
to recover this limit. Decoupling thef fermions from thea
fermions is not a good approximation in the limit of hig
dopingd because the probability of finding anf ↓ fermion at
a site occupied by ana fermion is very low@;(12d)2#,
while the exact dynamics requires this probability to be
Therefore, our results will be valid close to half-filling, o
d;0.

Due to translational invariance, the ground-state ene
will be a function of the four quantitiesAi , A' , x i , andx' :

E0524t iAix i
222t'A'x'

2 . ~9!

The one-particle energies of thef anda fermions are

Ek
f 5t iAix i«ki

2t'A'x'2 coskz , ~10!

Ek
a5t ix i

2«ki
2t'x'

2 2 coskz , ~11!

respectively, with

«ki
522~coskk1cosky!. ~12!

Effective chemical potentialsl andm have to be determined
for each of the two types of fermions through the equatio

1

N (
k

f ~Ek
f 2l!5d,

1

N (
k

f ~Ek
a2m!5

12d

2
. ~13!

We approximate the reduced density of states correspo
ing to the motion within the plane by a constant(ki

d(«

2«ki
)5Q(42u«u)/4, and find that the mean-field equation

can be written in terms of the parametersa andb defined as

a5
t'
t i

A'x'

Aix i
, b5

t'
t i

S x'

x i
D 2

. ~14!

After straightforward integrations, and using the fact th
close to half-filling the Fermi surface of thea fermions is
open, the mean-field equations are
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Ai5
1

2
~12d2!2S b

2 D 2

, A'5
b

4
, ~15!

x i5
1

8p H F12S l̃

4
D 2G2k02

a2

4 S k01
1

2
sin 2k0D

2
l̃a

2
sink0J , ~16!

x'5
1

4p H S 12
l̃

4
D 2k0 sink01

a

2 S k01
1

2
sin 2k0D J ,

~17!

with l̃5l/(t iAix i) determined from the equation

d5
1

8p
$~l̃14!k012a sink0%, ~18!

andk05cos21@2(l̃14)/2a# for u(l̃14)/2au,1 andp oth-
erwise. Note thata plays the role of an effective anisotrop
of the f fermions see~Fig. 1!. For a givend, if we fix a, the

FIG. 1. Schematic rendition of the slave-fermion decompositi
When ana fermion hops from sitei 11 to sitei, there is a spin-flip
of f fermions represented by the dashed arrows. The upper~lower!
part of the figure represents the configuration before~after! the hop-
ping process.

FIG. 2. Ground-state energy vs the variational parametera for
an anisotropy oft' /t i50.3, and the indicated values of doping.
renormalization factorsx and A are determined by Eqs
~15!–~18!. This means thata plays the role of a variationa
parameter with respect to which we have to minimize
energyE0. As an example, in Fig. 2 we show some curves
E0 vs a for different values of doping using as a parame
the bare anisotropyt' /t i .

The curves indicate that for fixedt' /t i there is a discon-
tinuous jump in the position of the minimum ofE0 as d is
varied. The curve shown in Fig. 2 ford50.002 corresponds
to the confined phase for whicha50, and the renormaliza
tion factorx'50. The curve ford50.0018 has its minimum
at finite a, and hence corresponds to a three-dimensio
metal with a renormalized anisotropy. A phase diagram t
result from our calculation is shown in Fig. 3.

.

FIG. 3. Phase diagram valid in the low-doping regime indicat
the boundary between a confined phase and a three-dimens
anisotropic phase.

FIG. 4. Fermion occupation number vs wave vector in the
rection marked in the inset. The dashed line shows the bare, no
teracting, occupation number. Note that there is no discontinuit
nk,s , as expected in a non-Fermi-liquid state. The inset also sh
the Fermi surfaces—in the first quadrant only—of thef fermions
~the small circle is shown by the short dashed line, and the arc
the continuous line close to theM point! and a fermions ~dashed
line!.
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A very important point is to establish that the partic
motion does not correspond to a Fermi liquid. We show t
by computing the form of the occupation number of t
original fermions in the confined phase within our mean-fi
scheme,

nk,s[^ck,s
† ck,s&5

n

2
1

1

N (
iÞ j

eik(Ri2Rj )^ci ,s
† cj ,s&,

with n the particle density. The term̂ci ,s
† cj ,s& is evaluated

using the representation of Eq.~2!. In the mean-field ap-
proach the result is a convolution of the occupation numb
of the three fermions (f ’s and a). Using the constraints o
Eqs.~3! and ~4!, one obtains

nk,s5
12d

2
@12d~12d!#1

1

N2 (
pq

np,s
(a) nq,↓

( f ) np1q2k,↑
( f ) .

The occupation numbers above correspond to three F
surfaces. For smalld the Fermi surfaces corresponding to t
f fermions are two circles centered atk5(0,0) and k
5(p,p), respectively. On the other hand, the Fermi surfa
of the a fermions are close to a diamond. The result of t
convolution above~see Fig. 4! is that nk,s does not have a
discontinuity, implying a non-Fermi-liquid state. Two poin
related to the calculation deserve comment.
y,
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rs

mi

e
e

~i! Due to the approximation made in the density of stat
we cannot recover the isotropic case. The approxima
used is aimed at describing anisotropic systems.

~ii ! In our calculation the confined regime is identified b
the vanishing of the expectation value of the interplane h
ping, indicating that there is not band formation along th
direction. We interpret this result as an indication of incoh
ence, even though one expects some interplane couplin
remain in the exact incoherent regime. The picture is ana
gous to the slave-boson description of the Mott insulat
There the insulating state is characterized by a vanishin
the intersite hopping, while we know that in the exact grou
state this magnitude is small but finite.

In summary, we have presented a mean-field calcula
and derived a phase diagram of a strongly interacting an
tropic system. We have shown that, as the anisotropy
creases, for small deviations from half-filling a transitio
takes place from a deconfined phase to a confined phas
which the motion in thec-axis direction is completely inco
herent while the motion in theab direction corresponds to a
coherent, non-Fermi-liquid state.
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